
Real Time Rendering of Atmospheric Scattering and
Volumetric Shadows

Biri Venceslas
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

biri@univ-mlv.fr

Arquès Didier
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

arques@univ-mlv.fr

Michelin Sylvain
Charles Cros Institute

6 bd du Danube
F-77700 SERRIS

FRANCE

michelin@univ-mlv.fr

ABSTRACT

Real time rendering of atmospheric light scattering is one of the most difficult lighting effect to achieve in

computer graphics. This paper presents a new real time method which renders these effects including volumetric

shadows, which provides a great performance improvement over previous methods. Using an analytical

expression of the light transport equation we are able to render directly the contribution of the participating

medium on any surface. The rendering of shadow planes, sorted with a spatial coherence technique, and in the

same philosophy than the shadow volume algorithm will add the volumetric shadows. Realistic images can be

produced in real time for usual graphic scenes and at a high level framerate for complex scenes, allowing

animation of lights, objects or even participating media. The method proposed in this paper use neither

precomputation depending on light positions, nor texture memory.

Keywords : Real time rendering / Volumetric shadows / Single scattering / Participating media

Figure 1: The same scene lit a. (left) classically, b. (center) with single scattering and

c. (right) with single scattering and volumetric shadows (right) .

1. INTRODUCTION
The growing capacities of graphic cards enable

the rendering of more and more complex physical

models in real time, like anisotropic reflection or

environment mapping. Therefore, it is not a surprise

if a current challenge in computer graphics is the

accurate rendering of atmospheric effects, and

especially the light scattering. Atmospheric light

scattering is due to little particles, like dust or water,

that lay in the air, scattering and absorbing the light

they receive. They creates effects such light beams,

shafts of light and visibility loss. These phenomena

often occur under foggy or smoky conditions but are

also visible by clear or cloudy weather in the

presence of sunlight.

Unfortunately, rendering such lighting effects in

real time remains quite complex since they depend

on camera and light positions and since they occur

everywhere in the space. Introducing such effect in

traditional graphic engine will greatly enhance the

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

realism of the virtual scene and have many

applications [Ru94]. Considering the particular

situation of figure 1, it is clear that rendering the

participating medium is not enough. Here, the

representation of shadow volumes is necessary to

obtain a realistic image. Thus there is a need for a

simple algorithm, easily integrated in traditional

algorithms, able to render those effects.

In this paper, we present a new algorithm that

fulfills this goal. It can render accurately

participating media, including effects like light

beams in foggy or smoky scenes, or any other

atmospheric scattering effects. The participating

media can be isotropic or anisotropic and are lit by

one or several, static or moving, point light sources

since no precomputation are done involving either

lights or camera. Our technique produces high

resolution images and takes into account volumetric

shadows, cast by occluders contained in the media.

Without any texture memory cost, but using

intensively graphics hardware, our method can

render images at a high frame rate, and is real time

for classical graphic scene. The method is also easy

to implement in traditional graphic engines since it

follows the same strategy than the shadow volume

algorithm. Therefore, it is straightforward to obtain

animations where objects, sources and even

participating media can move.

2. PREVIOUS WORK
The representation of participating media has

been a real challenge for years and the literature

about it is abundant. We can easily divide all these

studies between the single scattering methods and the

multiple scattering ones. Multiple scattering methods

try to compute all light reflections and inter-

reflections inside a medium, whatever the number of

these ones. This complex situation is difficult to

handle but is essential in the rendering of clouds for

example. Multiple scattering illumination can be

obtained by determinist methods [RT87, Ma94,

ND96] or by stochastic methods [PM93, LW96,

JC98] and sometimes involve a resolution of the flow

equations like in [FM97, St99, DK00, FS01]. Despite

their realism, they suffer from excessive computation

times due to the complexity of light exchanges

occurred in these cases. Therefore it is not suitable

for our goal and we will focus on single scattering

methods.

These techniques [NM87, Ma94, DY00, HP02,

DY02] approximate the multiple reflections of light

as a constant ambient term and consider only the first

scattering of light ray in the direction of camera. This

assumption allows a direct rendering of the

illumination of the medium which is more suitable

for interactive rendering. Visualization is often done

by ray tracing or ray marching. View rays are

followed to gather the participating media

contributions. Unfortunately, these methods [FM97,

JC98], are far from being real time on a conventional

desktop computer. With the growing capacities of

graphics hardware, the real time problem has been

investigated.

Two approaches can be used to achieve this

goal: volume rendering or direct representation. To

add the volumetric shadows the first approach will

use naturally shadow maps techniques when the

second one is oriented to shadow volumes algorithm

[He91]. Volume rendering is a classic solution to

render participating medium which is a volume de

facto. Methods like [BR98, WE98, St99, FS01,

NM01] represent densities or illumination in voxels

encoded into 2D or 3D textures. Accumulation

techniques using textured slices or virtual planes are

then used to display the result. That kind of methods

could produce nice images of clouds or gas. But

apart from requiring a lot of texture memory, they are

not suitable for shafts of light where sharp edges

exist. Special methods are defined to render beams

and shafts of light precisely and most of them

[DK00, DY00, Ev02, LG02] use volume rendering

techniques along with sampling shadows in shadow

maps. But they suffer from artifacts due to the

sampling. Dobashi et al. [DY02] presents a very

elegant solution to solve this problem using

specialized adaptive sampling for shadows. They

obtain an interactive rendering of participating media

without aliasing or artifacts. However the image

resolution remains small since the method is

expensive in terms of fillrate. Moreover, the method

works only with static lights due to the

precomputation of shadow maps.

The algorithms belonging to the second

approach computes directly, on every point in the

scene, the contribution of the participating medium.

This is well adapted to classical graphic engines

since it consists in one more rendering of the scene.

In this case, methods like [Me01, HP02] use

participating medium boundaries, or special virtual

planes, combined with vertex and fragments shaders.

Other methods focus on the rendering of the

atmosphere [On05]. A last method of this group is

proposed by Sun et al. [SR05] and is the only one to

consider the effect of light scattering on the

illumination of objects. Despite it is real time, it does

not take into account shadows. Our work belongs

also to this group and is the only one of them to

integrate realistic lighting effect with volumetric

shadows.

Journal of WSCG 66 ISBN 1213-6972 ISBN 80-86943-09-7

3. OVERVIEW OF OUR METHOD
To obtain real time performances, we consider

only one scattering of light in the medium. Multiple

scattering is approximated by a constant ambient

term in the scene and each participating medium is

homogeneous.

The algorithm exploits an analytical expression

of the total contribution of scattered light along a

view ray. This allows the direct computation of this

contribution between the camera and any point of the

scene. Therefore, we compute the previous

expression:

• on scene vertices or on boundaries of

participating media.

• on any point of the shadow planes.

As stated before, our method is close to shadow

volume techniques [He91] or other algorithms using

shadow planes [AA03]. Indeed, after having compute

and render light scattering contribution of lit areas,

we do the same for the shadow planes of any object

that is set to cast shadows.

These shadow planes are classically obtained by

using the object silhouettes regarding to the point

light position and meshed. After a back to front

sorting of the shadow planes, we render them. The

participating medium contribution will be added if

the shadow plane is frontfacing and subtracted if

backfacing to take into account the volumetric

shadows.

Figure 2 : Single scattering case and notations.

4. THEORETICAL BACKGROUND
As light is progressing through a participating

medium, it have four interactions with it : absorption,

emission, scattering and in-scattering [SH92]. If we

consider only single scattering, the luminance of a

point P seen from a point O can be written [SH92] :

∫ −−− Ω+= d rkxk

stdk
dxp

r

eeIk
ePLOL

tt

t

0

2
)(

)(

4
)()(αω

π
r

 (1)

x, r, d, h are geometrical factors (cf. figure 2 for

notations), while kt is the extinction coefficient, and

Ω is the albedo. Is is the directional intensity of the

source. The first term takes into account the

scattering and the absorption while the second one is

the in-scattering which is responsible for the subtle

effects of atmospheric scattering. This equation is

called the integral transfer equation.

4.1 Angular formulation of the integral

transfer equation
The integral transfer equation can be written [LM00]

using the angle between the view ray and the

direction toward point light. This formulation will be

used to obtain an analytical solution of the previous

equation. Indeed, instead of integrating the integral

transfer equation regarding to the distance x along

the ray, we choose to use the variation of the angle θ
between the vector ωr and the vector ST defined by

the orthogonal projection of the point light source on

the view ray. Using this variable change :

22)(txhr −+=

we can obtain (see [LM00]) :

)()()(PLePLOL m

dkt += −

where :

∫ ++Ω=
+−− d

tt

dpeI
h

ek
PL

hk

s

tk

t
m

θ

θ
θ

θ θπθβθπ
0

)
2

()(
4

)()cos(

1)sin(

Further on, Lm(P) will be called the medium

contribution of the point P.

The kernel Λ of the previous integral is complicated

enough to prevent any analytic integration. But we

can approximate this kernel to obtain a much more

simple expression. The function in the kernel without

considering the light intensity, depends only on the

angle θ, considering that the extinction coefficient is

constant, i.e. that the participating medium is

homogeneous. Therefore, we can develop its

expression in a polynomial base (we use 4 degree) :

...),(),()
2

(10

)cos(

1)sin(

++≈+
+− θπθθ

θ
hkchkcpe tt

hkt

For traditional phase functions – isotropic, hazy,

murky, etc. – the formal expressions of coefficients c

can be obtained in the annex. We introduce this

equation in the expression of Lm(P) to obtain :

⎥⎥⎦
⎤

⎢⎢⎣
⎡ ++++Ω= ∫∫−

...)(),()(),(
4

)(

00

10

ddt

dIhkcdIhkc
h

ek
PL stst

tk

t
m

ς

θ

ς

θ
θθβθθβθπ

Finally, for non directional point light source, these

integrals are easily computed :

[] ⎥⎥⎦
⎤

⎢⎢⎣
⎡ +⎥⎦

⎤⎢⎣
⎡+Ω= −

...
2

),(),(
4

)(

0

0

2

10

d

d

t

hkchkc
h

ek
PL tt

tk

t

m

θ

θ
θθ

θθπ
(2)

Journal of WSCG 67 ISBN 1213-6972 ISBN 80-86943-09-7

and so we can obtain the single scattering

contribution created by a point light source along any

view ray in constant time.

A study on the quality of these approximations can

be found in [Le01]. In general, they are quite good

except when the ray passes close to the source, or

when the observer is far from the source. In the first

case, the contribution is so high, and in the second

case, so small, that these errors remain unnoticeable.

Based on equation (2), we are now able to compute

in “constant time” – i.e. without any numerical

integration – the contribution of in-scattering light

along a ray contained in a participating medium.

Figure 3 : A view ray partially in shadows.

4.2 Considering shadow volumes
Previous equations describe the particular case where

the view ray remains totally lit and lays in the

participating medium. To integrate shadow volumes

and bounded participating medium, we need to

consider more general cases, illustrated in figure 3.

Indeed, due to shadows, the part of the ray laying in

the medium could be split into lit and shadowed

parts. In this example, the medium contribution along

the ray is split into three parts on AB, CD and EF.

The contribution of the single scattering of the ray

OP is then:

⎥⎥⎦
⎤

⎢⎢⎣
⎡ Λ+Λ+ΛΩ= ∫∫∫− F

E

D

C

B

A

t

ddd
h

ek
PL

tk

t
m

θ

θ

θ

θ

θ

θ
θθθθθθπ)()()(

4
)(

The key idea of our approach is to rewrite this

equation into a sum of differences. Indeed the light

contribution of segment EF for example can be seen

as the contribution of segment OF minus the one

from segment OE. If we denote Гm(P) the expression

(2) for a lit ray between the camera center O and any

point P, then the previous equation can be written :

() ()[()])()(

)()()()(
)(

AB

CDEF
PL

mm

mmmm

m Γ−Γ+
Γ−Γ+Γ−Γ=

It is also obvious that points B, C, D and E are

located on shadow planes, and that the points A and

F belong to the boundary of the participating

medium. Of course point F and P can merge for

object contained in the medium, and if it covers the

entire scene, points A and O will also merge.

Finally, when considering a bounded medium, the

equations are slightly different. The coefficient r and

x in the exponentials of equation (1) must be the

distance between the point X and the border of the

medium boundary. In our method, we approximate r

to the average distance R between a point located in

the boundary and a point in the medium. So R is

constant along the ray. The new value xn of x is

computed on the fly and is also a constant along the

ray. In this case, Lm(P) becomes :

∫ ++Ω= +−−+− d
t

t

dpeI
h

ek
PL

hk

s

xnRrk

t
m

θ

θ
θθ θπθβθπ

0

)
2

()(
4

)(
)cos(

1)sin()(

what only involves a change of coefficients c.

5. RENDERING ALGORITHM

5.1 Scenes Recovered by a Participating

Medium
In this case, every view ray is contained entirely in

the participating medium. The method is easy to

implement and works as follows :

1. The silhouettes of every moving shadow caster

are computed. If light is moving, every silhouette

needs to be recomputed.

2. Scene is rendered using the conventional

polygonal rendering method. Surface shadows

can be obtained using shadow planes algorithms

[He01, EK02]. The stencil buffer now contains lit

areas of the scene. An ambient fog is added to

take into account both absorption and multiple

scattering.

3. Scene is rendered once more and medium

contribution is computed for each vertex of the

scene. Depth test is set to the equality. Only lit

parts of the scene are rendered thanks to the

stencil buffer.

4. Shadow planes, determined by the object's

silhouettes, are sorted in a back to front order.

5. Shadow planes are rendered in that precise order.

The depth test function accepts only planes that

are closer to the camera. Front facing planes add

their contribution when back facing planes

subtract them. Stencil function is set to allow

fragments if the stencil is equal to 1 for front

facing planes and 0 for back facing ones. Front

facing planes always increment the stencil buffer

and back facing ones always decrement it.

All stages have to be done for each light source.

Each stage is detailed in the following sections.

5.1.1 Computation of silhouettes
In our algorithm, we select some objects to be

shadow caster. Their silhouettes are easily computed

in determining all edges of their mesh common to a

Journal of WSCG 68 ISBN 1213-6972 ISBN 80-86943-09-7

front-facing triangle regarding the light position and

one back facing it. Then all these edges are linked

together if possible, and stored in a loop list. To

obtain correct silhouettes, we need closed triangular

meshes (2-manifold) for which connectivity

informations are available. These conditions for the

shadow casters are the ones indicated in [EK02].

Shadow planes are infinite quads formed by a

silhouette edge and the light position. They are

constituted by the two edge's vertices and two other

points, projection of the previous vertices to infinity

toward direction : light position - vertex (cf. [He91]).

They are oriented toward the unshadowed area of the

scene. As we need to compute the medium

contribution on all shadow planes, it is necessary to

use shadow plane silhouettes rather than the shadow

planes of all little triangles. Of course, if the light

does not move, only moving shadow caster

silhouettes have to be computed. Finally, in case the

input geometry is modified by graphics hardware,

using displacement mapping for example, a solution

to obtain silhouettes of all objects quickly and

accurately can be found in [BS03].

5.1.2 Rendering the scene
The scene is rendered normally except for the light

attenuation due to absorption and scattering induced

by the participating medium. It multiplies the phong

model used in the standard graphic pipeline a

coefficient rk
te

− where kt is the extinction coefficient

and r the distance from the lit point and the point

light source. A simple vertex program can render this

equation which differs from the traditional one only

in the exponential attenuation.

In this stage we also add a fog effect to take into

account both absorption and multiple scattering. We

also compute the hard shadows and use the stencil

algorithm and its improvements [He91, BS03] to do

so. Indeed, they fit perfectly with our application

since we already have the silhouettes. In the end of

this stage, the stencil buffer contains the lit areas of

the image. Until the end of the image rendering, the

lighting is disabled.

5.1.3 Medium contribution of the scene
Still using stencil test, the scene is rendered once

more to add, with additive blending, the medium

contribution of every surface. This is simply done by

computing equation (2) for each vertex. The depth

test is set to the equality.

5.1.4 Sorting the shadow planes
Before rendering all shadow planes, we have to make

sure that we will not render shadow planes, or part of

them, that are themselves in shadow. If we do not

care about this problem, it will create artifacts we call

shadow in shadows, illustrated in figure 4. In the left

image, we can see that the shadow of the top plane is

propagated in the shadow of the bottom plane.

Figure 4: left : example of the shadows in shadows

artifact. Right : a correct rendering

To prevent these artifacts we render the shadow

planes, back- or front-facing, in a “back to front”'

order and use the stencil buffer to avoid the

rendering of shadowed shadow planes. The distance

we defined for the back to front order depends on

both camera and light positions. In two dimension,

we can see in figure 5 that the plan (a line in 2D)

created by the edge A (a point in 2D) must be

rendered before the one created by B. And this one

must be rendered before the shadow plane of edge C.

This is true whatever the distance between the edge

and the camera or between the edge and the light

position. A simple realization of such a distance is to

compute, for an edge P, the cosine between vectors

SO and SP where O is the camera center, S the

light position, and P a point belonging to the

silhouette.

A

C

B

camera

light
S

O

Figure 5: Ordering of shadow planes (in 2D)

We use the same ordering in 3D. In this case, the

silhouette edges are segments. Since silhouettes are

accurately meshed, these segments can be considered

as points (only for ordering). Therefore, we compute

the same cosine using as point P the center of the

silhouette edge.

5.1.5 Rendering the shadow planes
We always keep the stencil we have obtained in the

stage 2. Shadow planes are rendered in the order

defined in the previous stage with the depth test

function admitting only fragments that are closer to

the camera.

The color attributed to the shadow planes – i.e. their

contribution – are computed with exactly the same

expression than for lit point of the scene in stage 3,

Journal of WSCG 69 ISBN 1213-6972 ISBN 80-86943-09-7

i.e. using equation (2) for homogeneous point light.

Front facing planes add their contribution and back

facing planes subtract them.

We have to mesh the shadow planes to obtain

accurate values of the medium contribution. They

will be computed in each vertex of the mesh and the

GPU will make the interpolation between them.

According to the radial distribution of a point light, it

is wise to mesh the shadow planes finely when close

to the light and coarsely when far away. It is not

necessary to subdivide the silhouette edge which has

to be small.

0

0

1 2 1 0

a

b c

d

+1

+1 +1

+1

-1

-1
-1

-1

-1

-1
-1

-1

0 initial stencil value

+1 add one to the stencil

-1 subtract one to the stencil

* contribution added

^ contribution subtracted

^

^ *

*

*
*

*

Figure 6: Use of the stencil buffer in the rendering

of shadow planes

To take into account correctly the shadow in shadow

problem, we use the stencil intensively. Front facing

planes pass the stencil test if its value is one

(representing shadowed area), and back facing ones

passes if it equals 0 (value representing lit area).

Ideally the back (resp. front) facing quads should

always add (resp. subtract) one to the stencil buffer if

it passes depth test. But unfortunately it is not

possible to specify two different stencil functions

when a fragment fails the stencil test depending of

the result of the depth test. It imposes us to render the

simple quad of the shadow plane with the stencil

function set to always. Such problem will disappear

when programmability of graphics card will involve

the stencil test. Nevertheless this strategy works in all

the case as illustrated in figure 6. The strategy

indicated works if the camera is in the light. A

slightly different strategy can be used when the

camera is in shadow but the philosophy remains the

same.

5.2 Rendering Several Bounded

Participating Media
Several modifications have to be made to the

previous algorithm to take into account boundaries of

participating media and to avoid the rendering of

each object and each shadow planes for every

medium. Indeed, when several participating media

exist, stages 3 to 5 need to be computed for each one

of them. For simplicity we consider only convex

participating media, and that we have a mesh

representation of it.

First of all we will compute bounding boxes for each

object and each participating medium. This is to

avoid the rendering of objects that do not lay in the

area of a participating medium in stage 3. We also

check for each shadow plane if it is able to cut the

participating medium.

In stage 3, we use the equivalent of a shadow volume

algorithm to determine shadowed and lit area of the

boundary of the participating medium. Then we

render the lit areas of objects and of the medium

boundary. Objects are rendered only if they belong to

the medium bounding box. The front facing triangles

of the medium boundary are rendered using the

expression seen in section 4.

In stage 4, back-facing triangles of the medium

boundary are also sorted and integrated in the order

list. Since we use their center for the reference point

P in the ordering, these triangles must be small. For

each shadow plane, we determine if it is able to cut

the medium bounding box. If not, it is removed from

the sorted list to avoid unnecessary computation.

Finally the stage 5 remains the same, except that

when a back facing triangle of the medium boundary

is rendered, we set the stencil to 255 to avoid any

further rendering in this area.

6. RESULTS
The previous algorithm has been implemented on a

standard computer using a 2.6 GHz processor and an

ATI 9800 graphic card. All images that we will

present have a 800x600 resolution. We first compare

our method with the work of Dobashi et al. [DY02]

using their simple scene, a sphere beyond a spot light

(cf. figure 7). In our case, the spot light is obtained

by adding a cone above our point light. The

silhouette has 32 edges which involves 32 shadow

planes. Our rendering time is about 120 frames per

second at resolution 800x600. For our algorithm,

resolution is not really a problem. For example, the

same scene using a 1024x768 resolution is rendered

at 107 FPS. For the same test scene, Dobashi's

algorithm achieves 12.5 FPS for a 450x300

resolution. This is mainly due to the accumulation of

texture rendering inducing a high fill rate.

A drawback exists in our method which is only due

to the clamping of the framebuffer. Indeed, when we

render the contribution of the medium, it is possible

that the final value added to the one present in the

framebuffer exceeds 1. In that case, the value is

clamped to 1 and if we subtract a medium

contribution after that, the final result will be darker

than it should be. However, this problem can be

avoided in choosing reasonable intensity for the light

Journal of WSCG 70 ISBN 1213-6972 ISBN 80-86943-09-7

source, or in the future, using a float texture.

Unfortunately, we do not have develop this yet.

We also present in table 1 the ratio of work loads for

each stage (see 5.1). As expected, we can see that the

computations of the shadow plane contributions

represent the main cost of the whole process.

Stage 1 2 3 4 5

Fig 8 left 1% 8.7% 21.7% 9.6% 59%

Fig 8 right 1.7% 14% 33.6% 16% 34.7%

Table 1. Work loads for each stage.

We also present some snapshots of our animations.

The first image in figure 8.a. is a simple scene, where

two pens are bumping in front of a light. It illustrates

a classical situation where well design 3D objects are

moving and casting shadow. This scene is rendered

at more than 35 fps. The image in figure 8.b.

represents a simple scene with a box contained into

three different participating media, one red, one blue

and one green, moving before the light. Here we can

clearly see the volumetric shadows of each

participating media and how they blend together. As

we use exact shadow planes no aliasing occurs. This

case illustrates the ability of our algorithm to handle

all the position between shadow planes and the

boundary of a participating medium. Figure 8.c. is a

snapshot from a animation where the light is moving,

and its color is also changing. We have chosen this

scene because it contains a lot of shadow planes.

Finally figure 1.c., in the first page of this paper, is

also a snapshot to illustrate the use of our algorithm

when light is moving in a complex scene, containing

around 100 000 triangles. Table 2 presents the FPS

and the number of triangles of those scenes.

Scene Fig 8a Fig 8b Fig 8c Fig 1

FPS 23 35 25 12

Nb. triangles 34 549 14 785 20 747 107 514

Table 2. FPS and number of triangles of scenes.

7. CONCLUSION
We have presented a new real time algorithm that is

able to compute the single scattering of one or

several participating media. Our algorithm is fast

enough to handle more than 25 frames per second for

moderately complex scenes, which is an

improvement over other atmospheric scattering

algorithms, especially when a medium covers the

whole scene. As outlined above, the only

computations that we have done in software are the

participating medium contributions and the ordering

and the computation of shadow planes. Moreover,

we plan to design vertex and fragment shaders to

make the graphic card computes the participating

medium contributions. We also want to point out that

our algorithm does not create any sampling aliasing

artifact, for both surface and volumetric shadows,

thanks to the use of exact shadow planes.

As shadow planes have become more popular

recently, we think that our algorithm fit perfectly

with this kind of approach and is well adapted to the

growing capacities of graphics hardware. For

example, the final improvement of the algorithm

would be to compute soft surface shadows and soft

volumetric shadows. For this goal we can take

inspiration of the algorithm [AM03]. Finally, both

clustering and culling approaches will greatly speed

up this already fast algorithm.

8. REFERENCES
[AM03] Assarson U., Möller T.A., A Geometry-based Soft

Shadow Volume Algorithm using Graphics Hardware, In

proceedings of SIGGRAPH’03, Computer Graphics, vol. 22

(3), pp. 511-520

[BR98] Behrens U., Ratering R. , Adding Shadows to a

Texture-based Volume Renderer. In proceedings of 1998

symposium on Volume Vizualisation , 1998, pp. 39-46

[BS03] Brabec S., Seidel H.P., Shadow Volumes on

Programmable Graphics Hardware. In proceedings of

Eurographics’03, 2003, vol. 22(3)

[DK00] Dobashi Y., Kaneda K., Yamashita H., Okita T.,

Nishita T., A Simple, Efficient Method for Realistic

Animation of Clouds. In proceedings of SIGGRAPH’00,

Computer Graphics, 2000, pp. 19-28

[DY00] Dobashi Y., Yamamoto T., Nishita T., Interactive

Rendering Method for Displaying Shafts of Light. In

proceedings of Pacific Graphics 2000, pp. 31-37.

[DY02] Dobashi Y., Yamamoto T., Nishita T., Interactive

Rendering Method of Atmospheric Scattering Effects Using

Graphics Hardware. In proceedings of Graphics Hardware

2002, 2002, pp. 99-107.

[EK03] Everitt C., Kilgard M., Practical and Robust Shadow

Volumes, Nvidia white paper, 2003

http://developer.nvidia.com/object/robust_shadow_volumes.ht

ml.

[Ev02] Everitt C., A Fast Algorithm for Area Light Source

Using Backprojection. In proceedings of SIGGRAPH’94,

Computer Graphics, 1994, pp. 223-230

[FM97] Foster N., Metaxas D., Modeling the Motion of a Hot,

Turbulent Gas. In proceedings of SIGGRAPH’97, Computer

Graphics, 1997, pp. 181-188

Figure 7 : Replicate of the Dobashi's scene

Journal of WSCG 71 ISBN 1213-6972 ISBN 80-86943-09-7

[FS01] Fedwik R., Stam J., Jensen H., Visual Simulation of

Smoke. In proceedings of SIGGRAPH’01, Computer

Graphics, 2001, pp. 15-22.

[He91] Heidman T., Real Shadows Real Time. In IRIS

Universe (1991), vol. 18, pp 28-31

[HP02] Hoffman N., Preetham A., Rendering Outdoor Light

Scattering in Real Time. ATI white paper, 2002.

www.ati.com/developer/dx9/ATI-LightScattering.pdf

[JC98] Jensen H., Christensen P., Efficient Simulation of Light

Transport in Scenes with Participating Media using Photon

Maps. In proceedings of SIGGRAPH’98, Computer Graphics,

pp 311-320

[Le01] Lecocq P., Simulation d’éclairage temps réel par des

sources lumineuses mobiles et statiques : outils pour la

simulation de conduite. PhD Thesis of the University of

Marne-la-Vallée, 2001. Samples of this thesis can be found

here : http://igm.univ-mlv.fr/~biri/

[LG02] Lefebvre S., Guy S., Volumetric Lighting and

Shadowing, NV30 Shader, 2002.

lefebvre.sylvain.free.fr/cgshaders/vshd/vshd.html

[LM00] Lecocq P, Michelin S., Arquès D., Kemeny A.,

Mathematical Approximation for Real Time Rendering of

Participating Media considering the luminous intensity

distribution of light sources. In proceedings of Pacific

Graphics 2000. pp 400-401.

[LW96] Lafortune E., Willems Y., Rendering Participating

Media with Bidirectional Ray Tracing. In proceedings of 6th

Eurographics Workshop on Rendering, june 1996, pp. 92-101.

[Ma94] Max N., Efficient Light Propagation for Multiple

Anisotropic Volume Scattering. In proceedings of 5th

Eurographics Workshop on Rendering, 1994, pp. 87-104

[Me01] Mech R., Hardware-Accelerated Real Time Rendering

of Gaseous Phenomena. In Journal of Graphics Tool, 2001,

vol. 6(3), pp. 1-16

[ND96] Nishita N., Dobashi Y, Nakamae E., Display of Clouds

Taking into Account Multiple Anistropic Scattering and

Skylight. In proceedings of SIGGRAPH’96, june 1996, pp.

379-386

[NM87] Nishita N., Miyawaki Y, Nakamae E., A shading model

for atmospheric scattering considering luminous distribution

of light sources. In proceedings of SIGGRAPH’97, Computer

Graphics, vol. 21(4), pp. 303-310

[NM01] Nulkar M., Mueller K., Splatting with shadows. In

proceedings of Volume Graphics 2001, pp. 35-49

[On05] S. O'Neil, Accurate atmospheric scattering, In GPU

Gems 2, Addison Wesley, march 2005, pp. 253-268.

[PM93] Pattanaik S., Mudur S., Computation of global

illumination in a participating medium by monte carlo

simulation. In The journal of Visual and Computer Animation,

1993, vol 4(3), pp. 133-153

[RT87] Rushmeier H., Torrance K., The zonal method for

calculating light intensities in the presence of participating

medium. In proceedings of SIGGRAPH’87, computer

graphics vol 21(4), pp. 293-302.

[Ru94] Rushmeier H., Rendering participating media :

problems and solutions from application areas. In proceedings

of 5th Eurographics Workshop on Rendering, june 1994, pp.

35-56.

[SH92] Siegel R., Howell J., Thermal Radiation Heat Transfer.

3rd ed. Hemisphere Publishing, 1992.

[SR05] Sun B., Ramamoorthi R., Narasimhan S.G., Nayar S.K.,

A practical analytic single scattering model for real time

rendering. In proceedings of SIGGRAPH’05, Computer

Graphics; 2005, vol 24(3), pp. 1040-1049.

[St99] Stam J., Stable fluids. In proceedings of

SIGGRAPH’99, Computer Graphics, 1999, pp. 121-128.

[WE98] Westermann R., Ertl T., Efficiently using graphics

hardware in volume rendering applications. In proceedings of

SIGGRAPH’98, Computer Graphics, 1998, pp. 169-177

9. ANNEXES
Expression of coefficients c for classical phase

functions. Isotropic phase function :

()

...
24

5

24

11

4

)(

24

)(

26

)(

2234

4

223

3

22

2

1

0

hktttt

hk

t
tt

hk

tt

hk

t

hk

t

t

t

t

t

e
hkhkhkhk

c

ehk
hkhk

c

ehkhkc

ehkc

ec

−

−

−
−

−

⎟⎟⎠
⎞⎜⎜⎝

⎛ −+−=
⎟⎟⎠
⎞⎜⎜⎝

⎛ −+−=
−=

−=
=

Rayleigh phase function :

...
4

3

8

3

4

3

4

3

22

2

1

0

hkt

hkt

hk

t

t

t

e
hk

c

e
hk

c

ec

−

−

−

⎟⎟⎠
⎞⎜⎜⎝

⎛ +=
⎟⎠
⎞⎜⎝

⎛−=
=

Hazzy phase function :

...
64

63

512

121

256

265

36

9

256

265

256

265

22

2

1

0

hktt

hkt

hk

t

t

t

e
hkhk

c

e
hk

c

ec

−

−

−

⎟⎟⎠
⎞⎜⎜⎝

⎛ +−=
⎟⎠
⎞⎜⎝

⎛ +−=
=

Murky phase function :

...
134217728

775

4294967296

2147482073

4294967296

2147483673

367108864

25

2147483648

2147483673

2147483648

2147483673

22

2

1

0

hktt

hkt

hk

t

t

t

e
hkhk

c

e
hk

c

ec

−

−

−

⎟⎟⎠
⎞⎜⎜⎝

⎛ +−=
⎟⎠
⎞⎜⎝

⎛ −=
=

Figure 8. a. (left) Two pen moving. b. (center) Three participating media moving.

c. (right) Light is moving in a relatively complex scene.

Journal of WSCG 72 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

