
3D Free-Form Modeling with Variational Surfaces

Alvaro Cuno, Claudio Esperança, Paulo Roma Cavalcanti, Ricardo Farias
Universidade Federal do Rio de Janeiro

Programa de Engenharia de Sistemas e Computação/COPPE
 Rio de Janeiro, Brazil

{alvaro, esperanc, roma, rfarias}@lcg.ufrj.br

ABSTRACT

We describe a free-form stroke-based modeling system where objects are primarily represented by means of

variational surfaces. Although similar systems have been described in recent years, our approach achieves both a

good performance and reduced surface leak problems by employing a coarse mesh as support for constraint

points. The prototype implements an adequate set of modeling operations, “undo” and “redo” facilities and a

clean interface capable of resolving ambiguities by means of suggestion thumbnails.

Keywords

Free-form modeling, stroke based modeling, RBFs.

1. INTRODUCTION
Typical 3D modeling systems are mostly designed to

handle the creation of technical models, i.e., objects

with precise measures or which must obey well-

defined geometric rules. Such systems are not well-

suited to handle so-called free-form models, which

can be regarded as 3D models akin to 2D free-hand

sketches. One reason for this is the fact that

interaction in 3D relies almost exclusively on 2D

projections, since the only feasible alternative for

effectively working in 3D space is by employing

costly and cumbersome virtual reality gear. Thus, the

user must ultimately manipulate 2D features in order

to accomplish 3D editing tasks.

Perhaps the most salient features of any given 3D

model are its edges and silhouette lines. Igarashi et

al. [Iga99] used this observation to build a prototype

3D free-form modeler called Teddy. In contrast with

common 3D modelers, Teddy is easy and intuitive

enough to be used even by small children. It relies on

a scheme by which free-hand drawing strokes

representing silhouette lines are used to build and

modify smooth closed surfaces. Teddy also innovates

over other 3D modelers by not using the standard

WIMP (Windows, Icons, Menus and Pointers)

interface paradigm. Rather, all interaction is based

upon stroke recognition and a very small number of

command buttons.

Another key aspect that must be addressed in the

construction of stroke-based interfaces is the

resolution of ambiguities that may arise during a

modeling session. For instance, a new stroke drawn

by the user may be interpreted either as the cue for

creating a new shell or as the profile of an extrusion

operation. Our system copes with this problem by

using a suggestive interface similar to the approach

described in [Iga01]. Namely, thumbnail images

representing the alternative results are displayed in a

corner of the main display window, which must then

be clicked by the user in order to select the desired

outcome.

The remainder of this paper is organized as follows.

Section 2 presents some relevant work related to the

problem at hand. An overall description of the

proposed system is presented in Section 3 and some

concepts of the variational surfaces are introduced in

Section 4. The involved algorithms are described in

detail in Section 5. Some key aspects of the

implementation are discussed in Section 6 and some

results and limitations are presented in Section 7.

Finally, some concluding remarks and suggestions

for future work can be found in Section 8.

2. RELATED WORK
In the last few years, several experimental systems

have been proposed which offer interfaces for the

specification and construction of different types of

three-dimensional scenes starting from 2D strokes

[Zel96, Tol99, Mar99, Coh99, Coh00, Tol01, Iga01,

Tai04]. Specially worthy of note is the Teddy system

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

The Journal of WSCG, Vol.13, ISSN 1213-6964

WSCG’2005, January 31-February 4, 2005

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

9

proposed by Igarashi et al. [Iga99], which can be

used to create simple models with spherical topology

with only a few strokes. An initial model is created

by drawing a simple closed curve which is then

inflated resulting in a blob-like object such that the

curve approximates its silhouette. Additional strokes

can then be used to extrude protrusions, cut, bend or

smooth the model.

Modeling operations in Teddy are performed on a

polygonal mesh representation of the surface. Some

of these operations necessarily require the

subsequent use of smoothing algorithms on the

edited mesh. Nevertheless, some models end up with

undesirable protuberances and wrinkles due to

triangles with awkward characteristics. Besides,

Teddy does not support the creation of multiple

objects in the same scene and therefore operations to

combine these are unavailable.

Karpenko et al. [Kar02] deal with the problem of

undesired surface roughness by using Variational

Surfaces as the main representation scheme. These

surfaces are zero-sets of a class of implicit functions

known as RBF-based implicits. The term RBF -- or

Radial Basis Functions -- refers to the fact that the

basis functions used in the creation of the implicit are

radially symmetric. The key advantage of variational

surfaces lies in that they are naturally smooth, since

their construction can be regarded as an energy

minimization process. This, however, leads to other

problems. For instance, models with creases and tips

cannot be easily created. Also, the performance of

the system is heavily dependent on the number of

constraint points used in defining the implicit. This is

worsened by the fact that model editing operations

are performed using a great number of mesh vertices

produced by the visualization process.

Owada et al. [Owa03] present a system that generates

volumetric models from 2D strokes. Besides making

it possible to create, cut and extrude surface features,

their approach also allows the specification of

internal structures in the models with arbitrary

topology. The main disadvantage of that system is

that simple smooth surfaces can be modeled only

with high storage and computation costs.

Blobmaker [Ara03] is prototype system quite similar

to the one presented by Karpenko et al. Its main

contribution lies in the use of skeletons for model

construction. This allows the creation of objects with

arbitrary topology and an efficient application of

edition operations. However, the use of constraint

points positioned irregularly on the surface may lead

to surface leaks after a few modeling steps.

Recently, Tai et al. [Tai04] described a system based

on convolution surfaces for the construction of free-

form models starting from a silhouette curve. The

resulting shape has circular cross-section, but can be

conveniently modified through a sketched profile or

shape parameters. But, unlike the prototypes

discussed above, their system employs menus and

sliders in its modeling interface.

3. SYSTEM DESCRIPTION
The prototype system allows the user to quickly

create simple 3D models by drawing 2D strokes

directly on the system window. Once the model is

created, it can be further edited with operations such

as merging, extrusion and piercing, which are also

specified by inputting additional 2D strokes. Thus,

the execution of an operation depends solely on the

stroke form and where it was made, making it

unnecessary to press any button or select menu

options.

The user interface is composed of a design window

and five command buttons. The init button starts a

new modeling session, save saves the polygonal

mesh of the modeled object, undo cancels the effects

of the last operation, redo cancels the most recent

undo command, and the quit button exits the system.

Operations undo/redo work on a linear history of

editing operations starting at the most recent

invocation of the init command. This mechanism

enables the user to review all operations made during

a modeling session.

Input strokes are drawn by dragging the mouse with

the left button pressed. A model can be moved on the

xy plane by positioning the mouse over the model

and then dragging it with the right button pressed.

Translation along the z axis is accomplished in a

similar way, but the middle button is used instead.

Rotation uses an arc-ball interaction style: first, the

center of rotation is specified by clicking on the

model with the right button, the rotation angle and

direction is then input by dragging the mouse with

the right button.

Operations
A modeling session begins with an empty design

window. The user specifies the model silhouette to

be constructed by drawing a simple closed curve

with a single stroke. The system then constructs a

plausible 3D model based on the input silhouette.

This is accomplished by inflating the curve in both

directions by an amount proportional to its width,

this is, narrow areas will become thin regions while

wide areas generate fat regions [Iga99]. Figure 1

shows examples of input strokes and the

corresponding 3D models constructed by the system.

Object creation operations may be performed many

times, thus allowing the construction of scenes with

multiple objects (see Figure 1(d)).

10

Figure 1. (a), (b) and (c) Object creation

examples. (d) Scenes with multiple objects.

Figure 2. (a) Model merging. (b) Model piercing.

Model merging creates a new surface that

approximates two previously existing models which

are then discarded. The effect is to obtain a single

implicit representation that smoothly blends two

given shapes. The user commands this operation by

drawing a simple open stroke starting inside the first

input model and ending inside the second. The two

input models must overlap in space for this operation

to take place. Figure 2(a) shows an example.

The piercing operation can be used to make a hole in

a model. The user must first draw a closed curve

lying entirely inside the silhouette of the target

model. This stroke can be interpreted in two ways by

the system: either as a cue for performing a piercing

operation or as an auxiliary element for performing

an extrusion. At this point, the system will signal the

ambiguity by displaying in the upper-left corner of

the window a thumbnail image showing the result of

the piercing operation. The user must click on this

image in order to accept the operation (see Figure

2(b)). Any other action will trigger the other

interpretation.

Extrusion is a modeling operation which allows the

creation of a new protrusion on some part of a

model. The extruded feature is described by a profile

curve which is input as a simple open curve starting

and ending inside the model's silhouette but

extending beyond it. The area on which the

protrusion will be “glued” can be defined either

explicitly or implicitly. In the former case the gluing

area is delimited by a closed curve drawn previously

--see the preceding paragraph. In the latter case, the

gluing area will correspond to a roughly circular

region touching the two endpoints of the profile

curve. Figure 3 illustrates this operation.

Figure 3. Extrusion examples: (a) using a base

curve, and (b) automatic extrusion.

4. VARIATIONAL SURFACES
Although a through discussion of the math of

implicit object modeling is outside the scope of this

paper, for the sake of completeness, we try to lay

down a few key concepts below. The interested

reader is referred to the excellent introduction to the

subject in [Tur99a].

The term “Variational Surface” refers to the zero-set

of a RBF-based implicit function. Such functions are

used in the context of scattered data interpolation.

This is a problem where, given a set of n distinct

constraint points { } 3

21 ,,,, ℜ∈cccc nK and a set

of n function values{ }nvvv ,,, 21 K , it is sought a

smooth function ℜ→ℜ3:f such that

ii vcf =)(, for ni K1= . The smoothness criteria

usually involve some “deformation” energy that must

be minimized. This entails the solution of a linear

system with n equations. Solving this system is

perhaps the most computationally intensive part of

the system. We use a standard LU-decomposition

algorithm for this task.

A variational surface can be modeled simply by

choosing an adequate set of constraint points and

associated values. The most used approach requires

the placement of n/2 points with value equal to zero -

-these are known as boundary constraint points.

Another set of n/2 points are obtained by displacing

each boundary point by a small amount along the

direction of the estimated surface normal at that

point. These points, known as normal constraint

points, are associated with a small positive constant

w (see Figure 4).

11

Figure 4. The normal constraint points ni are

placed along the estimated normal vector at a

distance d from boundary constraint points qi.

The function f is such that f(x) < 0 for x inside the

curve and f(x) > 0 outside the curve.

Figure 5. (a) 2D input stroke. (b) Coarse

polygonal mesh of support for surface

specification (177 vertices and 350 triangles). (c)

Visualization of implicit surface f = 0, using

smooth shading and (d) the triangular mesh (3620

vertices and 7236 triangles)

Any standard method for visualizing implicit objects

can be used to render the modeled surface. In most

cases, a polygonization scheme is employed and the

resulting set of polygons is rendered using standard

graphics hardware. It should be noted, however, that

the polygonization scheme should be carefully

chosen in order to minimize the number of function

evaluations, since these are costly operations. We use

a hierarchical variant of the Marching Cubes

algorithm [Lor87].

5. ALGORITHMS

Creation
The creation algorithm consists essentially in

specifying an adequate set of constraint points based

on the user's input silhouette curve. The constraint

points are chosen to coincide with the vertices of a

coarse mesh built from the input stroke using an

inflation algorithm. Figure 5 illustrates a global idea

of the algorithm.

The construction of the coarse mesh follows the

method described in [Iga99]. We found that this

approach yields more pleasing results than the

simpler algorithm adopted in [Kar02].

Merging
The merging operation consists in creating a new

variational surface whose shape approximates the

union of two other given surfaces. The algorithm

consists of eliminating constraint points which are

contained in the intersection of the two input shapes.

Let us call h the resulting function and f and g the

two input functions. Then, h contains a boundary

constraint point x of f only if g(x) > 0. Similarly, h

contains a boundary constraint point y of g only if

f(y) > 0. Additionally, if a boundary constraint point

is eliminated in this process, then the corresponding

normal constraint point is also discarded. Figure 6

illustrates the idea.

Figure 6. Merging illustration in 2D. (a)

Constraint points positioned inside the

intersection of the models represented for f and g

are eliminated. (b) The new model represented by

function h is built with points that remained after

the elimination process.

Piercing
Let f be the function representing the model to be

edited, C the 2D closed curve drawn by the user

(represented by a simple polygon), and h the

resulting model from this operation. Then, the

piercing algorithm comprises the following steps:

1. Project each vertex Ci of C on the front-facing

triangles of the polygonized model surface. Let

Fi be the corresponding projected point. If the

projection of any Ci yields more than one

projected point, the piercing algorithm is

aborted.

12

2. Similarly, project the vertices of C on the back-

facing triangles of the polygonized model

surface and call Bi the resulting projected

vertices. As before, abort the algorithm if the

more than one projection point is found for any

given vertex.

3. Interpolate k evenly spaced points along each

line segment FiBi. Let us call such points Mj. In

our implementation, k = 3, i.e., three points are

generated between each pair of vertices Fi and

Bi.

4. Create an interpolating function g, which will be

built by the creation procedure, but using Fi, Bi

and Mj as boundary constraint points. The

surface orientation is defined by placing an

additional constraint point p placed at the

approximate center of the shape and mapped to a

negative value (-1 in our implementation). The

position of p is estimated by computing the

coordinate-wise average of all boundary

constraint points. If this point does not lie inside

curve C, then the piercing algorithm is aborted.

5. Perform the merging operation on f and g.

Explicit Extrusion
This type of extrusion is defined by two strokes: a

base curve drawn directly on the model surface

which defines the model area affected by the edition

process, and a profile stroke. If f is the input model

function, then the explicit extrusion is computed as

follows:

1. Project the base curve on the polygonized object

using the same rationale described in item 1 of

the previous Sub-section. Let us use C to refer to

this projected curve.

2. Project the profile curve on the plane that passes

through the base curve's barycenter and is

parallel to the viewing plane. Let us call P the

resulting curve.

3. Create an interpolating function g using the

vertices of C and P as boundary constraint

points. Additionally, estimate normal constraint

points by displacing the vertices of P outward.

4. Apply the merging operation to f and g.

Implicit Extrusion
This operation requires only an extrusion profile

[Kar02]. The procedure is the following:

1. Select the silhouette vertices of the model's

polygonized mesh vertices. A silhouette vertex is

any vertex incident on two triangles whose

normals point to opposite sides of the viewer

plane. Find S and E, the silhouette vertices

which are closest to the initial and end points of

the profile curve, respectively.

2. Project the extrusion profile curve on the plane

that passes by the middle point of line segment

SE and is parallel to the viewing plane.

3. Create an interpolating function g using the

vertices of the projected curve computed in the

previous step as boundary constraint points. For

each of these, add a normal constraint point by

displacing it outward with respected to the

curve.

4. Apply the merging operation between f and g.

6. IMPLEMENTATION DETAILS
The prototype system was written in the C++

language and the OpenGL library was used to render

the polygonized models. All example models shown

in this paper were built by the prototype system in a

PC equipped with a 1.3 GHz AMD-Duron processor

and 256 MB of main memory.

The system uses two main data structures: a scene

representation and a command list. The scene is the

model repository and the command list records the

history of a modeling session (Figure 7).

Every time a new modeling operation is issued by the

user, a corresponding command is inserted at the end

of the command list. Depending on the command

type, its execution can insert and/or remove models

from the scene. For instance, a command “merge”

will insert a new model in the scene, and will remove

the input models.

13

Figure 7. Main data structures of the system.

Figure 8. Stages for the command determination to execute starting from a 2D stroke.

Figure 9. System class hierarchy.

Thus, the Undo/Redo mechanism works by scanning

the command list in both directions replaying or

undoing the commands appropriately.

The system determines the command type to be

executed in response to the input 2D strokes using

the following three-step approach (see Figure 8):

1. The classification stage determines the stroke

type, i.e., simple or non-simple, closed or open.

2. Depending on the place where the stroke was

drawn and on its type, the inference stage creates

the appropriate command.

3. If an ambiguity is detected, the user is prompted

to choose the desired outcome. The resolution

stage then inserts the command in the list and

executes it.

This approach is based on the ambiguities resolution

proposal of Alvarado et al. [Alv2001].

A brief description of the system class hierarchy is

presented in Figure 9. The class attributes labeled

p_shape are pointers to models, while the absence of

the prefix p_ means a reference to the model itself.

Superclass Command is an abstract class with two

methods: execute() and undo(). Method execute()

executes the suitable actions for a command, while

method undo() undoes the actions done by method

execute(). For instance, in an extrusion operation,

undo() removes the resulting model from the

extrusion operation shape, and inserts the unextruded

model p_shape again.

Create is a class that implements the model creation

process. Extrude modifies the model pointed to by

p_shape generating a resulting model NewShape.

14

The same happens with class Pierce. Merge

produces a new shape NewShape starting from

models p_shape1 and p_shape2. Rigid motions

(rotations and translations) are implemented in class

Transformation.

Class Shape stores object geometry using two

representations: f, an analytical representation of a

RBF-based implicit function, and a triangle mesh

generated by applying a polygonization algorithm on

f.

Finally, class Scene contains a (possibly empty)

model list that is manipulated by methods insert()

and remove().

Figure 10. 3D models constructed with the

prototype system.

7. RESULTS AND LIMITATIONS
Figure 10 shows some models built with our

prototype system. They are smooth surfaces of

arbitrary topology and exhibit a loose “look” which

is characteristic of free-hand 2D drawings. The

interested reader may access

http://www.lcg.ufrj.br/Projetos/ffmodelling and

download some of these models in OFF format

[Ros89].

Due to the nature of the radial basis functions used in

the underlying representation of our system, models

with creases or sharp features cannot be created.

Also, sometimes the result of a modeling operation is

unintuitive. This is the case, for instance, when two

small objects containing relatively few constraint

points are merged (see Figure 11).

Another current limitation of the system lies in the

fact that the piercing operation cannot be applied

other than on relatively simple local geometries. For

instance, if the intended hole would pierce the

surface more than once, then the operation fails (see

Figure 12(a)). In some other cases, the hole fails to

properly pierce the model (Figure 12(b)).

Some modeling operations may incur in a problem

known as surface leak. This is due to the constraint

points being distributed irregularly. Figure 13

illustrates this problem. We deal with this problem

by using a coarse polygonal mesh introduced in the

model creation process (see the Creation sub-

section).

Figure 11. Merging two small models may yield

unintuitive results.

Figure 12. Limitations of the piercing operation.

(a) Piercing fails in complicated situations. (b)

Hole may fail to pierce the surface completely.

Figure 13. Surface leak problem. (a) Initial

interpolation. (b) Extrusion. (c) Leak after

extrusion.

8. CONCLUSIONS AND FUTURE

WORK
Free-form modeling supported by RBF-based

implicits enjoys quite a few advantages over

15

traditional approaches employing parametric

surfaces. In particular, the generated models are

naturally smooth and many intuitive modeling

operations can be implemented with relative ease. Its

foremost limitations can be attributed to the time

complexity of the scattered point interpolation

scheme used.

Therefore, a natural extension of the present work

consists of adopting more eficient interpolation

schemes such as the FastRBF [Car01], which will

enable our system to handle models with increased

complexity. This, in turn, will help us cope with the

surface leaking problems. Another venue that should

be explored is the adoption of a more careful

sampling strategy for the constraint points.

The set of modeling operations available in our

systems is somewhat limited still. We are working on

an enhanced algorithm for the piercing operation, as

well as other operations such as cutting and bending.

Regarding the visualization process, we are

experimenting with a novel polygonization approach

with some promising results (access

http://www.lcg.ufrj.br/Projetos/ffmodelling for

details).

9. ACKNOWLEDGMENTS
We are grateful to CNPq for providing financial

support for the first author.

10. REFERENCES
[Alv01] Alvarado, C. and Davis, R. Resolving

ambiguities to create a natural computer based

sketching environment. In Proceedings of IJCAI-

2001, pages 1365-1371.

[Ara03] Araujo, B. and Jorge, J. Blobmaker: Free-

form modeling with variational implicit surfaces.

In 12o Encontro Portugues de Computação

Grafica (EPCG) - 2003.

[Car01] Carr, J. C., Beatson, R. K., Cherrie, J. B.,

Mitchell, T. J., Fright, W. R., McCallum, B. C.,

and Evans, T. R. Reconstruction and

representation of 3D objects with radial basis

functions. In Proceedings of SIGGRAPH 2001,

pages 67-76. ACM Press. 2001.

[Coh00] Cohen, J. M., Hughes, F., and Zeleznik, R.

C. Harold: A world made of drawings. In

Proceedings of NPAR 2000, pages 83-90. ACM.

[Coh99] Cohen, J. M., Markosian, L., Zeleznik, R.

C., Hughes, J. F., and Barzel, R. An interface for

sketching 3D curves. In Proceedings of

Symposium on Interactive 3D Graphics, pages

17-21. ACM Press.

[Din02] Dinh, H. Q., Turk, G., and Slabaugh, G.

Reconstructing surfaces by volumetric

regularization using radial basis functions. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 24(10):1358-1371, 2002.

[Iga01] Igarashi, T. and Hughes, J. A suggestive

interface for 3D drawing. In Proceedings of ACM

UIST'01, pages 173-181, 2001. ACM Press.

[Iga99] Igarashi, T., Matsuoka, S., and Tanaka, H.

Teddy: A sketching interface for 3D freeform

design. In Proceedings of SIGGRAPH 99, pages

409-416. ACM Press.

[Kar02] Karpenko, O., Hughes, J. F., and Raskar, R.

Free-form sketching with variational implicit

surfaces. Computer Graphics Forum, 2002.

[Lor87] Lorensen, W. and Cline, H. Marching cubes:

a high resolution 3D surface construction

algorithm. Computer Graphics, 21(4):163-169,

1987.

[Mar99] Markosian, L., Cohen, J. M., Crulli, T., and

Hughes, J. Skin: a constructive approach to

modeling free-form shapes. In Proceedings of

SIGGRAPH 99, Annual Conference Series, pages

393-400. ACM Press, 1999.

[Owa03] Owada, S., Nielsen, F., Nakazawa, K., and

Igarashi, T. A sketching interface for modeling

the internal structures of 3D shapes. In

Proceedings of 3rd International Symposium on

Smart Graphics, pages 49-57. Springer, 2003.

[Ros89] Rost, R. J. (1989). A 3D object file format.

http://www.dcs.ed.ac.uk/home/mxr/gfx/3d/off.spec.

[Tai04] Tai, C., Zhang, H., and Fong, C. Prototype

modeling from sketched silhouettes based on

convolution surfaces. Computer Graphics Forum,

23(1):71-83, 2004.

[Tol99] Tolba, O., Dorsey, J., and McMillan, L.

Sketching with projective 2D strokes. In

Proceedings of the 12th annual ACM symposium

on UIST, pages 149-157, 1999.

[Tol01] Tolba, O., Dorsey, J., and McMillan, L. A

projective drawing system. In Proceedings of

2001 ACM Symposium on Interactive 3D

Graphics, pages 25-34, 2001.

[Tur99a] Turk, G. and O'Brien, J. Shape

transformation using variational implicit

functions. In Proceedings of SIGGRAPH 99,

pages 335-342, 1999.

[Tur99b] Turk, G. and O'Brien, J. Variational

implicit surfaces. Technical Report, Georgia

Institute of Technology, 1999.

[Tur02] Turk, G. and O'Brien, J. Modelling with

implicit surfaces that interpolate. ACM

Transactions on Graphics, pages 855-873, 2002.

[Zel96] Zeleznik, R. C., Herndon, K. P., and Hughes,

J. F. SKETCH: An interface for sketching 3D

scenes. In SIGGRAPH 96 Conference

Proceedings, pages 163-170, 1996

16

	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	G03-full.pdf
	F53-full.pdf

