
Volume Wires : A Framework for Empirical Non-linear

Deformation of Volumetric Datasets

S.J. Walton and M.W. Jones
Swansea University

cssimon@swansea.ac.uk m.w.jones@swansea.ac.uk

ABSTRACT

We introduce a new framework for non-linear, non-reconstructive deformation of volumetric datasets. Traditional techniques

for deforming volumetric datasets non-linearly usually involve a reconstruction stage, where a new deformed volume is recon-

structed and then sent to the renderer. Our intuitive sweep-based technique avoids the drawbacks of reconstruction by creating

a small attribute field which defines the deformation, and then sending it with the original volume dataset to the rendering stage.

This paper also introduces acceleration techniques aimed at giving interactive control of deformation in future implementations.

Keywords: Volume rendering, Volume deformation, Swept volumes, Curves, Volume Animation, Nonlinear deformation,

Attribute distance field

1 INTRODUCTION

Research in the area of volume graphics is mainly con-

centrated on visualisation techniques. Tools and API’s

for volume modeling [SK00] and visualisation [WC01]

exist, but there is a lack of tools and techniques for

interactively manipulating these datasets. For surface-

based graphics, a huge variety of tools exist (such as

Maya and Character Studio) for the manipulation and

rendering of such objects. It would be beneficial to the

volume graphics community to bring some of the con-

cepts of such powerful animation tools to working with

volume datasets.

Volumetric deformation techniques have been recently

documented in the literature [CCI+05]. Deforming vol-

umetric datasets is viewed as a more complex problem

than surface-based deformation due to the size of the

data. Even if one extracts a subset of this data (a vol-

ume object) with segmentation techniques [Lak00], the

number of voxels to be deformed is still a limiting fac-

tor. Some approaches rely on either converting to an

intermediate representation (using marching cubes to

convert to a mesh structure) and then deforming that

representation, or reconstructing (voxelising) a newly

deformed volume dataset to be passed to the rendering

stage.

This paper introduces a new software-based method

to deform a volumetric dataset non-linearly without

converting to a mesh geometry or using expensive vol-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG, ISSN 1213-6972, Vol. 14, 2006
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

ume reconstruction techniques. Our work concentrates

on empirical deformation with the aim of producing a

simple to use volume deformation and animation tool.

2 RELATED WORK

We split the related work into two logical areas - vol-

ume deformation and swept volumes.

2.1 Volume deformation

Spatial Transfer Functions [CSW+03] were introduced

by Chen et al . They define a framework for specifying

spatial transformation and deformation for volume ob-

jects. A spatial transfer function defines the geometrical

transformation of every point in the volume. Typically,

a backward-mapping operation must be performed (the

inverse of the deforming function) to find out where to

sample in the dataset based on the current sample point

on the ray. Depending on the complexity of the func-

tion, the computational cost can be high.

Similar non-reconstructive approaches involve plac-

ing ray deflectors in the scene [KY95] which deform

the ray as it passes through the volume, but its use is

rather limited, and specifying the deflectors is typically

unintuitive as the user must think in terms of the reverse

effect. Hardware-accelerated methods that work with

isosurfaces exist such as in [WRS01], however, speci-

fying the deformations is still unintuitive for the user,

and isosurface property restrictions exist. Other tech-

niques such as the 3D chainmail algorithm [Gib97] rely

on moving the individual voxels and then splatting the

newly-positioned voxels to the screen [Wes90]. These

methods still (e.g. for animation purposes) do not al-

low for intuitive deformation on a large scale from the

perspective of the user.

More recent work by Gagvani [GS01] has allowed for

the widely-used IK-skeleton deformation methods to be

Journal of WSCG 81 ISBN 1213-6972 ISBN 80-86943-09-7

utilised in volume graphics, whereby an entire new vol-

ume is reconstructed and then rendered. The algorithm

is costly when the size of the dataset is large (for ex-

ample, the visible human), as for the case of an anima-

tion, a new dataset must be created for each frame. A

small animation can easily run over 50GB when stored

on disk.

Prakash and Wu [WP99] animated the visible human

using Finite Element Methods and clustering for seg-

menting the dataset into blocks. A hardware acceler-

ated manipulation system called VolEdit [SSC03] al-

lows the user to interactively manipulate the IK-skeleton

and see the results in real-time. Since the transforma-

tions are linear, cracks can appear at joint areas. The

VolEdit system solves this problem using mid-plane ge-

ometry. Part of the motivation for our work in this paper

has been to solve this problem with a software based,

non-reconstructive method.

2.2 Swept volumes

A swept object is produced when some template is

swept along a trajectory through space. The template

to be swept can be a static template such as a 2D im-

age, or a dynamic template that changes through the

sweep. Complex swept objects can be achieved by scal-

ing [BvNP89] or rotating the template as it is swept.

If the template varies as with slices through an axis of

a volume dataset, then the result is a volume dataset

swept along a new trajectory.

Much work has been published on swept volumes

with an excellent review of techniques given in [AMBJ00].

The amount of work published is a reflection of the dif-

ficulty of some of the associated problems with sweep-

ing techniques – in particular, the problem of determin-

ing properties of a swept object such as its boundary

and volume. Early work on swept solids by Kajiya

[Kaj83], and Wijk [vW84] go into some detail on meth-

ods for ray-tracing swept solids defined with arbitrary

paths. Sealy and Wyvil [Sea97] describe how to vox-

elise new volume objects by sweeping contours along a

curve, which is achieved by recursively subdividing the

curve.

In [WC02], 2D images are swept along a path de-

fined by a Bézier curve to reconstruct a volume. The

volume is rendered using direct volume rendering. The

authors also discuss attempts to directly evaluate the re-

sulting deformation without reconstructing a volume,

but unfortunately such evaluation is expensive (since it

involves using numerical root finding methods), restric-

tive, and problematic (e.g, singularity conditions on an

axis where an image is swept around the axis).

A swept volume is produced when a swept object is

voxelised [Sea97]. The new volume can then be ren-

dered using any volume visualisation technique. The

disadvantage of reconstructing a volume from a sweep

is the space requirement – a new volume must be pro-

duced and either stored in memory or on disk. For an

animation, this is multiplied by the number of frames

if the user wishes to retain the intermediate data to re-

render the animation at a later date, with new view pa-

rameters or lookup functions.

3 DISTANCE FIELDS AND ATTRIBUTE

PROPAGATION

Since a distance field technique is required for our

method, we present a brief overview. Distance fields

[SJ01] have been widely used for a variety of applica-

tions in the volume domain, such as morphing [BW01],

voxelisation [Jon96] [JS00], and skeletonisation [GS01].

A distance field dataset D representing a surface S is de-

fined as D : R
3 → R, and for p ∈ R

3,

D(p) = min{| p−q |: q ∈ S} (1)

where || is the Euclidean norm and q are the near-

est points on the surface. Each voxel in the field con-

tains a value that represents the minimum distance to

the surface of interest in the data. In the case of vol-

ume data, we may be interested in a particular isosur-

face representing, for example, the bone surface in a

medical dataset. We can sign the value depending on

whether the voxel is inside the target surface - becom-

ing a signed distance field. A fast method of computing

this field is by using the distance transforms [SJ01] to

propagate local distances.

It follows that if we can propagate the minimum dis-

tances to a surface in this way, any related attributes of

the surface (e.g. colour, as in [BM99]) can also be prop-

agated. These additional attributes can be stored at each

voxel in the distance field. The field then becomes:

D(p) = (min{| p−q |: q ∈ S},a1, . . . ,an) (2)

where a1, . . . ,an are our additional attributes. If only

the attributes are of interest then the distance value at

each voxel may be discarded, thus saving typically 4

bytes per voxel if using floating-point precision. In our

method, we discard the distance values as they are not

needed in later stages.

4 METHOD DESCRIPTION

Our approach is based on the idea of sweeping a vol-

ume object along an arbitrarily defined path, although

the approach may also be viewed from the standpoint

that the deformed path has the effect of deforming the

surrounding volume object. Because no reconstruction

takes place, the deformation and rendering stages are

closely coupled. Figure 1 gives a high-level overview

of the system. The method is not limited to specific

classes of curve or any other trajectory definitions, ex-

cept for the requirement that it can be parametrically

evaluated, satisfying the general form:

α(t) = (αx(t),αy(t),αz(t)) (3)

Journal of WSCG 82 ISBN 1213-6972 ISBN 80-86943-09-7

The deformed dataset is evaluated at render time using

an attribute field, and can be rendered easily with a ray-

casting renderer using backward-mapping operations.

Volume

Dataset

User-defined

wires

Attribute Field

generation

stage

Attribute

Field

Rendering stage

Image

Figure 1: System overview

4.1 Specifying the deformation

From the user’s point of view, the specification of the

deformation is conceptually similar to that of wire de-

formers in Maya. We are therefore extending this

surface-based deformation technique to work neatly

with volumetric datasets. Such a transition is not triv-

ial due to the entirely different data representation (dis-

cretely sampled vs. surface based). In addition, an im-

portant difference is that we are not deforming the data

itself and sending it to the rendering stage.

In our method, the user defines a base wire close to

or inside the object to be deformed, and also an ob-

ject classification function for the wire β (p ∈ R
3) →

[true, f alse] which determines the associated volume

object. The wire is then transformed via translations,

rotations, and curve deformation and this has the ef-

fect of deforming the volume object defined by β in the

wire’s specified region of influence.

The method permits scaling and rotation values at ar-

bitrary points on the wire. For example, an angle of

θ = 0 at one end of the wire and θ = π at the other will

produce the effect of the object being twisted along the

path (linearly interpolating the θ values). The length of

the base wire and the modified wire need not be equal,

which allows for compression and expansion of the data

along the trajectory of the wire.

Figure 2(a) gives an overhead view of the user-defined

base wire on the CT carp dataset. Figure 2(b) shows

that the user has modified the wire, pulling one end

of the wire in the negative y-axis direction. Finally,

Figure 2(c) shows the resulting render from this defor-

mation. In this example, the wires are Bézier curves.

The base wire in this instance acts as the backbone of

y

x

(a) The base wire

y

x

(b) Modifying the wire

y

x

(c) The resulting render

Figure 2: Fish deformation

the carp. Deforming this backbone and then rendering

the result would result in a new pose for the carp, as

the surrounding soft tissue would be deformed around

the backbone. The backbone could be derived semi-

automatically using a simplified distance field thinning

technique [GS01] (choosing the strongest segment) or

watershed segmentation technique [Lak00].

5 BUILDING DEFORMATION DATA

In this stage, the deformation information from the

wire-specification stage is encoded into an attribute

field, which is then sent with the original volume object

to the rendering stage. The attribute field is a volumetric

dataset (γ,ε) where γ maps voxels to their correspond-

ing wire and ε maps voxels to the t-value (see equation

3) of the closest point on that wire. For certain classes

of curve (e.g. Catmull-Rom splines), the segment index

also needs to be stored.

The attribute field need not be the same scale as the

volume. In our research we have found that produc-

ing an attribute field of 1/8th size (half each dimen-

sion) produces results very close visually to the full

size field. Additional considerations regarding reduced

scale fields and example images are given in a later sec-

tion.

For each base wire, we associate a set of planes P (see

Figure 3) aligned with the trajectory of the wire. The

plane dimensions are automatically defined to tightly

fit the target object defined by classification function β
within the wire’s region of influence. To generate the

attribute field, an empty field is initialised over the do-

main of the union of each of the wires’ region of in-

Journal of WSCG 83 ISBN 1213-6972 ISBN 80-86943-09-7

t=0
t=1

Figure 3: Planes defined along wire

fluence. A mapping is now defined between planes on

the base wire and planes on the modified wire, essen-

tially the planes are copied based on their t-value. For

each plane on the modified wire, we look at the attribute

field voxels touched by the plane. If the plane touches

a voxel, then a flag is set with that voxel.

The optimal number of planes can be calculated from

an approximation of the wire’s length. For parame-

terised curves, the length can be approximated with pre-

cision p by:

| α |=
p

∑
i=2

| α(
i

p
)−α(

i−1

p
) | (4)

where || is the Euclidean norm.

5.1 Voxel Initialisation

Each wire is now voxelised into the attribute field.

When a new cell is entered by the wire, each of the

eight surrounding voxels’ γ (the wire reference) and ε
(closest t-value) attributes are set, and also the distance

d from the voxel to the point defined by ε , as shown

in Figure 4. The closest point on the wire is calculated

by subdividing the subset of the curve inside the voxel

(as in equation 4), and this calculation can be achieved

with parametrically-defined precision1. If a voxel has

already been set in a previous cube (as with v4), then

the new and current minimum distances are compared

and the minimum taken. This is denoted by the greyed-

out vector in Figure 4 where d ′ < d.

d'd

cubencuben-1 cuben+1

w
0

ε = d'
w

0
γ =

V4

Figure 4: Pre-propagation voxel initialisation

Once this process is complete for all wires, the dis-

tances and associated attributes are propagated using a

distance transform method, and the distance values are

1 This is a fairly fast and accurate way to approximate the closest point

on a curve. Spline implicitization [Sha03] or other methods [Sch90]

could be used if more precision is required, at the expense of addi-

tional complexity.

discarded. The propagation only takes place with vox-

els flagged in the previous step, so large areas of the

field can be skipped. It is this propagation that removes

the need for a costly backward evaluation at each voxel.

6 RENDERING THE DEFORMATION

To render the deformation, a standard ray-casting ap-

proach is followed, with rays cast into the attribute field

instead of the volume object. We choose a ray-casting

approach to ensure a possible straightforward GPU im-

plementation for Geforce 6 based cards. All voxels in

the field which have not been flagged are ignored. At

each sample point psample on the ray, the wire refer-

ence w from the nearest voxel is noted. For the cur-

rent sample point psample, the wire parameter value t is

trilinearly interpolated from the eight surrounding vox-

els. The mapping achieved between the base wire and

p
curve

p
curve

p
sample

p
sample

w

rayi

rayj

(a) The modified wire

p'
sample

w

p'
sample

p'
curve

p'
curve

(b) The base wire

w

p'
sample

p'
curve

p'
curve

p'
sample

rayi

rayj

(b) The effective path of rays i and j

Figure 5: The mapping between wires

the deformed wire is illustrated in Figure 5. Given the

wire reference w and t-value t, we can calculate the

closest point on the modified wire and build a vector

to it, becoming psample → pcurve. To obtain the ac-

tual sample point in the volume dataset from this, vec-

tor psample → pcurve is mapped onto the base wire, be-

coming p′
sample → p′curve by using the t-value. This is

demonstrated in Figure 5 where two sample points on

rayi and ray j are mapped from the modified wire (a) to

the base wire (b). p′
sample is now our new sample point

Journal of WSCG 84 ISBN 1213-6972 ISBN 80-86943-09-7

in the dataset. The final effect of ray i and ray j’s trajec-

tories being deformed is shown in (c).

If the attribute field has been scaled with respect to

the volume object, then the density of sample points in

the field must be modified accordingly. We also must

deal with cases where a cube’s eight vertices give dif-

ferent wire references, as in Figure 6. The interpolated

t-value at psample would be inaccurate for either choice

of wire (a or b). We have looked at fast methods for

recovering a t-value (such as taking averages of the ma-

jority wire), but we have found that the decision at these

voxels contributes little to the final image quality ex-

cept with very low scale fields. In the resulting images

(given later), we simply choose the wire and t-value at

the closest voxel to psample.

rayi

a 0.1 a 0.1

a 0.2

a 0.2

a 0.1

b 0.1

b 0.0

a 0.1

p
sample

Figure 6: Differing wire reference problem

6.1 Calculating the new normals

Once the the new sample point has been calculated, a

new normal at that point is required if we are to ac-

curately light the deformed object. One way to achieve

this would be to use central differences using backward-

mapped points, but this is clearly an expensive opera-

tion. Therefore, to compute the deformed normal, we

first compute the normal n at the new sample point

p′sample obtained in the backward-mapping stage. This

normal can be calculated using central differences in the

original volume dataset at p′
sample. To obtain a new nor-

mal n′, we transform n by the inverse of the backward-

mapping transformation obtained for the current sample

point. n′ is then sent to a lighting equation.

7 OPTIMISATION AND THE DELIN-

EATION PROBLEM

Problems may arise when the user wishes to deform two

objects that are in close proximity – perhaps by pulling

the two objects apart to separate them. We illustrate

this problem in Figure 7. Figure 7(a) shows two objects

x and y, and Figure 7(b) shows a slice of the objects

(the slice is shown half-way down the objects in (a)). In

this case, a plane of target object x’s wire (shown as a

dotted rectangle) has overlapped object y. Part of object

y will therefore be included in the deformation of object

x, since y is within x’s plane. This is unlikely to be what

the user would have intended in this case.

If the user has defined multiple wires inside the vol-

ume dataset, it is likely that they wish to treat the dataset

wa wb

x
y

(a) (b)

Figure 7: The delineation problem

as a set of disjoint volume objects as defined by func-

tion β . It would be favourable for the system to be able

to automatically delineate the objects in Figure 7 with-

out the user resorting to volume segmentation methods

[Lak00], which are typically very difficult to work with.

7.1 Plane masks

To solve the problem discussed above, plane masks are

introduced. Once the planes are defined on the wire,

a 2.5D seed fill2 is performed on each of the planes to

generate a 2D bit-mask, which is then stored with the

plane.

Figure 8 shows a selection of these masks defined

along the wire for the CT carp dataset, with an object

classification function β set to identify the outer skin

area with a simple value threshold. The resolution of

the mask can be varied by parameter s, and the memory

requirement for each wire in bytes is calculated as:

n

∑
p=1

(a(p)∗ s)

8

where n is the number of planes on the wire, a gives the

area of the plane, and s is a resolution scale multiplier.

Values of s below 1 give a sparse mask, values above

give a fine mask and therefore greater precision, at the

expense of a greater storage overhead and preprocess-

ing time.

Figure 8: Masks defined along wire

The algorithm automatically hunts for an appropriate

seed point by searching inside the plane area outwards

from the wire. The condition for a fill at each pixel in

the bit-mask is the wire’s β function. If a suitable seed

point is not found, then the plane is removed from the

2 Essentially, a 2D image cutting through the volume dataset - the 2D

bit-mask is filled, and the part of the volume touched by the plane

used to identify the target object.

Journal of WSCG 85 ISBN 1213-6972 ISBN 80-86943-09-7

list, as no object data has been found within the plane’s

subsection of the volume. To ensure that data at the

edges is not skipped, we also apply a morphological

dilation operation to the mask. Voxels in the attribute

field are now only flagged if the plane mask bit at that

point is 1 (See Figure 9).

Figure 9: A Plane mask flagging voxels

This solution is effective in that not only does it solve

the delineation problem, but it also further reduces the

number of flagged voxels in the scene, which reduces

rendering time. Backward-mapping operations are now

only performed on voxels whose resulting new sample

positions lie within the target object (or slightly out).

Table 1 gives the number of non-flagged voxels ignored

for some example deformations. Note that we do not

include samples outside of the field boundaries in the

figures.

Dataset # Sample pts # Pts ignored % ignored

CT Carp 26,011,195 15,523,566 59.7%

Visman 45,461,270 39,253,862 86.3%

Table 1: Voxels ignored while rendering

7.2 Speed / Storage / Accuracy trade-offs

Each voxel in the attribute field requires three attributes.

The first is γ : the wire reference, the second is ε : the

t-value on the wire, and the third is a bit for the flag that

denotes a voxel has been swept. If we assume floating-

point precision on the t-value, we have a minimum of 5

bytes per voxel including 7 bits for the wire reference

with a maximum of 128 wires in the scene. This storage

requirement can be reduced by using integer precision

on the t-value. Below is an example 2-byte per voxel

solution for Catmull-Rom spline wires.

Bits Range of values Data

1 2 swept flag

4 16 w : wire reference

4 16 s : segment index on w

7 128 integer t-value on s

The integer precision on the t-value has another ad-

vantage. The points at each integer offset on the wire

can be cached before the rendering stage and then used

during rendering to avoid expensive curve evaluation at

each sample point (the points are chosen by subdivid-

ing the curve as in equation 4). The wire point calcu-

lation is now reduced to a simple array lookup. If we

wish for greater precision still, linear interpolation can

be performed between values. The same technique can

be used for the wire normals : for each modified wire

point p, the difference between the wire normal at p

and the normal at the same t-value on the base wire is

calculated, and stored.

8 IMPLEMENTATION

The method has been implemented in C++ on GNU /

Linux x86. To assist with rapid testing, and to demon-

strate the simplicity of specifying deformations, we

have built a simple user interface using the GTK+ li-

brary. The interface allows the user to view the volume

dataset from multiple angles interactively and quickly

define and deform wires. The user can also specify an

animation by deforming the wire differently for an arbi-

trary number of frames. The wires can be saved to disk

for later retrieval, and rendered into a series of images

which can be encoded into a movie.

9 RESULTS

To give a more accurate representation of the overhead

of our method implementation, we first give the timings

for a software ray-casting volume rendering algorithm

written in C++ with very few optimisations (see table

2), and then modify it to work with our method (re-

sults in table 3). Preprocessing refers to the attribute

field generation stage, which also includes mask gen-

eration, curve lookup table generation, and other pre-

render data discussed in previous sections. The differ-

ence in the timings gives the overhead of calculating

the attribute field and transforming sample positions in

each case.

The base wire and deformed wires are identical to

give the same number of sample positions during vol-

ume rendering (thus ensuring a fair comparison). The

deformation is therefore the identity deformation. The

viewing parameters and image size of 512x256 are also

constant. The timings are based on a P4 at 3.2GHz with

512MB RAM.

Dataset Render time

CT Carp 5.74 secs

Tubes 2.59 secs

Visman torso 4.31 secs

Table 2: Standard rendering times

Dataset Preprocessing Render Total

CT Carp 1.78 12.65 14.43

Tubes 0.96 4.81 5.77

Visman torso 2.97 22.87 25.84

Table 3: Deform/render times

The timings were performed using all acceleration

techniques discussed, but the majority of code has not

Journal of WSCG 86 ISBN 1213-6972 ISBN 80-86943-09-7

yet been optimised. The tables show that the overhead

in the rendering stage is far higher than the preprocess-

ing stage. The biggest factor in the cost of attribute field

generation is the size of the field, as more propagation

must take place.

Figure 12 shows the visible human rendered with the

same deformation (the head has been pulled back), with

differing attribute field to dataset ratios. 1:1 (same di-

mensions) predictably gives the most pleasing repro-

duction, while a 1:4096 (each dimension is 1/16th the

size) field gives a blocky appearance due to trilinear in-

terpolation taking place in the large gaps between vox-

els. We also give the time for attribute field generation

for each.

10 CONCLUSION

We have introduced a new software-based framework

for non-linear, non-reconstructive deformation of volu-

metric datasets. The framework brings a much-needed

intuitive deformation method to the field of discretely

sampled object representations. The lack of such meth-

ods available for volume deformation severely hampers

the area, and we feel that this framework goes some

way to correct this.

We have shown that the method requires only a small

memory storage overhead, and avoids the discussed dis-

advantages of reconstruction-based methods. The spec-

Figure 10: CT Carp deformation

Figure 11: Visible human deformation

(a) ratio 1:1, time 11.74s

(b) ratio 1:8 (1:2 dim), time 4.45

(c) ratio 1:64 (1:4 dim), time 2.61s

(d) ratio 1:512 (1:8 dim), time 2.17s

(e) ratio 1:4096 (1:16 dim), time 2.12s

Figure 12: Attribute field scales

ification of such deformations can be easily defined

without knowledge of the internal algorithms that de-

form the data. The problem of delineating volume ob-

jects to deform independently is also handled in a sim-

ple manner.

In addition, the standard ray-casting approach to vol-

ume rendering can be used to render the result with only

minor modifications to the rendering engine. This fa-

cilitates the method’s integration into the volume defor-

mation and rendering pipeline. We have recently imple-

mented the rendering stage on the GPU by loading the

attribute field as a 3D texture, so the total time required

is now little more than the field generation overhead.

11 ACKNOWLEDGEMENTS

This work has been supported by EPSRC grant GR /

S44198. The authors would also like to acknowledge

Journal of WSCG 87 ISBN 1213-6972 ISBN 80-86943-09-7

Stefan Roettger’s volume library [Roe], and the Na-

tional Library of Medicine’s Visible Human project.

REFERENCES

[AMBJ00] K. Adbel-Malek, D. Blackmore, and

K. Joy. Swept volumes: Foundations, per-

spectives, and applications. In Interna-

tional Journal of Shape Modeling, 2000.

[BM99] D.E. Breen and S. Mauch. Generat-

ing shaded offset surfaces with distance,

closest-point and color volumes. In Pro-

ceedings of the International Workshop on

Volume Graphics, pages 307–320, March

1999.

[BvNP89] W. F. Bronsvoort, P. R. van Nieuwen-

huizen, and F. H. Post. Display of pro-

filed sweep objects. The Visual Computer,

5(3):147–157, 1989.

[BW01] D. E. Breen and R. T. Whitaker. A level-set

approach for the metamorphosis of solid

models. IEEE Transactions on Visualiza-

tion and Computer Graphics, 7(2):173–

192, 2001.

[CCI+05] M. Chen, C Correa, S Islam, M. W. Jones,

P.Y. Shen, D Silver, S. J. Walton, and

P. J. Willis. Deforming and animating dis-

cretely sampled object representations. In

Eurographics 2005 STAR Reports, pages

113–140, Dublin, Ireland, August 2005.

[CSW+03] M. Chen, D. Silver, A. S. Winter, V. Singh,

and N. Cornea. Spatial transfer functions –

a unified approach to specifying deforma-

tion in volume modeling and animation. In

Proc. Volume Graphics 2003, pages 35–44,

Tokyo, Japan, 2003.

[Gib97] S. Gibson. 3D chainmail: a fast algorithm

for deforming volumetric objects. In Proc.

1997 Symposium on Interactive 3D Graph-

ics, pages 149–154, April 1997.

[GS01] N. Gagvani and D. Silver. Animating

volumetric models. Graphical Models,

63(6):443–458, 2001.

[Jon96] M. W. Jones. The production of vol-

ume data from triangular meshes using

voxelisation. Computer Graphics Forum,

15(5):311–318, 1996.

[JS00] M.W. Jones and R.A. Satherley. Shape

representation using space filled sub-voxel

distance fields. In Vision, Modeling and Vi-

sualization, pages 316–325, 2000.

[Kaj83] J.T. Kajiya. New techniques for ray trac-

ing procedurally defined objects. In SIG-

GRAPH ’83, pages 91–102, New York,

NY, USA, 1983.

[KY95] Y. Kurzion and R. Yagel. Space deforma-

tion using ray deflectors. In Proc. 6th Eu-

rographics Workshop on Rendering 1995,

pages 21–32, Dublin, Ireland, June 1995.

[Lak00] S. Lakare. 3D segmentation

techniques for medical volumes.

http://www.cs.sunysb.edu/ mueller /

teaching / cse616 / sarangRPE.pdf, 2000.

[Roe] Stefan Roettger. The volume library.

http://www9.cs.fau.de / Persons / Roettger

/ library/.

[Sch90] P. Schneider. Solving the nearest-point-on-

curve problem. In Graphics Gems, vol-

ume 1, pages 607–612. Academic Press,

1990.

[Sea97] G. Sealy. Representing and rendering

sweep objects using volume models. In

CGI ’97, pages 22–27, Washington, DC,

USA, 1997.

[Sha03] M. Shalaby. Spline implicitization of pla-

nar curves and applications. PhD thesis,

Johannes Kepler University, 2003.

[SJ01] R.A. Satherley and M.W. Jones. Vector-

city vector distance transform. Com-

puter Vision and Image Understanding,

82(3):238–254, 2001.

[SK00] M. Sramek and A.E. Kaufman. vxt : A

c++ class library for object voxelisation. In

Volume Graphics. Springer, 2000.

[SSC03] V. Singh, D. Silver, and N. Cornea. Real-

time volume manipulation. In Proceed-

ings of the 2003 Eurographics/IEEE TVCG

Workshop on Volume graphics, pages 45–

52, 2003.

[vW84] Jarke J. van Wijk. Ray tracing objects

defined by sweeping planar cubic splines.

ACM Trans. Graph., 3(3):223–237, 1984.

[WC01] A.S. Winter and M. Chen. vlib: A volume

graphics API. In Volume Graphics 2001.

Springer-Wien New York, 2001.

[WC02] A.S. Winter and M. Chen. Image-swept

volumes. Computer Graphics Forum,

21(3):441–441, 2002.

[Wes90] L. Westover. Footprint evaluation for

volume rendering. Computer Graphics,

24(4):367–376, August 1990.

[WP99] Z. Wu and E.C. Prakash. Visible human

walk: bringing life back to the dead body.

In VG99, pages 347–356, 1999.

[WRS01] R. Westermann and C. Rezk-Salama. Real-

time volume deformations. In Comput.

Graph. Forum, volume 20, 2001.

Journal of WSCG 88 ISBN 1213-6972 ISBN 80-86943-09-7

	E43-full.pdf

