
Broadcast GL: An Alternative Method for Distributing
OpenGL API Calls to Multiple Rendering Slaves

Tommi Ilmonen Markku Reunanen Petteri Kontio
Helsinki Univ. of Technology Helsinki Univ. of Technology Helsinki Univ. of Technology

Telecommunications Software Telecommunications Software Telecommunications Software
and Multimedia Laboratory and Multimedia Laboratory and Multimedia Laboratory

Tommi.Ilmonen@tml.hut.fi marq@tml.hut.fi jpkontio@tml.hut.fi

ABSTRACT

This paper describes the use of UDP/IP broadcast for distributing OpenGL API calls. We present an overview

of the system and benchmark its performance against other common distribution methods. The use of network

broadcasts makes this approach highly scalable. The method was found effective for applications that need to

transmit changing vertex arrays or textures frequently.

Keywords
Distributed rendering, OpenGL, Virtual Reality

1 INTRODUCTION

There are numerous situations where one needs to ren-

der the same 3D graphics divided to multiple displays

in real time. Figure 1 shows a typical example of a

virtual reality (VR) environment with multiple video

walls.

Figure 1. A VR setup with multiple walls

Traditionally such situations have been handled by us-

ing a single high-performance computer with several

graphics outputs. Recently a number of projects have

utilized low-cost PC hardware for this purpose — us-

ing a cluster of commodity PCs to render all the walls.

A similar change from an SGI Onyx2 server to a clus-

ter of commodity PCs was the motivation behind the

development of Broadcast GL as well.

2 BACKGROUND

Typically the most efficient way to accomplish high

frame rates is to write applications that can be dis-

tributed and only send minimal amount of application

data to the renderers. In these cases the application

copies must produce identical behavior in all situa-

tions, which requires the programmer to write the ap-

plication to support multiple hosts.

This is difficult if the application has a complex inter-

nal logic with plenty of user interaction. An alterna-

tive method of distributing the application is to spread

the graphics API calls (OpenGL, DirectX) to multiple

renderers. This is typically rather easy, since a nor-

mal 3D application already uses those calls to render

its graphics. If these API calls can be distributed ef-

fectively to multiple rendering hosts, there is no need

to rewrite the application. Since our software uses

OpenGL, we are interested in distributing the OpenGL

calls (glVertex3f, glBegin, glEnd etc.).

There are already several methods to spread OpenGL

calls to multiple renderers. Staadt et al. have written

an overview of different methods and analyzed their

performance[Sta03a].

65



• GLX is the standard that is used in most UNIX-

based operating systems that support the X win-

dowing system [Wom98a]. GLX-based cluster-

ing integrates seamlessly to the windowing envi-

ronment and it works without additional toolk-

its. For efficient multi-display rendering the ren-

derer must be parallelized with one rendering

thread per display pipe. There are toolkits that

manage GLX contexts and set up projections

matrices, for example VR Juggler [Jus98a].

• Chromium is a distributed 3D graphics system

that uses the OpenGL-API to render graphics

on multiple slaves [Hum02a]. Chromium op-

timizes the network usage by culling primitives

before sending them over the network.

• Multi-display systems offered by Hewlett-

Packard use a broadcasting method similar to

ours. The method is briefly described in [Lef]

but no benchmarks or in-depth details are pro-

vided. In addition to multi-display systems the

architecture has been used in single-display en-

vironments to distribute the rendering load be-

tween multiple computers.

3 BROADCAST GL

Both GLX and Chromium transmit the rendering com-

mands over a unicast TCP/IP connection. This ap-

proach is far from optimal if the same rendering com-

mands need to be spread to multiple slaves. In this case

both Chromium and GLX waste network resources by

sending the information many times over. An example

of such situation is a cluster of PCs rendering multiple

walls of a VR installation: all the walls receive almost

identical rendering commands, apart from the projec-

tion matrices.

Broadcast GL (BGL) solves this problem by using a

broadcast technique to transmit the OpenGL API calls.

As a result the BGL needs to send the graphics only

once and each slave gets a copy of the rendering infor-

mation.

Besides taking full advantage of the network re-

sources this approach also simplifies the programming

work, while the application can be completely single-

threaded and still take full advantage of the multiple

slaves. This is a relevant detail since most applica-

tion programmers prefer writing non-threaded code.

Potentially difficult problems such as thread synchro-

nization and interlocking are avoided.

With the approach chosen in BGL we can implement

only a subset of the OpenGL API. In practice the func-

tions that return some data from the OpenGL system

are currently only partially implemented. In theory

all OpenGL functionality can be implemented, but the

implementation of certain calls would be inefficient.

The subset that is implemented works by caching a

copy of the data in the application machine.

Due to its architecture BGL has strict requirements

about the underlying network architecture. First of the

network must support UDP multicast or broadcast. In

practice this rules out wide-area networks. The net-

work should also be fast and reliable. In practice these

limitations imply the use of a cluster in local-area net-

work with a number of computers connected via a

switch.

4 IMPLEMENTATION

BGL uses a client-server architecture (following

Staadt’s taxonomy [Sta03a]). The application func-

tions as a client that broadcasts BGL command byte

stream (binary encoded OpenGL API calls) to the

rendering servers over a UDP/IP socket. The slaves

are independent rendering applications that receive the

BGL byte stream and convert it back into OpenGL API

calls. As a return channel each slave has a dedicated

TCP/IP connection. BGL overview is shown in Fig-

ure 2.

Figure 2. The networking architecture used in

BGL. The rendering slaves can be either in the

same machine or distributed across the network.

From the application perspective, BGL is little more

than an OpenGL implementation, having the network

transmission hidden behind the standard OpenGL API.

Special BGL calls are used when OpenGL does not de-

fine calls that are necessary for applications. Examples

of these needs are window handling, buffer swaps and

selecting the rendering slave.

The BGL encoder library consists of functions

that implement the OpenGL API (glVertex3f,

glNormal3f etc.). The encoding functions store a

number of bytes into a local data buffer. The data

buffer can contain as much data as the system can fit

into a single UDP packet. Once the packet is filled it

is sent to the network.

66



Since OpenGL applications occasionally need to read

back variables from the OpenGL implementation,

BGL encoder keeps a local copy of some states. In

practice this means that the current transformation ma-

trices are kept in the encoder and they can be queried

with normal glGetFloatv, glGetDoublev and

glGetIntegerv functions.

BGL Specific Functions

The are also special BGL functions, such as OpenGL

initialization and buffer swaps, that are needed to con-

trol behavior that is outside the basic OpenGL API,

but needed by all applications. Below is a list of the

BGL-specific functions that are visible to the applica-

tion programmer.

• bglInit(const char * address) —

This function initializes the BGL data transmis-

sion layer and connects to the slaves using the

argument address.

• bglQuit() — This function shuts down the

slaves and the data transmission layer.

• bglSwapBuffers() swaps the OpenGL

buffers.

• bglCreateWindow(int flags) creates

an OpenGL window .

• bglResizeWindow(int w, int h) re-

sizes the OpenGL window.

• bglMoveWindow(int w, int h) moves

the OpenGL window.

• bglSelectRenderer(int id) instructs

the selected slave(s) to listen to the broadcast.

• bglDeSelectRenderer(int id) in-

structs the selected slave(s) to ignore the broad-

cast.

A typical way to use the “select” and “deselect” func-

tions is in setting separate transformations for each

renderer, for example:

// No one is listening now:

bglDeSelectRenderer(-1);

// Slaves with id 1 are listening:

bglSelectRenderer(1);

//Slaves with id 1 and 2 are listening:

bglSelectRenderer(2);

// Translate the geometry in slaves 1 and 2:

glTranslatef(0, 0, 1);

// All slaves are listening again

bglSelectRenderer(-1);

// Now we can render the scene

Send & Return Channels

When sending data over a socket we have to choose

between UDP/IP and TCP/IP. UDP is a connection-

less protocol that does not guarantee that all data that

is transmitted gets to target, nor does it guarantee that

the data arrives in the correct order. TCP/IP in turn

provides a reliable connection, but with higher con-

nection overhead.

In BGL the OpenGL data is sent over a UDP/IP socket

since UDP offers lightweight broadcast and multicast

features. TCP is used as the return channel protocol

since return data rates are much lower, meaning that

we can use a slower and more reliable connection.

Replies

If the application sends data at an excessive rate to the

slaves it can overflow their UDP buffers, i.e. data ar-

rives faster than it can be consumed. To avoid this

the BGL requests replies from the slaves at fixed in-

tervals (equal to ”buffer flush” in [Lef]). The slaves

then answer that they have received the reply request

and once BGL has received all the replies it can con-

tinue transmission. For example BGL might send a

reply request after sending 16 packets. After trans-

mitting the request, BGL will send a few more pack-

ets and then collect the replies from all the slaves. If

the replies were collected immediately the renderers

would have to empty their buffers before they could

receive more data. This asynchronous approach helps

us keep a buffer of rendering content in the slaves, re-

sulting in higher performance.

Figure 3. Asynchronous reply mechanism.

The reply system is also used when the appli-

cation calls functions glFlush, glFinish or

bglSwapBuffers. Each of these functions return

only after all the slaves have replied. In the case of

bglSwapBuffers the system first makes sure that

all the slaves have done their rendering work and then

issues a command to swap buffers.

67



Scalability

In BGL the data transfers are highly asymmetric. To

render one frame the application may send out sev-

eral megabytes of data, while the renderers’ replies

use only a fraction of that. The following calcula-

tion, which matches the benchmark setup below, gives

a real-world example of the asymmetry.

When using UDP packets with 4096 bytes per packet

and UPD buffers of 256 kilobytes, BGL application

sends reply queries to the renderers at every 19 pack-

ets, resulting in 77824 bytes per reply request. Each

reply packet uses 4 bytes, thus the downstream traf-

fic takes roughly 19000 times more bandwidth. Since

each renderer requires a separate reply connection this

ratio is overly optimistic, but even with 1000 render-

ers the application sends out 19 times more data than it

receives. The amount of data sent does not depend on

the number of slaves, unless the slaves are controlled

individually, as was done in the transformation exam-

ple above. As long as the used network is reliable,

new renderers can be added with minimal performance

loss.

Recovering from Transmission Errors

UDP connections are inherently unreliable. The pack-

ets can be lost or they may arrive in the wrong order to

the recipient. Altough we are using a very reliable net-

work both error cases do occur. Since OpenGL does

not tolerate missing commands these errors must be

corrected in the transport layer. Both TCP and UDP

guarantee the correctness of the transmitted packets,

so there’s no need to build an additional bit-level error

correction mechanism.

BGL uses the TCP return channel to report missing

packets. When a renderer receives a packet with un-

expected counter value it puts the packet to a store the

notifies the master that a packet was missing. The mas-

ter in turn keeps the latest UDP packets in a ring-buffer

and retransmits the missing packet. This error correc-

tion is not enough in the cases where a renderer loses

multiple packets (including packets with reply com-

mands). To handle these situations the master retrans-

mits packets automatically if the renderers do no reply

within a given time interval.

Together these strategies guarantee that the transmis-

sion errors are corrected as long as at least some

amount of packets reach the renderers. We have tested

the system by intentionally losing packets. The error

recovery works correctly even when 80 % of all trans-

mitted packets are lost.

Internal Structure

BGL is composed of two parts. The application library

(libBGL) implements the OpenGL API and the BGL-

specific extra functions. This library contains OpenGL

encoding functions and data transport layer. The ren-

derer is a stand-alone application that also includes the

transport layer and OpenGL decoding functions.

The OpenGL API has been originally designed to be

easily streamable. This makes encoding and decoding

the API calls fairly easy. In BGL most OpenGL func-

tions are defined with one-line macros. Writing the

encoding and decoding layers took only two days.

The data transport layer is more demanding for the

programmer. Finding the most effective way to use

network resources took more time than implementa-

tion of decoding library. This part is also more eas-

ily broken by networking anomalies that may not have

been present when the system was first tested.

5 BENCHMARKS

BGL was benchmarked against Chromium and a

GLX-based graphics distribution mechanism. The

OpenGL distribution platforms are detailed below:

1. GLX-based threaded renderer: This system

uses a separate rendering thread for each

X11 display, thus rendering two windows per

thread. This system is similar to the VR Jug-

gler OpenGL application framework [Jus98a].

Based on informal tests, our GLX-distribution

system has performance characteristics similar

to the VR Juggler implementation.

2. Chromium: We used Chromium version 1.7.

Chromium’s tilesort SPU was used for the

graphics distribution and the render SPU for

viewing the graphics. The tilesort SPU culls

polygon faces before sending rendering com-

mands to the network, thus decreasing the net-

work load.

3. BGL: The application was linked with the BGL

encoder library and a small projection man-

agement library. We used a normal broadcast

address 10.0.0.255:10001 to deliver the

broadcast from the application to the renderers.

All the described methods were tested in the following

three test cases:

1. Display of a real-world architectural model, ren-

dered with display lists. This benchmark repre-

sents a typical static model, for example a back-

ground scene in computer games. A part of the

scene is shown in Figure 4.

68



2. Display of a real-world architectural model, ren-

dered without display lists, i.e. in immediate

mode. This benchmark represents volatile data

sets — for example objects under deformation

cannot be compiled into display lists.

3. Texture streaming. This benchmark represents a

case where texture animation is made by stream-

ing a new (sub)texture into the hardware at each

frame. Such approach is commonly used when a

video stream is embedded into OpenGL graph-

ics. In our test the size of the RGB texture was

320 by 240 pixels (225 kB). A screenshot of this

test is in Figure 5.

Figure 4. A screenshot of the architectural scene

used in tests 1 and 2. The scene has 96733

triangles. All lighting is done with texture maps.

Figure 5. A screenshot of the video player test

software.

Tests 2 and 3 are bandwidth-intensive, while test 1

stresses the graphics pipeline. During the tests we

measured the following metrics:

1. Frame rate (frames per second, fps)

2. Network traffic in the application computer

(megabytes per second)

3. Application computer load (percentage of CPU

resources used)

In the test the scene was rendered on four render-

ing computers. Each computer displayed two separate

OpenGL windows, representing the left and right eye

views. The window size was 1024 x 1024 pixels. Each

window had a different projection matrix, matching a

typical four-wall Cave setup similar to Figure 1. Ad-

ditional tests were run on an SGI Onyx2 system and a

single desktop PC. The SGI rendered the graphics into

four stereo windows resulting in a render load equal to

the PC cluster tests. These tests were ran to compare

the performance of the PC cluster to the retiring sys-

tem. The stand-alone PC in turn rendered the graphics

into two windows, providing an estimate of the highest

achievable frame rate.

The test setup was composed of five Linux-based com-

puters — an application PC and four rendering ma-

chines. Each computer had a 2.8 GHz Intel P4 CPU,

an integrated gigabit Ethernet controller and an NVidia

FX5900 graphics card. The PCs were running Linux

kernels from the series 2.4 and 2.6. The SGI-based

system was an Onyx2 with two IR2 pipelines and eight

200 MHz R10000 CPUs. The test results have been

collected to Tables 1–3.

Test Architecture GLX Chromium BGL

1 1 GB 2.8 37 19

100 MB 1.62 46 15

PC/Local 16 - -

SGI/Local 1.3 - -

2 1 GB 0.87 2.4 4.2

100 MB 0.10 0.32 0.82

PC/Local 24 - -

SGI/Local 1.8 - -

3 1 GB 7.5 10 105

100 MB 3.1 1.8 24

PC/Local 150 - -

SGI/Local 20 - -

Table 1. Frame rates for three tests in gigabit and

100 Megabit networks (frames per second).

Test Network GLX Chromium BGL

1 1 GB 25 4 0.48

100 MB 0.38 5.3 0.47

2 1 GB 95 87 55

100 MB 12 12 12

3 1 GB 7.5 46 29

100 MB 6.4 11 9

Table 2. Network traffic (Megabytes transmitted

per second).

69



Test Network GLX Chromium BGL

1 1 GB 44 20 2

100 MB 6 20 2

2 1 GB 70 45 35

100 MB 10 10 1.5

3 1 GB 6 24 18

100 MB 6 7.5 5

Table 3. Application computer CPU load.

The CPU load of the application is split into user-space

load and kernel-space load. The CPU loads were mea-

sured with ”top” -program that is part of standard Unix

command set. This measurement is complicated by the

fact that the definition of CPU load is not an obvious

measure on modern hyper-threading CPU’s. In this

case we took the CPU idle time from ”top” and calcu-

lated the application load from it. The idle time rep-

resents how much time the CPU has left to run other

applications. These load values are shown in table 3.

While the above benchmarks measure run-time perfor-

mance there are other aspects that are important for the

application programmer as well. A summary of these

aspects has been collected to Table 4.

System GLX Chromium BGL

Network Poor Moderate High

scalability

OpenGL Good Moderate Moderate

compliance

Ease of Poor* Good Good

programming

Table 4. Qualitative differences between different

approaches

* Requires threaded rendering into multiple GLX

contexts.

It is worth noting that the test setup differs from

Staadt’s. We are running a single centralized applica-

tion with distributed graphics, while Staadt’s tests also

included distributed applications [Sta03a].

In addition to the system benchmarks we ran a small-

scale scalability test. Test 2 (immediate mode render-

ing of the architectural model) was run on one to four

rendering computers. Tests 1 and 3 were discarded be-

cause they were too dependent on pure rendering or

network speed and would not have given meaningful

results about scalability. The graph shown in Figure 6

displays the frame rates obtained in this test.

Figure 6. The effect of added rendering computers

on the frame rate.

Analysis of the Benchmarks

The benchmarks above show that BGL, in many

test cases, outperforms both the standard GLX-based

graphics distribution and Chromium. In these tests

Chromium could often use its culling algorithms to

lower the network traffic. If one thinks about the usage

in a fully immersive six-wall Cave, this culling can-

not eventually do more than ensure that the same data

is not sent from the application to the renderers more

than once. Since there are two windows with nearly

identical views for each wall, the vertex data will be

sent twice unless the software can recognize the over-

lap.

In test 1 Chromium did extremely well and surpassed

even the local GLX rendering. This is apparently due

to its heavy culling methods that could discard even

complete display lists. BGL proved its scalability by

providing approximately the same frame rate as the

single PC.

BGL was clearly the fastest system in tests 2 and 3, de-

livering higher frame rates with lower CPU load and

lower network stress. In test 3 both Chromium and

GLX were forced to send the texture eight times to the

renderers, resulting in roughly eight times more data

traffic per frame.

The 100 Megabit Ethernet was easily saturated by all

systems. Surprisingly, none of the systems could sat-

urate the gigabit Ethernet in any of the test cases. It

seems that the computers have trouble moving data

over the network at such high rates. Also it seems that

in the renderer computers the OpenGL usage has neg-

ative effect on the networking performance, probably

because both require bus resources that are mutually

exclusive.

The performance of the GLX-based distribution was in

most cases disappointing. Especially, one would ex-

pect that GLX-distribution would run well with dis-

play lists, but this was not the case. This problem

70



might be caused by networking issues or problems

within NVidia’s GLX implementation. We have ex-

perienced similar performace problems when using

VR Juggler in our test configuration. When run lo-

cally the GLX code worked fine, both in the SGI tests

and in the stand-alone PC test.

When we compare the performance of the network

rendering against rendering the same graphics locally

we can see that with display lists (test 1) the local ren-

dering is in fact slower. In immediate mode (test 2) the

local rendering is significantly faster while the video

streaming (test 3) application is 50 % faster when ran

locally.

The BGL-based PC-cluster outperforms our old SGI-

system in all the tests. While this information is

not particularly surprising, it created significant con-

fidence to the new platform. The scalability of the sys-

tem is good (Figure 6). In gigabit network the frame

rate dropped only 15 % when the number of renderers

was changed from 1 to 4. In the fully saturated 100

MB network the number of renderers made no differ-

ence.

6 DISCUSSION

As the BGL implementation matures, it allows for sev-

eral interesting applications. Because of the scalabil-

ity of the approach, large rendering clusters can be

built without significantly increasing the load of the

the application computer. The broadcast graphics can

be viewed across the network in different visualization

devices, such as an ordinary monitor, head-mounted

display or a Cave, whereas for the application code the

final output device bears very little importance. The

method somewhat resembles the traditional radio and

TV broadcasting and could be even used for similar

purposes in the form of a "3D television". Large-scale

broadcasting for various bandwidths cannot be han-

dled by a single computer, thus creating a need for a

proxy or other middleware solution.

The current BGL implementation can store the

OpenGL command stream to a file. This feature was

created mostly as a debugging aid, but it could also

be used as a 3D video format. The resulting files can

readily be compressed with ordinary tools such as gzip

and even further with more advanced techniques such

as texture compression.

In its current state, BGL features only a bare-bone

OpenGL implementation. Full OpenGL compliance

is in practice difficult to achieve, mainly because the

OpenGL state is distributed over a cluster of nodes.

Frequent state queries from the nodes is also likely to

cause performance loss due to the stalling of the ren-

dering stream.

At the moment one badly behaving renderer can stall

the whole cluster. This clearly means that the synchro-

nization should be studied further. We suspect that

once the network latency and synchronization are han-

dled better, the overall throughput of the system will

increase considerably. The symmetry of the rendering

computers is vital to good performance since the slow-

est node effectively dictates the overall frame rate.

The tests that were conducted did not incorporate gen-

locking or any synchronization to display updates.

This choice was intentional because we wanted to

measure the maximum throughput possible with each

of the systems. In practise such constraints are often

present and slow down the frame rate. For example a

double-buffered 100 Hz sychronized display typically

limits the steady frame rates to 100, 50, 25 FPS and so

on. Hardware genlocking should not affect the frame

rate but a software-based approach such as SoftGen-

Lock [All03a] does because it introduces additional

system load.

7 CONCLUSIONS

We have presented and evaluated an alternative

method to distribute graphics API calls to multiple ren-

dering computers. By using the broadcast/multicast

networking we have managed to ensure the same

graphics data is not sent more than once across the

network, regardless of the number of renderers. The

current BGL implementation is far from perfect and

we will continue to improve it.

In the light of the benchmark results it seems obvious

that none of the OpenGL distribution systems is in all

cases better than the others. Rather, the best choice

depends on the application, computers used and the

network characteristics. Obviously the best use cases

for BGL are data-intensive applications that require

good scalability to multiple displays. Furthermore, the

simple single-thread application logic allows for easy

adaptation of existing desktop OpenGL software.

References

[All03a] Allard, J., Gouranton, V., Lamarque, G., Melin,

E., Raffin, B. Softgenlock: Active Stereo

and Genlock for PC Cluster. in Proceedings

of the Joint IPT/EGVE’03 Workshop, Zurich,

Switzerland, May 2003.

[Hum02a] Humphreys, G., Houston, M., Ng, R., Frank,

R., Ahern, S., Kirchner, P.D., Klosowski, J.T.

Chromium: A Stream-Processing Framework

for Interactive Rendering on Clusters. in ACM

71



Transactions on Graphics (TOG) , Proceed-

ings of the 29th annual conference on Com-

puter graphics and interactive techniques, Vol-

ume 21, Issue 3, 2002.

[Jus98a] Just, C., Bierbaum, A., Baker, A., and Cruz-

Neira, C. VR Juggler: A Framework for Vir-

tual Reality Development. 2nd Immersive Pro-

jection Technology Workshop (IPT98), Ames,

Iowa, May 1998.

[Lef] Lefebre, K. An Exploration of the Architecture

Behind HP’s New Immersive Visualization So-

lutions. Hewlett-Packard Company.

[Sta03a] Staadt, O.G., Walker, J., Nuber, C., Hamann, B.

A survey and performance analysis of software

platforms for interactive cluster-based multi-

screen rendering. in Proceedings of the work-

shop on Virtual environments 2003.

[Wom98a] Womack, P., Leech, J. (eds.). OpenGL Graph-

ics with the X Window System. Version 1.3,

October 19, 1998.

72


	IPC_2005.pdf
	!_J_WSCG_2005_Vol_13_No_1-3_Numbered_Final.pdf
	Local Disk
	StampIt - A Stamping Utility for PDF Documents

	J_WSCG_2005_No_1-3.pdf
	L07-full.pdf
	D67-full.pdf
	G03-full.pdf
	F53-full.pdf



