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ABSTRACT 

Real time rendering of atmospheric light scattering is one of the most difficult lighting effect to achieve in 

computer graphics. This paper presents a new real time method which renders these effects including volumetric 

shadows, which provides a great performance improvement over previous methods. Using an analytical 

expression of the light transport equation we are able to render directly the contribution of the participating 

medium on any surface. The rendering of shadow planes, sorted with a spatial coherence technique, and in the 

same philosophy than the shadow volume algorithm will add the volumetric shadows. Realistic images can be 

produced in real time for usual graphic scenes and at a high level framerate for complex scenes, allowing 

animation of lights, objects or even participating media. The method proposed in this paper use neither 

precomputation depending on light positions, nor texture memory. 

Keywords : Real time rendering / Volumetric shadows / Single scattering / Participating media 

 

   

Figure 1: The same scene lit a. (left) classically, b. (center) with single scattering and  

c. (right) with single scattering and volumetric shadows (right) . 

 

1. INTRODUCTION 
The growing capacities of graphic cards enable 

the rendering of more and more complex physical 

models in real time, like anisotropic reflection or 

environment mapping. Therefore, it is not a surprise 

if a current challenge in computer graphics is the 

accurate rendering of atmospheric effects, and 

especially the light scattering. Atmospheric light 

scattering is due to little particles, like dust or water, 

that lay in the air, scattering and absorbing the light 

they receive. They creates effects such light beams, 

shafts of light and visibility loss. These phenomena 

often occur under foggy or smoky conditions but are 

also visible by clear or cloudy weather in the 

presence of sunlight. 

Unfortunately, rendering such lighting effects in 

real time remains quite complex since they depend 

on camera and light positions and since they occur 

everywhere in the space. Introducing such effect in 

traditional graphic engine will greatly enhance the 
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realism of the virtual scene and have many 

applications [Ru94]. Considering the particular 

situation of figure 1, it is clear that rendering the 

participating medium is not enough. Here, the 

representation of shadow volumes is necessary to 

obtain a realistic image. Thus there is a need for a 

simple algorithm, easily integrated in traditional 

algorithms, able to render those effects. 

In this paper, we present a new algorithm that 

fulfills this goal. It can render accurately 

participating media, including effects like light 

beams in foggy or smoky scenes, or any other 

atmospheric scattering effects. The participating 

media can be isotropic or anisotropic and are lit by 

one or several, static or moving, point light sources 

since no precomputation are done involving either 

lights or camera. Our technique produces high 

resolution images and takes into account volumetric 

shadows, cast by occluders contained in the media. 

Without any texture memory cost, but using 

intensively graphics hardware, our method can 

render images at a high frame rate, and is real time 

for classical graphic scene. The method is also easy 

to implement in traditional graphic engines since it 

follows the same strategy than the shadow volume 

algorithm. Therefore, it is straightforward to obtain 

animations where objects, sources and even 

participating media can move. 

2. PREVIOUS WORK 
The representation of participating media has 

been a real challenge for years and the literature 

about it is abundant. We can easily divide all these 

studies between the single scattering methods and the 

multiple scattering ones. Multiple scattering methods 

try to compute all light reflections and inter-

reflections inside a medium, whatever the number of 

these ones. This complex situation is difficult to 

handle but is essential in the rendering of clouds for 

example. Multiple scattering illumination can be 

obtained by determinist methods [RT87, Ma94, 

ND96] or by stochastic methods [PM93, LW96, 

JC98] and sometimes involve a resolution of the flow 

equations like in [FM97, St99, DK00, FS01]. Despite 

their realism, they suffer from excessive computation 

times due to the complexity of light exchanges 

occurred in these cases. Therefore it is not suitable 

for our goal and we will focus on single scattering 

methods.  

These techniques [NM87, Ma94, DY00, HP02, 

DY02] approximate the multiple reflections of light 

as a constant ambient term and consider only the first 

scattering of light ray in the direction of camera. This 

assumption allows a direct rendering of the 

illumination of the medium which is more suitable 

for interactive rendering. Visualization is often done 

by ray tracing or ray marching. View rays are 

followed to gather the participating media 

contributions. Unfortunately, these methods [FM97, 

JC98], are far from being real time on a conventional 

desktop computer. With the growing capacities of 

graphics hardware, the real time problem has been 

investigated. 

Two approaches can be used to achieve this 

goal: volume rendering or direct representation. To 

add the volumetric shadows the first approach will 

use naturally shadow maps techniques when the 

second one is oriented to shadow volumes algorithm 

[He91]. Volume rendering is a classic solution to 

render participating medium which is a volume de 

facto. Methods like [BR98, WE98, St99, FS01, 

NM01] represent densities or illumination in voxels 

encoded into 2D or 3D textures. Accumulation 

techniques using textured slices or virtual planes are 

then used to display the result. That kind of methods 

could produce nice images of clouds or gas. But 

apart from requiring a lot of texture memory, they are 

not suitable for shafts of light where sharp edges 

exist. Special methods are defined to render beams 

and shafts of light precisely and most of them 

[DK00, DY00, Ev02, LG02] use volume rendering 

techniques along with sampling shadows in shadow 

maps. But they suffer from artifacts due to the 

sampling. Dobashi et al. [DY02] presents a very 

elegant solution to solve this problem using 

specialized adaptive sampling for shadows. They 

obtain an interactive rendering of participating media 

without aliasing or artifacts. However the image 

resolution remains small since the method is 

expensive in terms of fillrate. Moreover, the method 

works only with static lights due to the 

precomputation of shadow maps. 

The algorithms belonging to the second 

approach computes directly, on every point in the 

scene, the contribution of the participating medium. 

This is well adapted to classical graphic engines 

since it consists in one more rendering of the scene. 

In this case, methods like [Me01, HP02] use 

participating medium boundaries, or special virtual 

planes, combined with vertex and fragments shaders. 

Other methods focus on the rendering of the 

atmosphere [On05]. A last method of this group is 

proposed by Sun et al. [SR05] and is the only one to 

consider the effect of light scattering on the 

illumination of objects. Despite it is real time, it does 

not take into account shadows. Our work belongs 

also to this group and is the only one of them to 

integrate realistic lighting effect with volumetric 

shadows. 
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3. OVERVIEW OF OUR METHOD 
To obtain real time performances, we consider 

only one scattering of light in the medium. Multiple 

scattering is approximated by a constant ambient 

term in the scene and each participating medium is 

homogeneous. 

The algorithm exploits an analytical expression 

of the total contribution of scattered light along a 

view ray. This allows the direct computation of this 

contribution between the camera and any point of the 

scene. Therefore, we compute the previous 

expression: 

• on scene vertices or on boundaries of 

participating media. 

• on any point of the shadow planes. 

As stated before, our method is close to shadow 

volume techniques [He91] or other algorithms using 

shadow planes [AA03]. Indeed, after having compute 

and render light scattering contribution of lit areas, 

we do the same for the shadow planes of any object 

that is set to cast shadows. 

These shadow planes are classically obtained by 

using the object silhouettes regarding to the point 

light position and meshed. After a back to front 

sorting of the shadow planes, we render them. The 

participating medium contribution will be added if 

the shadow plane is frontfacing and subtracted if 

backfacing to take into account the volumetric 

shadows. 

 

 

Figure 2 : Single scattering case and notations. 

4. THEORETICAL BACKGROUND 
As light is progressing through a participating 

medium, it have four interactions with it : absorption, 

emission, scattering and in-scattering [SH92]. If we 

consider only single scattering, the luminance of a 

point P seen from a point O can be written [SH92] : 
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x, r, d, h are geometrical factors (cf. figure 2 for 

notations), while kt is the extinction coefficient, and 

Ω is the albedo. Is is the directional intensity of the 

source. The first term takes into account the 

scattering and the absorption while the second one is 

the in-scattering which is responsible for the subtle 

effects of atmospheric scattering. This equation is 

called the integral transfer equation. 

4.1 Angular formulation of the integral 

transfer equation 
The integral transfer equation can be written [LM00] 

using the angle between the view ray and the 

direction toward point light. This formulation will be 

used to obtain an analytical solution of the previous 

equation. Indeed, instead of integrating the integral 

transfer equation regarding to the distance x along 

the ray, we choose to use the variation of the angle θ 
between the vector ωr  and the vector ST  defined by 

the orthogonal projection of the point light source on 

the view ray. Using this variable change : 
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Further on, Lm(P) will be called the medium 

contribution of the point P. 

The kernel Λ of the previous integral is complicated 

enough to prevent any analytic integration. But we 

can approximate this kernel to obtain a much more 

simple expression. The function in the kernel without 

considering the light intensity, depends only on the 

angle θ, considering that the extinction coefficient is 

constant, i.e. that the participating medium is 

homogeneous. Therefore, we can develop its 

expression in a polynomial base (we use 4 degree) : 
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For traditional phase functions – isotropic, hazy, 

murky, etc. – the formal expressions of coefficients c 

can be obtained in the annex. We introduce this 

equation in the expression of Lm(P) to obtain : 
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Finally, for non directional point light source, these 

integrals are easily computed : 
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and so we can obtain the single scattering 

contribution created by a point light source along any 

view ray in constant time. 

A study on the quality of these approximations can 

be found in [Le01]. In general, they are quite good 

except when the ray passes close to the source, or 

when the observer is far from the source. In the first 

case, the contribution is so high, and in the second 

case, so small, that these errors remain unnoticeable. 

Based on equation (2), we are now able to compute 

in “constant time” – i.e. without any numerical 

integration – the contribution of in-scattering light 

along a ray contained in a participating medium. 

 

Figure 3 : A view ray partially in shadows. 

4.2 Considering shadow volumes 
Previous equations describe the particular case where 

the view ray remains totally lit and lays in the 

participating medium. To integrate shadow volumes 

and bounded participating medium, we need to 

consider more general cases, illustrated in figure 3. 

Indeed, due to shadows, the part of the ray laying in 

the medium could be split into lit and shadowed 

parts. In this example, the medium contribution along 

the ray is split into three parts on AB, CD and EF. 

The contribution of the single scattering of the ray 

OP is then: 
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The key idea of our approach is to rewrite this 

equation into a sum of differences. Indeed the light 

contribution of segment EF for example can be seen 

as the contribution of segment OF minus the one 

from segment OE. If we denote Гm(P) the expression 

(2) for a lit ray between the camera center O and any 

point P, then the previous equation can be written : 
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It is also obvious that points B, C, D and E are 

located on shadow planes, and that the points A and 

F belong to the boundary of the participating 

medium. Of course point F and P can merge for 

object contained in the medium, and if it covers the 

entire scene, points A and O will also merge. 

Finally, when considering a bounded medium, the 

equations are slightly different. The coefficient r and 

x in the exponentials of equation (1) must be the 

distance between the point X and the border of the 

medium boundary. In our method, we approximate r 

to the average distance R between a point located in 

the boundary and a point in the medium. So R is 

constant along the ray. The new value xn of x is 

computed on the fly and is also a constant along the 

ray. In this case, Lm(P) becomes : 
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what only involves a change of coefficients c. 

5. RENDERING ALGORITHM 

5.1 Scenes Recovered by a Participating 

Medium 
In this case, every view ray is contained entirely in 

the participating medium. The method is easy to 

implement and works as follows : 

1. The silhouettes of every moving shadow caster 

are computed. If light is moving, every silhouette 

needs to be recomputed. 

2. Scene is rendered using the conventional 

polygonal rendering method. Surface shadows 

can be obtained using shadow planes algorithms 

[He01, EK02]. The stencil buffer now contains lit 

areas of the scene. An ambient fog is added to 

take into account both absorption and multiple 

scattering. 

3. Scene is rendered once more and medium 

contribution is computed for each vertex of the 

scene. Depth test is set to the equality. Only lit 

parts of the scene are rendered thanks to the 

stencil buffer. 

4. Shadow planes, determined by the object's 

silhouettes, are sorted in a back to front order. 

5. Shadow planes are rendered in that precise order. 

The depth test function accepts only planes that 

are closer to the camera. Front facing planes add 

their contribution when back facing planes 

subtract them. Stencil function is set to allow 

fragments if the stencil is equal to 1 for front 

facing planes and 0 for back facing ones. Front 

facing planes always increment the stencil buffer 

and back facing ones always decrement it. 

All stages have to be done for each light source. 

Each stage is detailed in the following sections. 

5.1.1 Computation of silhouettes 
In our algorithm, we select some objects to be 

shadow caster. Their silhouettes are easily computed 

in determining all edges of their mesh common to a 
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front-facing triangle regarding the light position and 

one back facing it. Then all these edges are linked 

together if possible, and stored in a loop list. To 

obtain correct silhouettes, we need closed triangular 

meshes (2-manifold) for which connectivity 

informations are available. These conditions for the 

shadow casters are the ones indicated in [EK02]. 

Shadow planes are infinite quads formed by a 

silhouette edge and the light position. They are 

constituted by the two edge's vertices and two other 

points, projection of the previous vertices to infinity 

toward direction : light position - vertex (cf. [He91]). 

They are oriented toward the unshadowed area of the 

scene. As we need to compute the medium 

contribution on all shadow planes, it is necessary to 

use shadow plane silhouettes rather than the shadow 

planes of all little triangles. Of course, if the light 

does not move, only moving shadow caster 

silhouettes have to be computed. Finally, in case the 

input geometry is modified by graphics hardware, 

using displacement mapping for example, a solution 

to obtain silhouettes of all objects quickly and 

accurately can be found in [BS03]. 

5.1.2 Rendering the scene 
The scene is rendered normally except for the light 

attenuation due to absorption and scattering induced 

by the participating medium. It multiplies the phong 

model used in the standard graphic pipeline a 

coefficient rk
te

−  where kt is the extinction coefficient 

and r the distance from the lit point and the point 

light source. A simple vertex program can render this 

equation which differs from the traditional one only 

in the exponential attenuation. 

In this stage we also add a fog effect to take into 

account both absorption and multiple scattering. We 

also compute the hard shadows and use the stencil 

algorithm and its improvements [He91, BS03] to do 

so. Indeed, they fit perfectly with our application 

since we already have the silhouettes. In the end of 

this stage, the stencil buffer contains the lit areas of 

the image. Until the end of the image rendering, the 

lighting is disabled. 

5.1.3 Medium contribution of the scene 
Still using stencil test, the scene is rendered once 

more to add, with additive blending, the medium 

contribution of every surface. This is simply done by 

computing equation (2) for each vertex. The depth 

test is set to the equality. 

5.1.4 Sorting the shadow planes 
Before rendering all shadow planes, we have to make 

sure that we will not render shadow planes, or part of 

them, that are themselves in shadow. If we do not 

care about this problem, it will create artifacts we call 

shadow in shadows, illustrated in figure 4. In the left 

image, we can see that the shadow of the top plane is 

propagated in the shadow of the bottom plane. 

 

Figure 4: left : example of the shadows in shadows 

artifact. Right : a correct rendering 

To prevent these artifacts we render the shadow 

planes, back- or front-facing, in a “back to front”' 

order and use the stencil buffer to avoid the 

rendering of shadowed shadow planes. The distance 

we defined for the back to front order depends on 

both camera and light positions. In two dimension, 

we can see in figure 5 that the plan (a line in 2D) 

created by the edge A (a point in 2D) must be 

rendered before the one created by B. And this one 

must be rendered before the shadow plane of edge C. 

This is true whatever the distance between the edge 

and the camera or between the edge and the light 

position. A simple realization of such a distance is to 

compute, for an edge P, the cosine between vectors 

SO  and SP  where O is the camera center, S the 

light position, and P a point belonging to the 

silhouette. 

A

C

B

camera

light
S

O

 

Figure 5: Ordering of shadow planes (in 2D) 

We use the same ordering in 3D. In this case, the 

silhouette edges are segments. Since silhouettes are 

accurately meshed, these segments can be considered 

as points (only for ordering). Therefore, we compute 

the same cosine using as point P the center of the 

silhouette edge. 

5.1.5 Rendering the shadow planes 
We always keep the stencil we have obtained in the 

stage 2. Shadow planes are rendered in the order 

defined in the previous stage with the depth test 

function admitting only fragments that are closer to 

the camera. 

The color attributed to the shadow planes – i.e. their 

contribution – are computed with exactly the same 

expression than for lit point of the scene in stage 3, 
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i.e. using equation (2) for homogeneous point light. 

Front facing planes add their contribution and back 

facing planes subtract them. 

We have to mesh the shadow planes to obtain 

accurate values of the medium contribution. They 

will be computed in each vertex of the mesh and the 

GPU will make the interpolation between them. 

According to the radial distribution of a point light, it 

is wise to mesh the shadow planes finely when close 

to the light and coarsely when far away. It is not 

necessary to subdivide the silhouette edge which has 

to be small. 
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Figure 6: Use of the stencil buffer in the rendering 

of shadow planes 

To take into account correctly the shadow in shadow 

problem, we use the stencil intensively. Front facing 

planes pass the stencil test if its value is one 

(representing shadowed area), and back facing ones 

passes if it equals 0 (value representing lit area). 

Ideally the back (resp. front) facing quads should 

always add (resp. subtract) one to the stencil buffer if 

it passes depth test. But unfortunately it is not 

possible to specify two different stencil functions 

when a fragment fails the stencil test depending of 

the result of the depth test. It imposes us to render the 

simple quad of the shadow plane with the stencil 

function set to always. Such problem will disappear 

when programmability of graphics card will involve 

the stencil test. Nevertheless this strategy works in all 

the case as illustrated in figure 6. The strategy 

indicated works if the camera is in the light. A 

slightly different strategy can be used when the 

camera is in shadow but the philosophy remains the 

same. 

5.2 Rendering Several Bounded 

Participating Media 
Several modifications have to be made to the 

previous algorithm to take into account boundaries of 

participating media and to avoid the rendering of 

each object and each shadow planes for every 

medium. Indeed, when several participating media 

exist, stages 3 to 5 need to be computed for each one 

of them. For simplicity we consider only convex 

participating media, and that we have a mesh 

representation of it.  

First of all we will compute bounding boxes for each 

object and each participating medium. This is to 

avoid the rendering of objects that do not lay in the 

area of a participating medium in stage 3. We also 

check for each shadow plane if it is able to cut the 

participating medium. 

In stage 3, we use the equivalent of a shadow volume 

algorithm to determine shadowed and lit area of the 

boundary of the participating medium. Then we 

render the lit areas of objects and of the medium 

boundary. Objects are rendered only if they belong to 

the medium bounding box. The front facing triangles 

of the medium boundary are rendered using the 

expression seen in section 4. 

In stage 4, back-facing triangles of the medium 

boundary are also sorted and integrated in the order 

list. Since we use their center for the reference point 

P in the ordering, these triangles must be small. For 

each shadow plane, we determine if it is able to cut 

the medium bounding box. If not, it is removed from 

the sorted list to avoid unnecessary computation. 

Finally the stage 5 remains the same, except that 

when a back facing triangle of the medium boundary 

is rendered, we set the stencil to 255 to avoid any 

further rendering in this area. 

6. RESULTS 
The previous algorithm has been implemented on a 

standard computer using a 2.6 GHz processor and an 

ATI 9800 graphic card. All images that we will 

present have a 800x600 resolution. We first compare 

our method with the work of Dobashi et al. [DY02] 

using their simple scene, a sphere beyond a spot light 

(cf. figure 7). In our case, the spot light is obtained 

by adding a cone above our point light. The 

silhouette has 32 edges which involves 32 shadow 

planes. Our rendering time is about 120 frames per 

second at resolution 800x600. For our algorithm, 

resolution is not really a problem. For example, the 

same scene using a 1024x768 resolution is rendered 

at 107 FPS. For the same test scene, Dobashi's 

algorithm achieves 12.5 FPS for a 450x300 

resolution. This is mainly due to the accumulation of 

texture rendering inducing a high fill rate. 

A drawback exists in our method which is only due 

to the clamping of the framebuffer. Indeed, when we 

render the contribution of the medium, it is possible 

that the final value added to the one present in the 

framebuffer exceeds 1. In that case, the value is 

clamped to 1 and if we subtract a medium 

contribution after that, the final result will be darker 

than it should be. However, this problem can be 

avoided in choosing reasonable intensity for the light 
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source, or in the future, using a float texture. 

Unfortunately, we do not have develop this yet. 

We also present in table 1 the ratio of work loads for 

each stage (see 5.1). As expected, we can see that the 

computations of the shadow plane contributions 

represent the main cost of the whole process. 

Stage 1 2 3 4 5 

Fig 8 left 1% 8.7% 21.7% 9.6% 59% 

Fig 8 right 1.7% 14% 33.6% 16% 34.7% 

Table 1. Work loads for each stage. 

We also present some snapshots of our animations. 

The first image in figure 8.a. is a simple scene, where 

two pens are bumping in front of a light. It illustrates 

a classical situation where well design 3D objects are 

moving and casting shadow. This scene is rendered 

at more than 35 fps. The image in figure 8.b. 

represents a simple scene with a box contained into 

three different participating media, one red, one blue 

and one green, moving before the light. Here we can 

clearly see the volumetric shadows of each 

participating media and how they blend together. As 

we use exact shadow planes no aliasing occurs. This 

case illustrates the ability of our algorithm to handle 

all the position between shadow planes and the 

boundary of a participating medium. Figure 8.c. is a 

snapshot from a animation where the light is moving, 

and its color is also changing. We have chosen this 

scene because it contains a lot of shadow planes. 

Finally figure 1.c., in the first page of this paper, is 

also a snapshot to illustrate the use of our algorithm 

when light is moving in a complex scene, containing 

around 100 000 triangles. Table 2 presents the FPS 

and the number of triangles of those scenes. 

Scene Fig 8a Fig 8b Fig 8c Fig 1 

FPS 23 35 25 12 

Nb. triangles 34 549 14 785 20 747 107 514  

Table 2. FPS and number of triangles of scenes. 

7. CONCLUSION 
We have presented a new real time algorithm that is 

able to compute the single scattering of one or 

several participating media. Our algorithm is fast 

enough to handle more than 25 frames per second for 

moderately complex scenes, which is an 

improvement over other atmospheric scattering 

algorithms, especially when a medium covers the 

whole scene. As outlined above, the only 

computations that we have done in software are the 

participating medium contributions and the ordering 

and the computation of shadow planes. Moreover, 

we plan to design vertex and fragment shaders to 

make the graphic card computes the participating 

medium contributions. We also want to point out that 

our algorithm does not create any sampling aliasing 

artifact, for both surface and volumetric shadows, 

thanks to the use of exact shadow planes. 

As shadow planes have become more popular 

recently, we think that our algorithm fit perfectly 

with this kind of approach and is well adapted to the 

growing capacities of graphics hardware. For 

example, the final improvement of the algorithm 

would be to compute soft surface shadows and soft 

volumetric shadows. For this goal we can take 

inspiration of the algorithm [AM03]. Finally, both 

clustering and culling approaches will greatly speed 

up this already fast algorithm. 
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9. ANNEXES 
Expression of coefficients c for classical phase 

functions. Isotropic phase function : 
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Rayleigh phase function :  
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Figure 8. a. (left)  Two pen moving. b. (center) Three participating media moving. 

c. (right) Light is moving in a relatively complex scene. 
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