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ABSTRACT

A new opacity correction approach for oversampled volume ray casting is introduced. While the only existing opacity correction

method in the literature is based on the assumption of dataset homogeneity, the new opacity correction method introduced in this

paper is a faster, generalized voxel-by-voxel approach which does not assume dataset homogeneity. The new opacity correction

avoids the dataset homogeneity assumption by introducing a new opacity correction factor for the samples in each voxel. Its

performance improvement over the existing opacity correction approach is also exhibited for real volumetric datasets.

Keywords: Volume visualization, Volume ray casting, Oversampling, Opacity Correction

1 INTRODUCTION

Volume visualization has been a powerful aid to knowl-

edge discovery in many application areas. Direct vol-

ume rendering (DVR) is one of the classes of volume

visualization approaches. DVR involves constructing

an image representation for a volumetric dataset with-

out first building any intermediate representation (e.g.,

a mesh of triangles).

Volume ray casting (VRC) is one of the widely stud-

ied and applied DVR techniques (e.g., [Lev88, Mor02,

Wei03, Kle05]). Ray casting involves forming an image

by passing rays from image locations through the vol-

umetric dataset and integrating light effects on the rays

(e.g., integrating light transmissions along the rays).

Samples are composited along each ray in a front-to-

back or back-to-front manner. Equations (1) and (2)

are the discretized formulations of the front-to-back and

back-to-front compositions, respectively:

It =
n

∑
i=0

Ii ×
i−1

∏
j=0

(1−α j) , (1)

It =
n

∑
i=0

Ii ×
n

∏
j=i+1

(1−α j) , (2)

where It is the final composited intensity for a ray, n

is the number of samples for a ray, Ii is the intensity
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of the ith sample, and α j is the opacity of the jth sam-

ple. The term (1−α j) in Equations (1) and (2) is the

transparency of the jth sample. Front-to-back compo-

sition has an advantage of allowing early ray termina-

tion since the accumulated transparency from previous

samples is kept. The intensity, Ii, of a sample in these

formulations can be modeled as:

Ii = Ci ×αi , (3)

where Ci is the color of the sample.

The number of sample points on each ray can vary

as long as it is above the Nyquist sampling frequency

to avoid aliasing [Lic98, Swa97]. Moreover, to better-

simulate the continuous integration of the light effects

in a discrete space, a high sampling rate can be used.

However, the result of the ray sample composition

should not be negatively impacted when the number of

samples on each ray exceeds a unit-sampling rate. That

is, when there is oversampling, the opacity must be

corrected such that the final composited opacity value

is not over-composited. In addition, since the ray in-

tensity composition is not a simple linear composition,

as seen in Equations (1) and (2), the opacity correction

should be applied in a non-linear way.

Figs. 1 and 2 show the impact of over-composited

opacity. In Figs. 1 (a) and 2 (a), isosurface renderings

of CT datasets of an engine block and a foot are shown,

respectively. Five times oversampled renderings are

shown for each of these in Fig. 1 (b) and Fig. 2 (b),

respectively. (For these figures, a gradient-based local

reflection model was used to determine the sample col-

ors.) In these oversampled renderings, it is harder to see

the details of the structures due to the over-composited

opacity. For example, the interior structures of the en-

gine block are not visible in Fig. 1 (b) and the bone
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(a) (b)

(c) (d)

Figure 1: Renderings (Engine, 256×256×256 CT) from (a) Marching Cubes isosurfacing and (b-d) over-

sampled (5 times) volume ray casting: (b) without opacity correction, (c) with Lacroute/Lichtenbelt et al.’s

opacity correction, and (d) with new opacity correction.

structures are not clear in Fig. 2 (b). Thus, when over-

sampling, an opacity correction is needed to correct

such artifacts.

In this paper, we describe a new method to address

the issue of over-compositing of opacity in oversampled

volume ray casting.

2 RELATED WORK

In this section, related work is discussed. Lichtenbelt

et al. [Lic98] have discussed the problem of over-

composited opacity and described an opacity correc-

tion formula based on the assumption that the datasets

are homogeneous (i.e., all sample values are the same).

(However, most real volumetric datasets are not homo-

geneous.) When the dataset is homogeneous and front-

to-back composition is used, the method to correct

opacity described by Lichtenbelt et al. uses the ratio-

nale that the unit-sampled intensity in a voxel should be

equal to the oversampled intensity in the voxel. Thus,

C×α = C×α ′ +{C×α ′ (1−α ′)}
+

{

C×α ′ (1−α ′)2
}

+ . . .

+
{

C×α ′ (1−α ′)N−1
}

,

(4)

where C is the color, α is the original opacity deter-

mined by an opacity transfer function, α ′ is the cor-

rected opacity, and N is the oversampling factor. Based

on this expression, Lichtenbelt et al. [Lic98] derived

the opacity correction formula:

α ′ = 1− N
√

1−α . (5)

This correction is applied on a voxel-by-voxel basis

(i.e., a separate correction is computed for each sample

in each voxel). However, Equation (5)’s opacity adjust-

ment will only be appropriate when the assumption of

dataset homogeneity holds.

The opacity correction described in Lichtenbelt et al.

[Lic98] was motivated by work by Lacroute [Lac95],

who presented an opacity correction formula in terms of

sample spacing for the shear-warp factorization-based

rendering. Lacroute’s formula is equivalent to Equa-

tion (5). Others [Pfi05, Sch03, Wei00] have also used

or discussed use of this opacity correction formula.

Schulze et al. [Sch03] have suggested that an opac-

ity correction factor be computed using the formula in

Equation 5 with the corrected opacity used to correct

the color as follows:

C′
i = Ci ×

α ′
i

αi

, (6)
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where C′
i is the corrected color. Schulze et al. applied

their corrections to undersampled ray casting.

Although Lacroute [Lac95] and Lichtenbelt et al.

[Lic98] have noted that the opacity correction in Equa-

tion 5 can be implemented by a lookup table for α ′ as

a function of α , discretizing the opacity can result in

loss of information. Thus, in the experiments we report

later, a lookup table for α ′ is not used.

2.1 Toward the New Approach

The new opacity correction method introduced here is

an efficient approach; it can be computed much faster

than the existing approach. It is also able to produce

renderings of comparable quality to those of the prior

(i.e., Lacroute/Lichtenbelt et al.) approach. Moreover,

it is not based on the assumption of homogeneity of the

data. We note that it is also possible to employ a lookup

table for the new opacity correction method, but we do

not use a lookup table for it for the reason we mentioned

above.

(a) (b)

(c) (d)

Figure 2: Renderings (Foot, 256×256×256 CT)

from (a) Marching Cubes isosurfacing and (b-

d) oversampled (5 times) volume ray casting:

(b) without opacity correction, (c) with prior

(Lacroute/Lichtenbelt et al.’s) opacity correction,

and (d) with new opacity correction.

3 NEW OPACITY CORRECTION AP-

PROACH

The new opacity correction method we introduce here

is derived from a generalized form of an opacity-based

derivation similar to Equation (5)’s derivation. Like the

prior method, it is a voxel-by-voxel approach, although

it does not assume homogeneity of the dataset.

3.1 Application Conditions

In the work here, we have used two color transfer func-

tions. Both transfer functions used trilinear interpola-

tion to interpolate samples that were not on the grid

points.

The first is for gray-scaled application:

Ci =
Di

M
, (7)

where M is the maximum sample data value in the

dataset and Di and Ci are the sample data value and

color, respectively, for the ith sample in a cell. For

generic application, especially for 8-bit data, the sim-

ple linear transfer function in Equation (7) is suitable.

The second transfer function is for color-scaled ap-

plication:

Ci = local_re f lection_model (Gi) , (8)

where Gi is the gradient of the ith sample and Ci is the

color that is associated with the ith sample in a cell.

The local reflection model utilizes ambient, diffuse, and

specular light components and uses the sample gradi-

ent as the surface normal. For the sample gradient, we

employed two different approximation schemes (which

produce visually similar results): (1) using trilinear in-

terpolation of the linear central-difference gradients at

the 8 grid points in the voxel and (2) using linear central

differences at the sample points. (Figs. 1, 5, and 6 use

scheme (1); Fig. 2 uses scheme (2).) For the opacity

transfer function, we have used a simple linear transfer

function similar to Equation (7) (i.e., αi = Di/M, where

αi is the opacity for the ith sample in a cell).

3.2 New Opacity Correction

In this subsection, the derivation of the new opacity

correction formulation is shown. Then, we show an

approximation that allows fast computation of the new

opacity.

For a unit-sampling versus an oversampling in one

voxel, our model assumes the unit-sampled composited

transparency and the oversampled composited trans-

parency should be equivalent for the voxel. For exam-

ple, for the case of two times oversampling, the com-

posited transparency within a voxel should be:

(1−αu1) = (1− pαo1)× (1− pαo2) , (9)

where αui is the unit-sampled opacity for the ith sample

in the voxel, αoi is the oversampled opacity of the ith

sample in the voxel (i.e., αu1 = αo1), and p is the new

opacity correction factor. As seen in Equation (9), our

opacity correction does not depend on dataset homo-

geneity (i.e., when there are different αi values for dif-

ferent samples). Then, Equation (9) can be rearranged

as follows:

F : (αo1 αo2) p2 − (αo1 +αo2) p+αo1 = 0 . (10)
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(−1)0

(

N

∏
s=1

αos

)

pN

+(−1)1

{

N

∑
t=1

(

N

∏
s=1,s�=t

αos

)}

pN−1

+(−1)2

{

N−1

∑
u=1

N

∑
t=u+1

(

N

∏
s=1,s�=t,u

αos

)}

pN−2

+(−1)3

{

N−2

∑
v=1

N−1

∑
u=v+1

N

∑
t=u+1

(

N

∏
s=1,s�=t,u,v

αos

)}

pN−3

...

+(−1)N αo1 p0 = 0.

(11)

In the new method, the expression in Equation (10)

is solved for p. Similar formulas can be obtained for

oversamplings of more than two times. Those formulas

can be generalized, as we show above in Equation (11),

for large N, where N is the oversampling factor.

For the general case, our approach’s opacity correc-

tion factor, p (0 ≤ p ≤ 1), can be determined for each

voxel by solving Equation (11) for p for the voxel; we

need to solve Equation (11) for p for each voxel.

For example, the opacity correction expression F

when N = 3 is:

F (p) = (αo1αo2αo3) p3

−(αo1αo2 +αo2αo3 +αo1αo3) p2

+(αo1 +αo2 +αo3) p

−αo1 ,

(12)

where F(p) = 0 for the value of p that produces the

proper correction.

However, Equation (11) can contain high-order poly-

nomials when the oversampling rate is high. To avoid

complex computations for solving the high-order poly-

nomials (i.e., N ≥ 3), we approximate them by fitting

2nd degree polynomials and then solving for p. This

approximating expression has the form:

F̂ (p) = A× p2 +B× p+C , (13)

with F̂(p) = 0 for the p that satisfies the condition.

In particular, we have used p0 = 0.0, p1 = 0.5, and

p2 = 1.0 for the 2nd degree polynomial fittings (i.e., the

fitted polynomial is forced to pass through these three

points). For example, at p1 = 0.5, we have F̂(0.5) =
A× (0.5)2 +B× (0.5)+C = F(0.5).

The evaluations of Equation (13) produce the system:




p2
0 p0 1

p2
1 p1 1

p2
2 p2 1









A

B

C



 =





F(p0)
F(p1)
F(p2)



 , (14)

where F(pi) are from Equation (11). Thus, the solution

(A,B,C) is:





A

B

C



 =





p2
0 p0 1

p2
1 p1 1

p2
2 p2 1





−1 



F(p0)
F(p1)
F(p2)



 . (15)

Once (A,B,C) have been determined, Equation (13)

can be solved for the best p using standard quadratic

equation solution methods. This process of determin-

ing p must be performed for each voxel (i.e., a unique

p will be determined for each voxel), although the

matrix of p0, p1, p2 values will not change. Thus, a

final form of our new opacity correction is as follows:

p = f (α̂) ,

α ′ = p×α ,
(16)

where the function f solves a second degree polynomial

given a set of samples, α̂ = {α0,α1, ...,αN−1}, in the

voxel and α ′ is the corrected opacity.

A lookup table can be used in implementing the new

opacity correction. However, our reports here are not

based on lookup table use.

4 EXPERIMENTAL RESULTS

In this section, we consider the behavior (including

some limitations) of the new opacity correction and

compare the performances of the existing opacity cor-

rection and the new opacity correction.

4.1 Analysis Within A Voxel

First, we consider the within-voxel behavior of the

Lacroute/Lichtenbelt et al.’s opacity correction and of

our new opacity correction.

Journal of WSCG       ISSN 1213-6972 4 ISBN 978-80-86943-00-8



(a) (d)

(b) (e)

(c) (f)

Figure 3: Oversampling’s (2 times) resultant opaci-

ties in (a)-(c): (a) without correction, (b) with prior

(Lacroute/Lichtenbelt et al.’s) correction, and (c)

with new correction. Corresponding composited in-

tensity surfaces shown in (d)-(f): (d) without correc-

tion, (e) with prior correction, and (f) with new cor-

rection. All surfaces exhibit results over the universe

of possible combinations of sample values for 8-bit

data.

4.1.1 Synthetic Data-Testing All Combinations

The characteristics of different opacity corrections can

be observed using synthetic data to compare the re-

sultant opacity surfaces and composited intensity sur-

faces. Here, we consider two times oversampling for

the cases of (1) compositing without opacity correction,

(2) compositing with the prior (Lacroute/Lichtenbelt et

al.’s) opacity correction, and (3) compositing with the

new opacity correction. The resultant opacity surfaces

and composited intensity surfaces for all possible com-

binations of sample values of 8-bit data are shown in

Fig. 3. Parts (a)-(c) show the resultant opacities for

these three cases. Corresponding composited intensity

surfaces (i.e., composited intensities for all combina-

tions of two samples) for Figs. 3 (a)-(c) are shown in

(a) Resultant Opacities

(b) Composited Intensities

Figure 4: Example comparison of resul-

tant/composited opacities and intensities for a

voxel: Rays within a voxel for unit-sampling,

oversampling without correction, oversampling

with Lacroute/Lichtenbelt et al.’s correction, over-

sampling with new correction from top to bottom,

respectively. (All oversamplings: 5 times)

Figs. 3 (d)-(f). While the resultant opacity surface with-

out correction in Fig. 3 (a) is linear, the resultant opac-

ity surface with the prior opacity correction and with

the new correction in Figs. 3 (b) and (c), respectively,

show non-linear variations for different sample values.

In addition, the resultant opacity surface in Fig. 3 (c)

for the new method shows a more complicated, non-

linear variation in its shape. There are more apparent

differences between the composited intensity surfaces

in Fig. 3 (e) for the prior opacity correction and Fig. 3

(f) for the new correction. For the case of two times

oversampling, the homogeneity assumption of the prior

opacity correction does not allow the correction to vary

suitably in the cases where values are the least homo-

geneous (e.g., the combination of one small and one

large value). Specifically, when the first sample has a

low value and the second sample has a high value, the

second sample should have very little impact on the in-

tensity composition within a voxel. Fig. 3 (f) shows that
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 5: Renderings (lobster, 120×120×34 CT) from (a) Marching Cubes isosurfacing and (b-g) oversam-

pled (5 times) volume ray casting, (top: using color transfer function in Equation (7), bottom: using color

transfer function in Equation (8)), (b, e) without opacity correction, (c, f) with Lacroute/Lichtenbelt et al.’s

opacity correction, and (d, g) with new opacity correction.

our new opacity correction produces intensity composi-

tion in which the second sample has little impact on the

intensity composition when the first sample has a low

value and the second sample has a high value. How-

ever, as shown in Fig. 3 (e), the prior opacity correc-

tion over-composited the second sample value which

resulted in a higher composited intensity for the same

case. Moreover, when the second sample has a zero

value, the resultant opacities within a voxel should be

linearly changed as the first sample values vary lin-

early. Fig. 3 (c) shows that our new opacity correc-

tion produces more linear resultant opacities when the

first sample values vary linearly and the second sam-

ples have zero values. (However, Lacroute/Lichtenbelt

et al.’s correction produces non-linear resultant opaci-

ties for the same cases in Fig. 3 (b).)

4.1.2 Real Data Tests

We have examined the behaviors of different correc-

tions by comparing the resultant opacities and compos-

ited intensities within a voxel using the sample values

extracted from real volumetric datasets.

Fig. 4 shows a typical example of opacity and in-

tensity compositions in which we can observe the be-

haviors of different oversamplings within a voxel. In

the figures, the rays, from top to bottom, are for unit-

sampling, oversampling without correction, oversam-

pling with Lacroute/Lichtenbelt et al.’s correction, and

oversampling with the new correction. The ′×′ marks

represent the sample points on each ray. The sam-

ple value of the unit-sampling was 67.0 and the sam-

ple values of the oversampling from left to right were

67.0, 69.2, 73.4, 78.6, and 84.8. The resultant opacities

and composited intensities using these sample values

are shown in the figure. In this example, the uncor-

rected oversampling produced over-composited inten-

sity which was caused by the over-composited opaci-

ties.

Based on empirical tests on several real datasets (enu-

meration omitted here due to space limits), we con-

clude the following three behaviors of different correc-

tions within a voxel: (1) uncorrected oversampling al-

ways over-composites the opacities and the intensities

and (2) both Lacroute/Lichtenbelt et al.’s opacity cor-

rection and our new opacity correction limit the false

over-composition of opacities and intensities.

4.2 Differences in Renderings

Next, we compare the quality of the renderings pro-

duced by the new and the existing opacity corrections.

We consider real datasets using visual comparison. We

also quantitatively compare the accuracy of different

opacity corrections versus a gold standard. Since we

do not know the analytical distribution of values for

the real datasets, our gold standard rendering considers

an analytical function. (Since the unit-sampled render-

ing is only a discrete approximation (i.e., Riemann sum

approximation) to a continuous light integral, the unit-

sampling renderings are not suitable to be used as the

gold standard of the opacity-corrected oversamplings.)

Thus, we have used the Marschner and Lobb analyti-
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(a) (b) (c)

Figure 6: Comparison of opacity correction results. (a) Unit-sampled rendering with a region highlighted,

(b) Lacroute/Lichtenbelt et al.’s correction for 5 times oversampling in the highlighted region, (c) new opac-

ity correction for 5 times oversampling in the highlighted region.

cal function [Mar94] as the basis of a gold standard to

compare the oversampled renderings.

First we discuss the real data results. We have applied

the new and the prior (Lacroute [Lac95]/Lichtenbelt

et al. [Lic98]) opacity corrections to 40 real volumet-

ric datasets. Some example renderings are shown in

Figs. 1, 2, and 5. These figures show the renderings

from Marching Cubes isosurfacing (i.e., (a) in each fig-

ure) and from oversampled VRC without opacity cor-

rection, with the prior opacity correction, and with our

new opacity correction for three of the real datasets.

For the VRC renderings, all of the figures used shad-

ing based on the color transfer function in Equation (8)

except the figures in Figs. 5 (b)-(d), which used the

gray-scaled color transfer function in Equation (7). All

the oversampled renderings without opacity correction

(i.e., Fig. 1 (b), Fig. 2 (b), and Figs. 5 (b) and (f))

suffered from over-composited opacity. The oversam-

pling without any opacity correction tends to become

darker or brighter when the samples from the front

slices have low values or high values, respectively. The

prior opacity correction and our new opacity correction

tend to produce rendering results (i.e., Figs. 1 (c) and

(d), Figs. 2 (c) and (d), and Figs. 5 (c) and (d), and (g)

and (f)) that are similar. Fig. 6 illustrates how close the

oversampled renderings are using the prior opacity cor-

rection and the new correction. Fig. 6 (b) and (c) show

the zoomed-in renderings (of the region marked by a

red box in Fig. 6 (a)) with the prior opacity correction

and with the new correction. As seen in the figures, the

difference in the oversampled renderings is very small.

Fig. 7 shows the differences of ray casting renderings

for the Marschner and Lobb function. Fig. 7 (a) shows

the rendering that has been analytically computed,

Fig. 7 (b)-(d) show the five times oversampled render-

ing without correction, with Lacroute/Lichtenbelt et

al.’s correction, and with the new correction, respec-

tively. The average pixel-by-pixel difference between

Fig. 7 (a) and Fig. 7 (b)-(d) were 0.1200, 0.0895,

and 0.0894, respectively. Thus, the results may be

considered to be comparable.

(a)

(b) (c) (d)

Figure 7: Ray cast renderings (Marschner-Lobb

function, 64×64×64) for (a) analytical integration

and (b-g) oversamplings (5 times): (b) without opac-

ity correction, (c) with existing opacity correction,

and (d) with new opacity correction.

4.3 Processing Times

While the oversampled renderings of both opacity cor-

rections were similar when using the color transfer

function in Equation (7), the processing time with the

new opacity correction was faster than the time for the

Lacroute/Lichtenbelt et al.’s correction. One source of

the speedup is that the inverse matrix of p0, p1, and p2

in Equation (15) can be computed once and be continu-

ously re-used. In addition, each opacity correction fac-

tor p is re-used N times within a voxel. The computa-

tional speed advantage of the approach proposed here

is the chief reason to use the new approach when using

the color transfer function in Equation (7).

Some shortcomings of the new correction are as fol-

lows: (1) the inverse matrix of p0, p1, and p2 in Equa-

tion (15) has to be re-computed when the sampling rate

Journal of WSCG       ISSN 1213-6972 7 ISBN 978-80-86943-00-8



changes, and (2) when a lookup table is used, the di-

mension of the lookup table depends on the sampling

rate and one lookup table for every sampling rate has to

be pre-computed.

Table 1 shows three measures (i.e., maximum, av-

erage, and minimum) of the new opacity correction’s

speedup over the Lichtenbelt et al.’s correction for the

40 real datasets when oversampling 5 times. For the

speedup of the opacity correction itself (shown in Ta-

ble 1’s upper row), all non-correction processing steps

(e.g., interpolation of sample values and ray compo-

sitions) are ignored; only the processing time for the

opacity correction itself is measured. On average, the

new opacity correction has a speedup of about 12.36

when considering only the correction itself. In Table 1’s

bottom row, the overall speedup for the new opacity-

corrected VRC rendering (versus VRC with correction

by the Lacroute/Lichtenbelt et al.’s method) is shown;

on average, the new approach allows an overall speedup

in VRC of about 1.85. We have found that the speedup

tends to get higher as the oversampling rate increases.

× 5 Max. Avg. Min.

Opacity Correction 14.724 12.359 6.785

Overall 1.997 1.846 1.767

Table 1: Speedup of new correction versus

Lacroute/Lichtenbelt et al.’s correction for 40

datasets, for 5 times oversampling.

4.4 Approximation Error

The use of approximation in the new approach’s

quadratic curve fitting in Equation (13) is a source of

error. We performed one experiment to evaluate the

error. It involved measuring the absolute differences

between the true opacity correction factor and the

approximated opacity correction factor using the

(120x120x34) lobster dataset shown in Fig. 5. The

average fitting error for five times oversampling for one

ray-casting on the dataset was 0.0031 and the standard

deviation was 0.012. In addition, only 0.09% of all the

fitting errors exceeded 0.1 in magnitude.

5 CONCLUSION

In this paper, a new opacity correction method for over-

sampled volume ray casting was described. The new

correction method is a generalized voxel-by-voxel ap-

proach which avoids the assumption of dataset homo-

geneity. The new correction limits the false increase

in opacity from over-composition of the opacity and it

is faster than the only existing opacity correction. The

new method can be applied about 12 times faster than

the existing approach which yields an overall speedup

in VRC of about 1.85.

In the future, we intend to work on further improve-

ments to the speed and accuracy of opacity correction.
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