
Efficient Compression of 3D Dynamic Mesh Sequences

Rachida Amjoun and Wolfgang Straßer
WSI / GRIS

University of Tübingen, Germany

{amjoun, strasser}@gris.uni-tuebingen.de

Figure 1 : Sample frames of the animations used for the analysis. From left to right: dance with 14, dolphin with 9, chicken

with 10 and cow with 6 clusters. Each cluster is colored differently and encoded separately.

ABSTRACT

This paper presents a new compression algorithm for 3D dynamic mesh sequences based on the local principal component anal-

ysis (LPCA). The algorithm clusters the vertices into a number of clusters using the local similarity between the trajectories in

a coordinate system that is defined in each cluster, and thus transforms the original vertex coordinates into the local coordinate

frame of their cluster. This operation leads to a strong clustering behavior of vertices and makes each region invariant to any

deformation over time. Then, each cluster is efficiently encoded with the principal component analysis. The appropriate num-

bers of basis vectors to approximate the clusters are optimally chosen using the bit allocation process. For further compression,

quantization and entropy encoding are used. According to the experimental results, the proposed coding scheme provides a

significantly improvement in compression ratio over existing coders.

Keywords: 3D animation, animated mesh compression, segmentation, PCA, rate-distortion optimization.

1 INTRODUCTION

Animated meshes are commonly used in computer

games, computer generated movies, and many scien-

tific applications. The animations in these applications

are often complex, nonlinearly generated and contain

large geometric datasets. They often consist of many

frames, each of which stores an own mesh. Even if key

frame animations are used, they are too voluminous to

be stored. Often the meshes differ only slightly between

neighboring frames, leading to a large redundancy be-

tween frames and between neighboring vertices in the

same frame. Therefore, it is important to develop com-

pact representations that significantly reduce the stor-

age space of animated models and facilitate their trans-

mission over networks. Moreover, we need compres-

sion algorithms that allow for small compressed repre-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Copyright UNION Agency – Science Press
Plzen, Czech Republic

sentations that maintain good visual fidelity.

Many existing compression schemes are restricted

to animated meshes that do not change the topology

from frame to frame so that the topology can be com-

pressed once and only the vertex positions need to be

compressed for the individual frames. Here, we dis-

tinguish between four methods: predictive based meth-

ods [JCS02, IR03], PCA based representations [AM00,

KG04, SSK05], wavelet based techniques [GK04,

PA05] and clustering-based approaches [Len99, ZO04].

In this paper, we present a new PCA-based tech-

nique as extension of the work [ASS06]. The advan-

tage of using PCA is that it captures the linear correla-

tions present in the dataset. The set of vertices can be

represented by very few components and coefficients

depending on the user’s desired visual quality. The

PCA is a good compressor for rigid motion and pro-

vides a more compact representation for temporally-

invariant meshes. In many applications, however, ani-

mated meshes exhibit highly nonlinear behavior, which

is globally difficult to capture using standard PCA. Lo-

cally, the neighboring vertices have a strong tendency

to behave and to move in a similar way. The nonlinear

behavior can therefore be described in a linear fashion

by grouping the vertices of similar motion into clus-

Journal of WSCG ISSN 1213-6972 99 ISBN 978-80-86943-00-8

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 2: The position of six different vertices over time (il-

lustrated with different colors) are represented with global co-

ordinates (a) and local coordinates (b)(dance animation).

ters or by segmenting the mesh into meaningful parts.

Then a PCA is performed in each group. The process

to construct this representation is called Local Principal

Component Analysis.

On the other hand, introducing a local coordinate

frame (LCF) in each cluster may lead to extra cluster-

ing of the coordinates before performing the PCA. If

the segmentation or clustering process is efficient then it

would be highly probable that these coordinates change

very slightly relative to the coordinate frame of their

cluster. Of course, the number of clusters/segments will

also affect the compression. If the number of clusters

is very small, then a cluster might contain vertices that

have different behaviors. To overcome this problem one

might possible improve on the present approach by au-

tomatizing the selection of the number of clusters.

Figure 2 demonstrates the idea of using local coordi-

nate systems. Figure 2 (a) shows the path of six points

of a dance animation in the world coordinates. Note the

highly nonlinear behavior of the trajectories. Figure 2

(b) shows the path of the points using a local coordi-

nates. Note the relative small changes and the tendency

of the trajectory of individual points to cluster.

In our approach, we perform a PCA on the local co-

ordinates rather than the world coordinates. The advan-

tage of combining PCA with the LCF is now obvious:

if the motion of a group of vertices is rigid in the world

coordinates, the positions of the vertices are slightly in-

variant relative to their LCF. Therefore, performing a

PCA in these invariant groups of vertices leads to a

more compact representation than the original data, and

a large number of PCA coefficients are close to zero.

1.1 Overview

We propose a new compression algorithm for animated

meshes of fixed number of vertices based on LPCA.

Our main contribution is to cluster the mesh vertices

using the local similarity of trajectories. The original

vertex coordinates are transformed into several LCFs

defined by seed triangles. One LCF (one seed triangle)

is associated with each cluster. The vertices are then

clustered depending on the variation of their local co-

ordinates in each LCF. Thus, each vertex is added to

the cluster where the vertex coordinates have the small-

est variation over time. This automatically "transforms"

the nonlinear behavior of the original vertices into the

clustering behavior which is very well compressable.

The vertex positions will tend to cluster around the

same position over time (see Figure 2(b)). Thus, the

clusters themselves are almost invariant to any defor-

mation. A PCA is then performed on each cluster such

that the local coordinates of the vertices are transformed

into another basis which allows for very efficient com-

pression.

Our clustering process produces clusters of different

sizes. If one chooses a fixed number of basis vectors

for all clusters, then there may be too few eigenvec-

tors to recover the clustered vertices at a desired ac-

curacy and eventually too many eigenvectors for other

clusters (which we call underfitting and overfitting, re-

spectively). Moreover, the number of bits needed to en-

code the unnecessary basis vectors in overfitting cases

may be better allocated for other clusters in underfit-

ting cases. Therefore the selection of the best number

of basis vectors to be extracted from animation data is

necessary to properly recover the original data of each

cluster with a certain accuracy. We introduce a rate dis-

tortion optimization that trades off between rate and the

total distortion. We call our approach Relative Local

Principal Component Analysis (RLPCA) compression.

We use the term Relative as the LPCA is performed in

local coordinates. Our Algorithm achieves an increased

compression performance, is computationally inexpen-

sive (compared to a PCA for the full mesh) and is well

suited for progressive transmission.

2 RELATED WORK

Static Meshes A large number of compression tech-

niques have been developed for static meshes. Deer-

ing [Dee95] was the first to publish work on geometry

compression for triangle meshes. Then, a succession of

efficient schemes were proposed for both connectivity

and geometry compression [TR98, GS98, TG98, IA02].

Progressive compression techniques [Hop96], which

enable a mesh to stream from a server to a client have

also been proposed. Recently some comprehensive

surveys of the developed techniques have been pro-

vided [Ros04, AG05, JPK05].

Animated Meshes Recently, research has started to

focus on animated meshes with fixed connectivity.

Lengyel [Len99] introduced the first work on animated

geometry compression. He partitioned the mesh into

submeshes and described the motion of the submeshes

by rigid body transformations. The rigid body trans-

formation of a submesh was thereby estimated to best

match the trajectories of its vertices. His approach is

very effective when large parts of an animated model

can be described well by rigid body transformations.

Journal of WSCG ISSN 1213-6972 100 ISBN 978-80-86943-00-8

Segmentation

LCF residuals

computation
Quantization

Geometry data

Connectivity

Static
compression

Stream

PCA1, PCA2… PCAN

WCS to LCS
Transformation

Input:
,,M,

F21
MM

Encoder

Local coordinates
reconstruction

Output:

F21
M
~

,,M
~

,M
~

Connectivity

PCA details + residuals

LCS to WCS
Transformation

Stream
Decoder

Figure 3: Overview of the compression / decompression pipeline.

Jinghua et al. [ZO04] used an octree to spatially clus-

ter the vertices and to represent their motion from the

previous frame to the current frame with a very few

number of motion vectors. The algorithm predicts the

motion of the vertices enclosed in each cell by tri-linear

interpolation in the form of weighted sum of eight mo-

tion vectors associated with the cell corners. The octree

approach is later used by K. Mueller et al. [MSK+05]

to cluster the difference vectors between the predicted

and the original positions.

Alexa et al. [AM00] used PCA to achieve a compact

representation of animation sequences. The PCA co-

efficients were shown to be well compressable. Karni

and Gotsman [KG04] improved this method by apply-

ing second-order Linear Prediction Coding (LPC) to the

PCA coefficients such that the large temporal coher-

ence present in the sequence is further exploited. Sat-

tler et al. [SSK05] introduced the clustered PCA. The

mesh is segmented into meaningful clusters which are

then compressed independently using a few PCA com-

ponents only.

Prediction techniques can also be used to efficiently

compress animated meshes. Assuming that the connec-

tivity of the meshes doesn’t change, the neighborhood

in the current and previous frame(s) of the compressed

vertex is exploited to predict its location or its displace-

ment [JCS02, IR03]. The residuals are compressed up

to a user-defined error.

Guskov et al. [GK04] used wavelets for a multireso-

lution analysis and exploited the parametric coherence

in animated sequences. The wavelet detail coefficients

are progressively encoded. Payan et al. [PA05] intro-

duced the lifting scheme to exploit the temporal coher-

ence. The wavelet coefficients are thereby optimally

quantized.

Segmentation Mesh segmentation has recently become

useful for many applications in geometry processing. In

the context of compression, segmentation is often used

to decrease the computational costs as well as to pre-

serve the global shape of the mesh because some com-

pression algorithms (e.g. PCA for a full mesh) can de-

stroy important features of the mesh.

To find the vertices that have similar motion,

Lengyel [Len99] proposed that one select a set of seed

triangles randomly and compared their trajectories. Tri-

angles with a similar motion are combined. Then the

vertices are associated with the triangle whose trajec-

tory best fit theirs. Sattler et al. [SSK05] proposed that

one cluster the trajectories of vertices using Lloyd’s al-

gorithm in combination with PCA. In the both cases,

the segmentation is computationally expensive.

3 ANIMATION COMPRESSION

In this section, we describe in detail the core of our

compression algorithm for the motion of vertices of an-

imated triangle meshes. An overview of compression

and decompression pipeline is illustrated in Figure 3.

Given a sequence of triangle meshes Mi, i = 1, ..,F
of constant connectivity with V vertices and F frames

(meshes), we first construct N LCFs in each frame, then

group the mesh vertices into N clusters, where each

cluster contains Vi, i = 1, ..,N, vertices.

3.1 Local Coordinate System

Expressing the vertex locations in a LCF is an opti-

mal way of exhibiting clustering behavior. It makes the

clusters quite invariant over time to any rotation and/or

translation. This representation can be very compress-

able with the PCA. This is the key feature of our algo-

rithm.

Figure 4 illustrates the LCF that we use in our algo-

rithm during and after segmentation. We consider that

each cluster is initialized with seed triangle (p1,p2,p3).
Each cluster Ci has its own LCF defined on the seed

triangle. The origin o is the center of one of its three

edges (typically (p1,p2)), the x-axis (red arrow) points

down the edge (p1,p2), the y-axis (green arrow) is or-

thogonal to the x-axis in the plane of the seed triangle

and the z-axis is orthogonal to the x- and y-axis. The

transformation of a point p to its local coordinate sys-

tem q can be accomplished by an affine transformation

with a translation o and a linear transformation T (or-

thonormal matrix):
q = T(p−o)

In our algorithm, for each frame f (1 ≤ f ≤ F) and

for each frame cluster G
f
i ∈ Ci (1 ≤ i ≤ N), we com-

puted {T
f
i ,o f

i } from the points of the seed triangle

(pi, f
1 ,pi, f

2 ,pi, f
3).

Journal of WSCG ISSN 1213-6972 101 ISBN 978-80-86943-00-8

Figure 4: Illustration of the local coordinate frame

3.2 Segmentation based on Clustering

Our segmentation algorithm starts with several seed

triangles upon which the LCFs are constructed. Then

the clustering is obtained by assigning the vertices to

the seed triangle in whose local coordinate frame they

have minimal coordinates variation across the F frames.

The clustering process consists of the following steps:

Initialization: Initializes the N cluster Si, i = 1, ...,N,

to be empty. All vertices are unvisited.

Seed Selection: Selects N seeds using the far distance

approach [YKK01]. The first seed is selected as the

vertex corresponding to the largest euclidian distance

from the geometrical center of all vertices in the first

frame. The next seeds are selected sequentially until

all N seeds are selected. Each seed is selected to be the

vertex with the farthest distance from the set of already

selected seeds. We associate with each seed one of

its incident triangles and call this triangle the seed

triangle. The regions are initialized with their three

incident vertices denoted as (pi, f
1 ,pi, f

2 ,pi, f
3) the three

vertices of seed triangle of i-th cluster in the f -th frame.

Local Frame Construction: A local coordinate frame

is constructed for each seed triangle (see section 3.1).

Vertex clustering: Given an unvisited vertex p
f
k , we

do the following: Transform its world coordinates into

the N local coordinate frames constructed in each frame

f , so: {q
1, f
k ,q2, f

k , ...,qN, f
k }, (f = 1, ...,F), compute the

total deviation (motion) of the vertex between each two

adjacent frames f and f −1 in euclidian space:

θk,i =
F

∑
f=1

‖q
i, f
k −q

i, f−1
k ‖2

θk,i represents the total motion of the vertex k in the

LCF associated with the cluster i. A small value means

that the vertex position has motion that is similar to Ci.

Thus the vertex should belong to the cluster i for which

the deviation is very small, note imin:

imin := argmin1≤i≤N{θk,i}

We iterate over all vertices, adding the unvisited

vertex whose local coordinates are almost invariant in

the LCF to the cluster Ci and store its local coordinates

for the next step (compression). The iteration stops

if no more candidate vertices exist. When a vertex is

added to a cluster, it is marked as visited. We end up

with N clusters that have Vi vertices each.

Our algorithm provides a simple and effective way of

efficiently clustering mesh vertices. The results of the

segmentation technique can be seen in figure 1.

3.3 Compression

Once the mesh vertices are clustered, their coordinate

systems need to be encoded using PCA. In order to be

able to transform back to the world coordinates during

the decoding step, we also have to encode the world

coordinate of the points of seed triangles (used to con-

struct the transformations). The affine transformation

should then be correctly computed (at decoding) with-

out loss of information. Therefore, we propose the seed

triangle points be encoded separately with delta coding.

Delta coding

Given the sequence of the seed triangle points

(pi, f
1 ,pi, f

2 ,pi, f
3), we first encode their world coordinates

in the first frame. Then, the differences between each

two adjacent frames in the sequence are computed. To

avoid error accumulation during animation, these resid-

uals are computed between the coordinates of the point

p
i, f
j in the current frame and their recovered coordi-

nates p̃
i, f−1
j in the previous frame: δ

i, f
j = p

i, f
j − p̃

i, f−1
j ,

(j = 1,2,3) where i = 1, ...,N and f = 1, ...,F .

Principal Component Analysis

Principal Component Analysis (PCA) is a statisti-

cal technique that can reduce the dimensionality of a

dataset. It determines linear combinations of the orig-

inal dataset which contain maximal variation and rep-

resents them in an orthogonal basis. PCA reconstructs

the original dataset optimally in the mean square-error

sense. If we have F frames of 3V dimension each, PCA

produces a reduced number L ¿ F of principal compo-

nents that represent the original dataset.

We now consider how a cluster evolves over the

frames of the animation. Let G
f
i be the i-th cluster in the

f -th frame, i = 1, ...,N and f = 1, ...,F . A single clus-

ter Ci thus consists of F clusters (one for each frame)

Ci = {G1
i ,G

2
i , ...,G

F
i } where G

f
i represents the vector

with the geometry of the cluster i in frame f

G
f
i = (qi, f

4 ,qi, f
5 , ..,qi, f

Vi
)t ,

whose elements are the local coordinates of correspond-

ing vertices (except the coordinate of the seed triangle).

All these vectors G
f
i have the same length 3(Vi − 3),

and construct a geometric matrix Ai with 3Vi − 9 rows

and F columns.
Ai =

[

G1
i G2

i ...G
F
i

]

A singular value decomposition on Ai is
Ai = UiDiV

t
i

Journal of WSCG ISSN 1213-6972 102 ISBN 978-80-86943-00-8

where Ui is a (3Vi − 9) × F column-orthogonal ma-

trix that forms an orthogonal basis and contains the

eigenvectors of the AiAi
t . Di is a diagonal matrix

whose nonzero elements represent the singular val-

ues and are sorted in decreasing order. Thus Di =
diag{λ1,λ2, ...,λF}. V is a F ×F orthogonal matrix.

To reduce the dataset, we pick only the first L eigen-

vectors (L is a user specified number). So, U
′

i =
{ui,l , l = 1, ...,L} contains the most important principal

components ui that correspond to the largest eigenval-

ues λ1, ...,λL. Then each cluster G
f
i is projected into the

new basis U
′

i to get a new matrix of coefficients C
′

i of

size L×F .
C

′

i = U
′t
i Ai

After performing the PCA for all N clusters Ci,

we get N new sets {U
′

1,U
′

2, ...,U
′

N} and coefficient

matrices {C
′

1,C
′

2, ...,C
′

N} with different sizes.

Quantization and Arithmetic Coder

For further compression, the floating-point values

(32 or 64 bits) are often quantized to a user specified

number of bits per coordinate relative to the maximum

extend of the bounding box of the model. The quantized

values are encoded with an arithmetic coder [WNC87].

In the case of an animation, the quantization is of-

ten performed according either to the tight axis-aligned

bounding box for each frame or to the largest bound-

ing box for all frames. Since we have to encode the

basis vector values and the coefficients rather than the

vertex coordinates, we use two different encoding con-

texts. The first concerns the matrices and the second

the delta vectors. The basis matrix U
′

i and the coeffi-

cient matrix C
′

i of each cluster Ci are truncated using

a fixed number of bits qu and qc respectively (typically

qu = qc). We first compute the minimum and the max-

imum values (umin,i,umax,i), (cmin,i,cmax,i) of U
′

i and C
′

i

respectively. Then integer values are straightforwardly

derived according to

uiq(m, j) = bui(m, j)/umax,i −umin,i ·2
qu +1/2c

ciq(j, f) = bci(j, f)/cmax,i − cmin,i ·2
qc +1/2c

where 1 ≤ m ≤ 3Vi −9 , 1 ≤ j ≤ L and 1 ≤ f ≤ F .

The resulting signed integer values of the matrices

are encoded with an adaptive arithmetic coder and sent

with the extreme numbers.

For delta vectors, the coordinates are encoded ac-

cording to the bounding box of each frame. Using a

fixed number of bits q∆, the coordinates of the delta vec-

tors are mapped into integers which are then encoded

separate from PCA details with an arithmetic coder.

We assume that the quantization errors of PCA de-

tails are negligible up to 12 bits quantization. Note that

the total number of bits needed for storing delta vectors

is very small. It ranges between 0.01 and 1 bit per ver-

tex per frame when the quantization ranges between 12

and 16 bits depending on the number of eigenvectors,

the level of quantization, and the number of clusters.

3.4 Rate-Distortion Optimization

In LPCA-based techniques often PCA is performed us-

ing a fixed number of components per cluster, neglect-

ing the fact that whole mesh sequences are often not

rigid and the different parts can have different behavior

(i.e. their motion is not similar). Thus, using a fixed

number of components per cluster may results in an

insufficient number to represent a given cluster at the

desired accuracy while having too many for the repre-

sentation of other clusters.

To improve the PCA based compression and avoid

this overfitting and underfitting, we introduce the Rate-

Distortion Optimization (RDO) which is also called the

bit allocation. The objective is to find the best tradeoff

between the bitrate and the distortion of coordinates of

the vertices.

Given N clusters Ci, that we have to encode sepa-

rately, and a set of eigenvectors I = {l0, l1, ..., lL}. For

each cluster Ci, let (Rl
i ,D

l
i ,) denote the rate-distortion

point for each number l ∈ I, (typically l = 1,,40

components). The rate Rl
i represents the number of bits

required to encode the basis vector values and the co-

efficients. The distortion Dl
i is the root square error be-

tween the original and the reconstructed coordinates of

all vertices in the cluster.

Let Rtarget be the given total bit rate for all clusters.

Then the optimization problem is to find the best num-

ber of components li for the cluster i, (i = 1, ...,N)

that minimize D = ∑
N
i=1 D

li
i subject to the constraint

∑
N
i=1 R

li
i ≤ Rtarget .

In our coding, we introduce an R-D optimization

which is based on an incremental computation of the

convex hull [WS00]. For simplicity, and since the num-

ber of bits increases with the size of the basis vectors,

we define the rate R as the number of basis vectors

rather than the number of bits. Briefly, we define the

optimization algorithm in the following:

1. For each cluster Ci we compute:

• The number of components li that corre-

sponds to the smallest rate;

• The number of components ki that corre-

sponds to the next RD point on the lower

convex hull;

• The slope λi between the points (Rli
i ,Dli

i) and

(Rki
i ,Dki

i).

2. We compute the total rate Rt = ∑
N
i=1 R

li
i

3. As long as (∑
N
i=1 R

li
i ≤ Rtarget) is verified, we:

• Select the cluster Sn whose λn is minimal;

• Update Rt

• Modify li by ki;

Journal of WSCG ISSN 1213-6972 103 ISBN 978-80-86943-00-8

Figure 5: Reconstructed chicken. Top raw: Frame 314. Bottom raw: Frame 400. From left to right: Original, optimized

RLPCA, RLPCA, and LPCA performed in world coordinates (10 clusters; 10 components).

• Determine ki that corresponds to the next RD

point on the lower convex hull;

• Compute λn.

3.5 Compression Parameters

The compression parameters define the desired amount

of compression. In our approach, there are three param-

eters that govern the compression ratio:

• The number of basis vectors/rate L: If this num-

ber is fixed for all clusters, then the user defines

it (depending on the desired accuracy). The larger

this number is, the better reconstruction will be (at

the expense of less compression). If the RDO is

used, then we will need only to specify the amount

of compression (rate) or the maximum number of

basis vectors that are to be used to approximate

each cluster as we do in our coding. The num-

ber of vectors in each cluster is then optimally se-

lected such that the total rate is below the given

user-specified rate (or the total number of vectors

is below the given user-specified maximum num-

ber of vectors).

• The number of clusters N: If this number is very

small, then the cluster may contain vertices of dif-

ferent behavior and their local coordinates will

have a large variation over time. However, it is

difficult to find a linear space that efficiently rep-

resents these coordinates using PCA. In the future,

we want to automatize the selection of this num-

ber. Typically, in motion capture based animation

the number of clusters should be equal to the num-

ber of joints.

• The reconstruction error: This error presents the

deviation of the reconstructed positions from the

original one. It is measured using L2-norm or

the metric which we call KGerror [KG04]. More-

over, it controls the compression during the RDO.

This number should increase with decreases in the

number of clusters or the number of eigenvectors.

4 DECOMPRESSION

Figure 3 illustrates the decoding process. After receiv-

ing the sequences of the PCA details and the delta vec-

tors, we decode and undo quantization of delta vectors,

we reconstruct the points of the seed triangles of each

cluster in each frame, then reconstruct the LCFs. In

the second stage, we undo the quantization of all basis

vector values and coefficients, we reconstruct the local

coordinates of all vertices in each cluster, and transform

them back to world coordinates. Finally, we collect all

clusters to reconstruct the sequence of meshes.

5 RESULTS

In order to see the performance of our scheme, RLPCA,

we measured the number of bits per vertex per frame

(bpvf), and as most other recently proposed methods

for animated geometry coding, we used the KGerror

metric to measure the distortion in the reconstruction

animation with regard to the original animation. We

also computed the distortion per frame using the L2

norm of all reconstructed vertex positions relative to

the original positions of each frame. We compare

the compression performance of our algorithm against

AWC [GK04], TLS [PA05], PCA [AM00], KG [KG04]

and CPCA [SSK05].

RLPCA vs. LPCA We want to find the influence of

the segmentation and the local coordinates on the rate

and on the reconstruction of animation. We performed

LPCA in the world coordinate system as well as in the

local coordinate systems for a given numbers of clus-

ters, components and bits of quantization N, L and qc

respectively. Furthermore, we compared LPCA with

the standard PCA.

Figure 6 (a) shows the reconstruction results relative

the original frame using qc = qu = 12 and L = 10 when

Journal of WSCG ISSN 1213-6972 104 ISBN 978-80-86943-00-8

(a) (b) (c)

(d) (e) (f)
Figure 6: Rate distortion curves for the cow (b), dolphin (c), chicken (e) and dance (f) sequences using KGerror. The error plot

for the chicken sequence: (a) using LPCA in the world and the local coordinates and using the RD-optimization (10 clusters,10

components) and (d) using 10, 10 and 20 clusters and 20, 10 and 20 components.

the LPCA is performed in the world coordinates (green)

and in the local coordinates (blue) and when the R-D

optimization is introduced (red) at the same number of

bit per vertex per frame. We can see that the local co-

ordinates are more compressable than the the original

coordinates.

Figure 6 (d) and Figure 6 (f) shows the effect of

the number of clusters and the component on the

frame reconstruction for the chicken animation using

(N,L) ={(20,10); (20,20); (10,10)} and on the rate-

distortion curves for the dance animation using 10, 20

and 30 clusters. In Figure 6 (a), the improvement in the

second curve (blue) is due to the transformation of the

original coordinates into local coordinates which forces

the coordinates of a vertex to cluster around one point

(see Figure 2). This improvement increases (red) when

the optimization were introduced.

Figures 5 shows the reconstructed two frames in the

chicken sequence when the world and the local coordi-

nates are used and when the optimization is introduced

using 10 components and 10 clusters.

Comparison to other coders Figure 6 also illustrates

the comparison to other methods as rate-distortion

curves for the cow (b), dolphin (c) and chicken (e) an-

imations. At first glance, we can see that our approach

achieves a better rate distortion performance than the

standard PCA, LPC and TG for the three models. This

result is obvious since the animation coding based on

static techniques only exploit the spatial coherence and

the linear prediction coding only uses the temporal co-

herence. Furthermore, the standard PCA only approxi-

mates the global linearity and is less effective for non-

linear animation.

For the CPCA and AWC algorithms, we achieve bet-

ter or similar results. Figure 6 (b) shows that for the

cow animation our method is significantly better than

the method of Karni and Gostman and than the CPCA.

And it comes close to AWC. For the dolphin and the

chicken sequences our method performs better than all

the above methods. This improvement is due to the seg-

mentation of the model into meaningful parts (whose

vertices move quit similarly) as well as to the use of

local coordinates rather than world coordinates. On the

other hand, the RLPCA performs well for the models of

large number of vertices in contrast to KG. Therefore,

by combining RLPCA with LPC, we might achieve a

better compression ratio. Figure 6 also demonstrates

that the rate distortion optimization we introduce in our

algorithm (ORLPCA) is important for achieving better

compression performances especially when the number

of vertices is large and the animation is complex.

From the computational viewpoint, PCA is computa-

tional expensive but in combination with LPC [KG04],

it gives a better compression performance, particularly

for a long sequence of just a few number of vertices.

CPCA [SSK05] outperforms both methods since they

explore a robust segmentation which is based on a data

analysis technique but remains expensive. In contrast,

our RLPCA uses a simple clustering and transforma-

tions and achieves a better compression ratio.

Journal of WSCG ISSN 1213-6972 105 ISBN 978-80-86943-00-8

Table 1: Comparison compression and decompression timings with CPCA.

CPCA RLPCA
Models vertices triangles frames bpvf dKG tenc

(sec) tFPS
(sec) bpvf dKG N L tenc

(sec) tdec
(sec)

chicken 3030 5664 400 4.7 0.076 206 214 3.5 0.008 20 20 120 69

2.8 0.139 395 215 2.2 0.043 20 10 115 69

2.8 0.139 395 215 1.5 0.057 10 10 110 47

cow 2904 5804 204 7.4 0.16 75 145 6.8 0.128 30 20 82 46

3.8 0.5 59 218 4.1 0.470 30 20 40 50

2.0 1.47 55 284 2.2 1.220 10 10 70 23

dolphin 6179 12337 101 7.1 0.024 - - 3.9 0.016 20 10 74 40

4.1 0.033 - - 2.1 0.018 20 5 78 32

2.1 0.168 - - 1.9 0.066 10 5 39 25

Timings: Table 1 shows the timings in seconds of the

coding (tenc) and decoding (tdec) processes (without

optimization) for the three animations with a compar-

ison to CPCA (tFPS for display while decoding). We

observe that for the chicken and cow animations, our

coder is much faster and performs better than CPCA.

Our timing results are measured on Pentium 4 with 2.53

GHz and CPCA on AMD Athlon64 XP 3200+.

6 CONCLUSION

We introduced a new compression technique for the an-

imated meshes which is based on LPCA. The mesh ver-

tices are clustered using the motion in the LCF . Then,

the world coordinates of each cluster are transformed

into local coordinates. This step enables the algorithm

to compress an animated mesh efficiently. It exploits

the "local" behavior of the local coordinates. Finally,

an LPCA is performed in each cluster with the rate dis-

tortion optimization. Our approach is simple, fast and

achieves a better performance than other current exist-

ing compression techniques. It is applicable to meshes

and point-based models. It performs well for anima-

tions with a large number of vertices. For very long

sequences, we suspect that the motion of a local coordi-

nates also becomes complex and non-linear. Therefore,

we want to combine our method in the future with LPC

which is good for long sequences or split the sequences

into small clips. Furthermore, we plan to develop an

adaptive segmentation over time and encode the clus-

ters with different quantization levels. The number of

clusters can also be chosen automatically.

Acknowledgements We would like to thank Zachi

Karni and Hector Briceño for providing us the animated

meshes and Mirko Sattler, Igor Guskov and Frédéric

Payan for the results of their methods. The Chicken

sequence is property of Microsoft Inc.

REFERENCES
[AG05] P. Alliez and C. Gotsman. Recent Advances in Compression

of 3D Meshes. Elsevier Science Inc., 2005.

[AM00] Marc Alexa and Wolfgang Müller. Representing animations

by principal components. Comput. Graph. Forum, 19(3), 2000.

[ASS06] R. Amjoun, R. Sondershaus, and W. Straßer. Compression

of complex animated meshes. volume 4035, pages 606–613,

2006. Computer Graphics International 2006 Conference.

[Dee95] M. Deering. Geometry compression. In SIGGRAPH ’95

Conference Proceedings, pages 13–20, 1995.

[GK04] I. Guskov and A. Khodakovsky. Wavelet compression of

parametrically coherent mesh sequences. In Proceedings of the

ACM SIG./Eurog. sympo. on Comput. anim., 2004.

[GS98] S. Gumhold and W. Straßer. Real time compression of tri-

angle mesh connectivity. In SIGGRAPH ’98 Conference Pro-

ceedings, pages 133–140, 1998.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings of the

23rd annual conference on Computer graphics and interactive

techniques, pages 99–108. ACM Press, 1996.

[IA02] M. Isenburg and P. Alliez. Compressing polygon mesh ge-

ometry with parallelogram prediction. In IEEE Visualization

’02 Conference Proceedings, pages 141–146, 2002.

[IR03] L. Ibarria and J. Rossignac. Dynapack: space-time compres-

sion of the 3d animations of triangle meshes with fixed connec-

tivity. In ACM SIG./Eurog. Symp. on Comput. Anim., 2003.

[JCS02] Yang J.H., Kim C.S., and Lee S.U. Compression of 3-d

triangle mesh sequences based on vertex-wise motion vector

prediction. Cir. Sys Video, 12(12):1178–1184, December 2002.

[JPK05] C-S Kim J. Peng and C-C.J Kuo. Technologies for 3d mesh

compression : A survey. ELSEVIER Journal of Visual Commu-

nication and Image Representation, 16(6):688–733, 2005.

[KG04] Zachi Karni and Craig Gotsman. Compression of soft-body

animation sequences. Comput.& Graph., 28:25–34, 2004.

[Len99] J. E. Lengyel. Compression of time-dependent geometry.

In Proc. of ACM sympo. on Interactive 3D graphics, 1999.

[MSK+05] K. Muller, A. Smolic, M. Kautzner, P. Eisert, and T. Wie-

gand. Predictive compression of dynamic 3d meshes. In IEEE

International Conference on Image Processing, 2005.

[PA05] F. Payan and M. Antonini. Wavelet-based compression of 3d

mesh sequences. In Proceedings of IEEE ACIDCA-ICMI’2005,

Tozeur, Tunisia, november 2005.

[Ros04] J. Rossignac. Surface simplification and 3D geometry com-

pression. Chapter 54 in Handbook of Discrete and Computa-

tional Geometry 2004.

[SSK05] M. Sattler, R. Sarlette, and R. Klein. Simple and efficient

compression of animation sequences. In ACM SIG./Eurog.

sympo. on Comput. anim., pages 209–217, 2005.

[TG98] C. Touma and C. Gotsman. Triangle mesh compression. In

Graphics Interface’98, pages 26–34, 1998.

[TR98] G. Taubin and J. Rossignac. Geometric compression through

topological surgery. ACM Trans. on Graph., 17(2), 1998.

[WNC87] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic

coding for data compression. Communications of the ACM,

30(6):520–540, 1987.

[WS00] M. Wagner and D. Saupe. Rd-optimization of hierarchical

structured adaptive vector quantization for video coding. In

Proceedings of IEEE on Data Compression, page 576, 2000.

[YKK01] Z. Yan, S. Kumar, and C. C. Jay Kuo. Error-resilient

coding of 3-d graphic models via adaptive mesh segmentation.

IEEE Trans. Circ. Syst. Video Tech., 11(7):860–873, 2001.

[ZO04] Jinghua Zhang and Charles B. Owen. Octree-based ani-

mated geometry compression. In Proceedings of IEEE on Data

Compression, pages 508–517, 2004.

Journal of WSCG ISSN 1213-6972 106 ISBN 978-80-86943-00-8

	!WSCG2007_Journal_Proceedings_Numbered.pdf
	B07-full.pdf
	G59-full.pdf
	H61-full.pdf
	A47-full.pdf

