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ABSTRACT 

We describe a free-form stroke-based modeling system where objects are primarily represented by means of 

variational surfaces. Although similar systems have been described in recent years, our approach achieves both a 

good performance and reduced surface leak problems by employing a coarse mesh as support for constraint 

points. The prototype implements an adequate set of modeling operations, “undo” and “redo” facilities and a 

clean interface capable of resolving ambiguities by means of suggestion thumbnails. 
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1. INTRODUCTION 
Typical 3D modeling systems are mostly designed to 

handle the creation of technical models, i.e., objects 

with precise measures or which must obey well-

defined geometric rules. Such systems are not well-

suited to handle so-called free-form models, which 

can be regarded as 3D models akin to 2D free-hand 

sketches. One reason for this is the fact that 

interaction in 3D relies almost exclusively on 2D 

projections, since the only feasible alternative for 

effectively working in 3D space is by employing 

costly and cumbersome virtual reality gear. Thus, the 

user must ultimately manipulate 2D features in order 

to accomplish 3D editing tasks. 

Perhaps the most salient features of any given 3D 

model are its edges and silhouette lines. Igarashi et 

al. [Iga99] used this observation to build a prototype 

3D free-form modeler called Teddy. In contrast with 

common 3D modelers, Teddy is easy and intuitive 

enough to be used even by small children. It relies on 

a scheme by which free-hand drawing strokes 

representing silhouette lines are used to build and 

modify smooth closed surfaces. Teddy also innovates 

over other 3D modelers by not using the standard 

WIMP (Windows, Icons, Menus and Pointers) 

interface paradigm. Rather, all interaction is based 

upon stroke recognition and a very small number of 

command buttons. 

Another key aspect that must be addressed in the 

construction of stroke-based interfaces is the 

resolution of ambiguities that may arise during a 

modeling session. For instance, a new stroke drawn 

by the user may be interpreted either as the cue for 

creating a new shell or as the profile of an extrusion 

operation. Our system copes with this problem by 

using a suggestive interface similar to the approach 

described in [Iga01]. Namely, thumbnail images 

representing the alternative results are displayed in a 

corner of the main display window, which must then 

be clicked by the user in order to select the desired 

outcome. 

The remainder of this paper is organized as follows. 

Section 2 presents some relevant work related to the 

problem at hand. An overall description of the 

proposed system is presented in Section 3 and some 

concepts of the variational surfaces are introduced in 

Section 4. The involved algorithms are described in 

detail in Section 5. Some key aspects of the 

implementation are discussed in Section 6 and some 

results and limitations are presented in Section 7. 

Finally, some concluding remarks and suggestions 

for future work can be found in Section 8. 

2. RELATED WORK 
In the last few years, several experimental systems 

have been proposed which offer interfaces for the 

specification and construction of different types of 

three-dimensional scenes starting from 2D strokes 

[Zel96, Tol99, Mar99, Coh99, Coh00, Tol01, Iga01, 

Tai04]. Specially worthy of note is the Teddy system 
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proposed by Igarashi et al. [Iga99], which can be 

used to create simple models with spherical topology 

with only a few strokes. An initial model is created 

by drawing a simple closed curve which is then 

inflated resulting in a blob-like object such that the 

curve approximates its silhouette. Additional strokes 

can then be used to extrude protrusions, cut, bend or 

smooth the model.  

Modeling operations in Teddy are performed on a 

polygonal mesh representation of the surface. Some 

of these operations necessarily require the 

subsequent use of smoothing algorithms on the 

edited mesh. Nevertheless, some models end up with 

undesirable protuberances and wrinkles due to 

triangles with awkward characteristics. Besides, 

Teddy does not support the creation of multiple 

objects in the same scene and therefore operations to 

combine these are unavailable. 

Karpenko et al. [Kar02] deal with the problem of 

undesired surface roughness by using Variational 

Surfaces as the main representation scheme. These 

surfaces are zero-sets of a class of implicit functions 

known as RBF-based implicits. The term RBF -- or 

Radial Basis Functions -- refers to the fact that the 

basis functions used in the creation of the implicit are 

radially symmetric. The key advantage of variational 

surfaces lies in that they are naturally smooth, since 

their construction can be regarded as an energy 

minimization process. This, however, leads to other 

problems. For instance, models with creases and tips 

cannot be easily created. Also, the performance of 

the system is heavily dependent on the number of 

constraint points used in defining the implicit. This is 

worsened by the fact that model editing operations 

are performed using a great number of mesh vertices 

produced by the visualization process. 

Owada et al. [Owa03] present a system that generates 

volumetric models from 2D strokes. Besides making 

it possible to create, cut and extrude surface features, 

their approach also allows the specification of 

internal structures in the models with arbitrary 

topology. The main disadvantage of that system is 

that simple smooth surfaces can be modeled only 

with high storage and computation costs. 

Blobmaker [Ara03] is prototype system quite similar 

to the one presented by Karpenko et al. Its main 

contribution lies in the use of skeletons for model 

construction. This allows the creation of objects with 

arbitrary topology and an efficient application of 

edition operations. However, the use of constraint 

points positioned irregularly on the surface may lead 

to surface leaks after a few modeling steps. 

Recently, Tai et al. [Tai04] described a system based 

on convolution surfaces for the construction of free-

form models starting from a silhouette curve. The 

resulting shape has circular cross-section, but can be 

conveniently modified through a sketched profile or 

shape parameters. But, unlike the prototypes 

discussed above, their system employs menus and 

sliders in its modeling interface. 

3. SYSTEM DESCRIPTION 
The prototype system allows the user to quickly 

create simple 3D models by drawing 2D strokes 

directly on the system window. Once the model is 

created, it can be further edited with operations such 

as merging, extrusion and piercing, which are also 

specified by inputting additional 2D strokes. Thus, 

the execution of an operation depends solely on the 

stroke form and where it was made, making it 

unnecessary to press any button or select menu 

options. 

The user interface is composed of a design window 

and five command buttons. The init button starts a 

new modeling session, save saves the polygonal 

mesh of the modeled object, undo cancels the effects 

of the last operation, redo cancels the most recent 

undo command, and the quit button exits the system. 

Operations undo/redo work on a linear history of 

editing operations starting at the most recent 

invocation of the init command. This mechanism 

enables the user to review all operations made during 

a modeling session. 

Input strokes are drawn by dragging the mouse with 

the left button pressed. A model can be moved on the 

xy plane by positioning the mouse over the model 

and then dragging it with the right button pressed. 

Translation along the z axis is accomplished in a 

similar way, but the middle button is used instead. 

Rotation uses an arc-ball interaction style: first, the 

center of rotation is specified by clicking on the 

model with the right button, the rotation angle and 

direction is then input by dragging the mouse with 

the right button. 

Operations 
A modeling session begins with an empty design 

window. The user specifies the model silhouette to 

be constructed by drawing a simple closed curve 

with a single stroke. The system then constructs a 

plausible 3D model based on the input silhouette. 

This is accomplished by inflating the curve in both 

directions by an amount proportional to its width, 

this is, narrow areas will become thin regions while 

wide areas generate fat regions [Iga99]. Figure 1 

shows examples of input strokes and the 

corresponding 3D models constructed by the system.  

Object creation operations may be performed many 

times, thus allowing the construction of scenes with 

multiple objects (see Figure 1(d)). 
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Figure 1. (a), (b) and (c) Object creation 

examples. (d) Scenes with multiple objects. 

 

 

Figure 2. (a) Model merging. (b) Model piercing. 

 

Model merging creates a new surface that 

approximates two previously existing models which 

are then discarded. The effect is to obtain a single 

implicit representation that smoothly blends two 

given shapes. The user commands this operation by 

drawing a simple open stroke starting inside the first 

input model and ending inside the second. The two 

input models must overlap in space for this operation 

to take place. Figure 2(a) shows an example. 

The piercing operation can be used to make a hole in 

a model. The user must first draw a closed curve 

lying entirely inside the silhouette of the target 

model. This stroke can be interpreted in two ways by 

the system: either as a cue for performing a piercing 

operation or as an auxiliary element for performing 

an extrusion. At this point, the system will signal the 

ambiguity by displaying in the upper-left corner of 

the window a thumbnail image showing the result of 

the piercing operation. The user must click on this 

image in order to accept the operation (see Figure 

2(b)). Any other action will trigger the other 

interpretation. 

Extrusion is a modeling operation which allows the 

creation of a new protrusion on some part of a 

model. The extruded feature is described by a profile 

curve which is input as a simple open curve starting 

and ending inside the model's silhouette but 

extending beyond it. The area on which the 

protrusion will be “glued” can be defined either 

explicitly or implicitly. In the former case the gluing 

area is delimited by a closed curve drawn previously 

--see the preceding paragraph. In the latter case, the 

gluing area will correspond to a roughly circular 

region touching the two endpoints of the profile 

curve. Figure 3 illustrates this operation. 

 

Figure 3. Extrusion examples: (a) using a base 

curve, and (b) automatic extrusion. 

4. VARIATIONAL SURFACES 
Although a through discussion of the math of 

implicit object modeling is outside the scope of this 

paper, for the sake of completeness, we try to lay 

down a few key concepts below. The interested 

reader is referred to the excellent introduction to the 

subject in [Tur99a]. 

The term “Variational Surface” refers to the zero-set 

of a RBF-based implicit function. Such functions are 

used in the context of scattered data interpolation. 

This is a problem where, given a set of n distinct 

constraint points { } 3

21 ,,,, ℜ∈cccc nK  and a set 

of n function values{ }nvvv ,,, 21 K , it is sought a 

smooth function ℜ→ℜ3:f  such that 

ii vcf =)( , for ni K1= . The smoothness criteria 

usually involve some “deformation” energy that must 

be minimized. This entails the solution of a linear 

system with n equations. Solving this system is 

perhaps the most computationally intensive part of 

the system. We use a standard LU-decomposition 

algorithm for this task. 

A variational surface can be modeled simply by 

choosing an adequate set of constraint points and 

associated values. The most used approach requires 

the placement of n/2 points with value equal to zero -

-these are known as boundary constraint points. 

Another set of n/2 points are obtained by displacing 

each boundary point by a small amount along the 

direction of the estimated surface normal at that 

point. These points, known as normal constraint 

points, are associated with a small positive constant 

w (see Figure 4). 
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Figure 4. The normal constraint points ni are 

placed along the estimated normal vector at a 

distance d from boundary constraint points qi. 

The function f is such that f(x) < 0 for x inside the 

curve and f(x) > 0 outside the curve. 

 

Figure 5. (a) 2D input stroke. (b) Coarse 

polygonal mesh of support for surface 

specification (177 vertices and 350 triangles). (c) 

Visualization of implicit surface f = 0, using 

smooth shading and (d) the triangular mesh (3620 

vertices and 7236 triangles) 

Any standard method for visualizing implicit objects 

can be used to render the modeled surface. In most 

cases, a polygonization scheme is employed and the 

resulting set of polygons is rendered using standard 

graphics hardware. It should be noted, however, that 

the polygonization scheme should be carefully 

chosen in order to minimize the number of function 

evaluations, since these are costly operations. We use 

a hierarchical variant of the Marching Cubes 

algorithm [Lor87]. 

5. ALGORITHMS 

Creation 
The creation algorithm consists essentially in 

specifying an adequate set of constraint points based 

on the user's input silhouette curve. The constraint 

points are chosen to coincide with the vertices of a 

coarse mesh built from the input stroke using an 

inflation algorithm. Figure 5 illustrates a global idea 

of the algorithm. 

The construction of the coarse mesh follows the 

method described in [Iga99]. We found that this 

approach yields more pleasing results than the 

simpler algorithm adopted in [Kar02]. 

Merging 
The merging operation consists in creating a new 

variational surface whose shape approximates the 

union of two other given surfaces. The algorithm 

consists of eliminating constraint points which are 

contained in the intersection of the two input shapes. 

Let us call h the resulting function and f and g the 

two input functions. Then, h contains a boundary 

constraint point x of f only if g(x) > 0. Similarly, h 

contains a boundary constraint point y of g only if 

f(y) > 0. Additionally, if a boundary constraint point 

is eliminated in this process, then the corresponding 

normal constraint point is also discarded. Figure 6 

illustrates the idea. 

 

Figure 6. Merging illustration in 2D. (a) 

Constraint points positioned inside the 

intersection of the models represented for f and g 

are eliminated. (b) The new model represented by 

function h is built with points that remained after 

the elimination process. 

Piercing 
Let f be the function representing the model to be 

edited, C the 2D closed curve drawn by the user 

(represented by a simple polygon), and h the 

resulting model from this operation. Then, the 

piercing algorithm comprises the following steps: 

1. Project each vertex Ci of C on the front-facing 

triangles of the polygonized model surface. Let 

Fi be the corresponding projected point. If the 

projection of any Ci yields more than one 

projected point, the piercing algorithm is 

aborted. 
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2. Similarly, project the vertices of C on the back-

facing triangles of the polygonized model 

surface and call Bi the resulting projected 

vertices. As before, abort the algorithm if the 

more than one projection point is found for any 

given vertex. 

3. Interpolate k evenly spaced points along each 

line segment FiBi. Let us call such points Mj. In 

our implementation, k = 3, i.e., three points are 

generated between each pair of vertices Fi and 

Bi. 

4. Create an interpolating function g, which will be 

built by the creation procedure, but using Fi, Bi 

and Mj as boundary constraint points. The 

surface orientation is defined by placing an 

additional constraint point p placed at the 

approximate center of the shape and mapped to a 

negative value (-1 in our implementation). The 

position of p is estimated by computing the 

coordinate-wise average of all boundary 

constraint points. If this point does not lie inside 

curve C, then the piercing algorithm is aborted. 

5. Perform the merging operation on f and g. 

Explicit Extrusion 
This type of extrusion is defined by two strokes: a 

base curve drawn directly on the model surface 

which defines the model area affected by the edition 

process, and a profile stroke. If f is the input model 

function, then the explicit extrusion is computed as 

follows: 

1. Project the base curve on the polygonized object 

using the same rationale described in item 1 of 

the previous Sub-section. Let us use C to refer to 

this projected curve. 

2. Project the profile curve on the plane that passes 

through the base curve's barycenter and is 

parallel to the viewing plane. Let us call P the 

resulting curve. 

3. Create an interpolating function g using the 

vertices of C and P as boundary constraint 

points. Additionally, estimate normal constraint 

points by displacing the vertices of P outward. 

4. Apply the merging operation to f and g. 

Implicit Extrusion 
This operation requires only an extrusion profile 

[Kar02]. The procedure is the following: 

1. Select the silhouette vertices of the model's 

polygonized mesh vertices. A silhouette vertex is 

any vertex incident on two triangles whose 

normals point to opposite sides of the viewer 

plane. Find S and E, the silhouette vertices 

which are closest to the initial and end points of 

the profile curve, respectively. 

2. Project the extrusion profile curve on the plane 

that passes by the middle point of line segment 

SE and is parallel to the viewing plane. 

3. Create an interpolating function g using the 

vertices of the projected curve computed in the 

previous step as boundary constraint points. For 

each of these, add a normal constraint point by 

displacing it outward with respected to the 

curve. 

4. Apply the merging operation between f and g. 

6. IMPLEMENTATION DETAILS 
The prototype system was written in the C++ 

language and the OpenGL library was used to render 

the polygonized models. All example models shown 

in this paper were built by the prototype system in a 

PC equipped with a 1.3 GHz AMD-Duron processor 

and 256 MB of main memory. 

The system uses two main data structures: a scene 

representation and a command list. The scene is the 

model repository and the command list records the 

history of a modeling session (Figure 7). 

Every time a new modeling operation is issued by the 

user, a corresponding command is inserted at the end 

of the command list. Depending on the command 

type, its execution can insert and/or remove models 

from the scene. For instance, a command “merge” 

will insert a new model in the scene, and will remove 

the input models. 
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Figure 7. Main data structures of the system. 

 

Figure 8. Stages for the command determination to execute starting from a 2D stroke. 

 

Figure 9. System class hierarchy. 

 

Thus, the Undo/Redo mechanism works by scanning 

the command list in both directions replaying or 

undoing the commands appropriately. 

The system determines the command type to be 

executed in response to the input 2D strokes using 

the following three-step approach (see Figure 8): 

1. The classification stage determines the stroke 

type, i.e., simple or non-simple, closed or open. 

2. Depending on the place where the stroke was 

drawn and on its type, the inference stage creates 

the appropriate command. 

3. If an ambiguity is detected, the user is prompted 

to choose the desired outcome. The resolution 

stage then inserts the command in the list and 

executes it. 

This approach is based on the ambiguities resolution 

proposal of Alvarado et al. [Alv2001]. 

A brief description of the system class hierarchy is 

presented in Figure 9. The class attributes labeled 

p_shape are pointers to models, while the absence of 

the prefix p_ means a reference to the model itself. 

Superclass Command is an abstract class with two 

methods: execute() and undo(). Method execute() 

executes the suitable actions for a command, while 

method undo() undoes the actions done by method 

execute(). For instance, in an extrusion operation, 

undo() removes the resulting model from the 

extrusion operation shape, and inserts the unextruded 

model p_shape again. 

Create is a class that implements the model creation 

process. Extrude modifies the model pointed to by 

p_shape generating a resulting model NewShape. 
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The same happens with class Pierce. Merge 

produces a new shape NewShape starting from 

models p_shape1 and p_shape2. Rigid motions 

(rotations and translations) are implemented in class 

Transformation. 

Class Shape stores object geometry using two 

representations: f, an analytical representation of a 

RBF-based implicit function, and a triangle mesh 

generated by applying a polygonization algorithm on 

f. 

Finally, class Scene contains a (possibly empty) 

model list that is manipulated by methods insert() 

and remove(). 

 

 

Figure 10. 3D models constructed with the 

prototype system. 

7. RESULTS AND LIMITATIONS 
Figure 10 shows some models built with our 

prototype system. They are smooth surfaces of 

arbitrary topology and exhibit a loose “look” which 

is characteristic of free-hand 2D drawings. The 

interested reader may access 

http://www.lcg.ufrj.br/Projetos/ffmodelling and 

download some of these models in OFF format 

[Ros89]. 

Due to the nature of the radial basis functions used in 

the underlying representation of our system, models 

with creases or sharp features cannot be created. 

Also, sometimes the result of a modeling operation is 

unintuitive. This is the case, for instance, when two 

small objects containing relatively few constraint 

points are merged (see Figure 11). 

Another current limitation of the system lies in the 

fact that the piercing operation cannot be applied 

other than on relatively simple local geometries. For 

instance, if the intended hole would pierce the 

surface more than once, then the operation fails (see 

Figure 12(a)). In some other cases, the hole fails to 

properly pierce the model (Figure 12(b)). 

Some modeling operations may incur in a problem 

known as surface leak. This is due to the constraint 

points being distributed irregularly. Figure 13 

illustrates this problem. We deal with this problem 

by using a coarse polygonal mesh introduced in the 

model creation process (see the Creation sub-

section). 

 

Figure 11. Merging two small models may yield 

unintuitive results. 

 

Figure 12. Limitations of the piercing operation. 

(a) Piercing fails in complicated situations. (b) 

Hole may fail to pierce the surface completely. 

 

Figure 13. Surface leak problem. (a) Initial 

interpolation. (b) Extrusion. (c) Leak after 

extrusion. 

8. CONCLUSIONS AND FUTURE 

WORK 
Free-form modeling supported by RBF-based 

implicits enjoys quite a few advantages over 
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traditional approaches employing parametric 

surfaces. In particular, the generated models are 

naturally smooth and many intuitive modeling 

operations can be implemented with relative ease. Its 

foremost limitations can be attributed to the time 

complexity of the scattered point interpolation 

scheme used. 

Therefore, a natural extension of the present work 

consists of adopting more eficient interpolation 

schemes such as the FastRBF [Car01], which will 

enable our system to handle models with increased 

complexity. This, in turn, will help us cope with the 

surface leaking problems. Another venue that should 

be explored is the adoption of a more careful 

sampling strategy for the constraint points. 

The set of modeling operations available in our 

systems is somewhat limited still. We are working on 

an enhanced algorithm for the piercing operation, as 

well as other operations such as cutting and bending. 

Regarding the visualization process, we are 

experimenting with a novel polygonization approach 

with some promising results (access 

http://www.lcg.ufrj.br/Projetos/ffmodelling for 

details). 
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