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ABSTRACT
In this paper we develop a method to parameterize tubular surfaces onto the cylinder. The cylinder can be seen

as the natural parameterization domain for tubular surfaces since they share the same topology. Most present

algorithms are designed to parameterize disc-like surfaces onto the plane. Surfaces with a different topology are cut

into disc-like patches and the patches are parameterized separately. This introduces discontinuities and constrains

the parameterization. Also the semantics of the surface are lost. We avoid this by parameterizing tubular surfaces

on, their natural domain, the cylinder. Since the cylinder is locally isometric to the plane we can do calculations

on the cylinder without loosing efficiency. For speeding up the calculation we use a progressive parameterization

technique, as suggested in recent literature. Together, this results in a robust, efficient, continuous, and semantics

preserving parameterization method for arbitrary tubular surfaces.
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1. INTRODUCTION
Surface parameterization is a technique to convert a

mesh, described using primitives like triangles, quadri-

laterals, or polygons, into a parametric description of

the surface. In most applications the surface is two-

dimensional and it is embedded in a three dimensional

space. Thus, a parameterization is a map from a two-

parameter domain onto the three-coordinate surface.

During the last ten years, parameterization has be-

come an important topic in computer science and

especially in computer graphics. It has a variety

of applications such as: texture-mapping [LPRM02,

SGSH02], rendering acceleration [GGH02], morph-

ing [Ale02, ZSH00], remeshing and level of detail

[EHL+95, PH03, AMD02], surface fitting [BGK95],

surface description [SD02] and form analysis [Sty01].

Most of the techniques in the literature are concerned

with the parameterization of topological discs. The
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parameterization of surfaces of other topology is ad-

dressed by cutting the surface into one or more patches,

of disc topology, and parameterizing the patches sep-

arately. This cutting constrains the parameterization

process from the beginning and it also introduces dis-

continuities into the parameterization. For some ap-

plications, like global form analysis, morphing, and

surface fitting, this is undesirable. The only way to

parameterize a surface of non-disc topology, without

cutting it, is by parameterizing it on a domain that has

the same topology as the surface. For example, sur-

faces with spherical topology can be parameterized on

the sphere [PH03,GGS03,GWC+03]. In [KS04] and

[SAPH04] triangle surfaces are parameterized onto

other triangle surfaces that share the same topology.

We are interested in parameterizing surfaces with

cylindrical topology onto the cylinder. This is done

by Zöckler et al. in their paper on morphing [ZSH00],

where they parameterize the cylindrical surface in two

stages: first they cut the surface and parameterize it

onto the plane, and then the parameterization is glued

back together and optimized on the cylinder. Since

the surface is cut, distortions are introduced in the first

optimization and therefore they have to optimize the

parameterization a second time. For complex surfaces

this method might not find the optimal parameteriza-

tion. Our algorithm is different; we directly param-

eterize onto the cylinder without cutting the surface.

This way our algorithm is capable of parameterizing
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Figure 1: Some examples of tubular surfaces.

virtually any tubular surface with low distortion.

Goal The goal of this work is to find a one-to-one

mapping from the surface of the cylinder to an arbi-

trary tubular surface. With ‘tubular surface’ we mean

any elastic deformation of a sphere with two holes

(boundaries), see figure 1 for a number of examples.

The upper boundary of the cylinder should map to

one of the boundaries of the tubular surface and the

lower boundary of the cylinder should map to the other

boundary of the tubular surface. The interior of the

surface of the cylinder then has to be mapped to the

interior of the tubular surface. This is illustrated in fig-

ure 2.

There are an infinite number of maps possible between

the cylinder and a tubular surface, but we desire a map

that is a balanced tradeoff between the following two

properties. First, we require that the semantics of the

cylinder are ported to the tubular surface. By this we

mean that axial lines on the cylinder are mapped to

lines that run in the axial direction on the tubular sur-

face and that radial curves of the cylinder are mapped

to curves that run in the radial direction on the tubular

surface (see figure 3). Second, we also want that a uni-

form distribution of points on the cylinder is mapped

to a quasi uniform distribution of points on the tubular

surface. The results in section 4. will show that mini-

mizing the stretch [SGSH02] of the map, will produce

a map with a balanced tradeoff between the semantics

and the uniformity property.

The remainder of this paper is divided into the follow-

ing sections: Section 2. contains some theory about

parameterizations and the cylinder that is important

for the rest of the paper. Section 3. explains our ap-

proach to the parameterization of tubular surfaces on

the cylinder. Section 4. shows some results obtained

with an implementation of our technique. Some sur-

faces together with their cylindrical parameterization

and also some cylindrical geometry images are shown.

Section 5. concludes the paper and suggests directions

of future research.

Figure 2: The upper boundary of the cylinder is

mapped to the red boundary of the tubular surface and

the lower boundary is mapped to the blue boundary of

the tubular surface. The interior of the cylinder surface

is mapped to the (grey) interior of the tubular surface.

Figure 3: Semantics of the cylinder: Axial and radial

lines on the cylinder are mapped to axial and radial

lines on the tubular surface.

2. THEORY
This section introduces some basic differential geome-

try notions and explains some of the geometric proper-

ties of the cylinder, which are important to understand

the rest of the paper. Most of this can be found in

an elementary differential geometry book, for exam-

ple [dC76].

Parameterization Informally, a parameterization

of a surface M is a bijective map from a domain D
to the surface M. Mostly, D is a simple mathemat-

ical surface, for example the plane [SGSH02] or the

sphere [PH03].

More formally, a parameterization of the surface M,

on the domain D, is a homeomorphism Φ between D
and M. The domain D is chosen so that it is home-

omorphic to M. This leaves us to explain the terms

homeomorphic and homeomorphism: suppose D and

M are topological spaces, and Φ is a function from D
to M. Then Φ is a homeomorphism iff the following

holds:

• Φ is a bijection;

• Φ is continuous;

• the inverse function Φ−1 is continuous.
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Figure 4: The right circular cylinder of radius r and

height h. A point p on the lateral surface of the cylin-

der is defined by a cylindrical coordinate pair (u, v).

If there exists a homeomorphism Φ : D �→ M, then

M is said to be homeomorphic to D; D is also home-

omorphic to M, since Φ−1 is a homeomorphism.

In our specific setting of parameterization of tubular

surfaces, we choose D as the surface of the cylinder

andM the surface of the tubular object. We say that Φ

is a cylindrical parameterization of the tubular surface

M.

So, in this paper we are concerned with the automatic

construction of such a homeomorphism for any sur-

face homeomorphic to the cylinder.

The Right Circular Cylinder There are many def-

initions for the concept cylinder, but we choose a spe-

cific one: the right circular cylinder. This cylinder is

depicted in figure 4. The base of the right circular

cylinder is a circle of radius r and the centers of the

sections form a straight line perpendicular to the base

of the cylinder. We choose the lateral surface of the

cylinder as our parameterization domain D; it is pa-

rameterized by c : U �→ R
3:

U = {(u, v) ∈ R
2|0 ≤ u < 1, 0 ≤ v ≤ 1}

c(u, v) = (r cos(2πu), r sin(2πu), v). (1)

Geodesic Triangulation of the Cylinder In this

work we are only concerned with the parameterization

of piecewise linear triangle surfaces. This has the in-

teresting side effect that we do not have to calculate

the parameterization Φ for every point explicitly. If

we define the parameterization for the vertices and the

edges of the triangle surface, then the parameterization

of all other points can be found using interpolation.

We choose the parameterization of an edge between

two vertices on the surface to be a geodesic of the

cylinder that connects the parameterization of those

two vertices. We choose a geodesic because it is a lo-

cally length minimizing curve. On the cylinder, each

geodesic γ is a helix, a circle parallel to the base, or a

p1

p2

v

u

Figure 5: Three geodesics of the cylinder between

points p1 and p2. The solid is the shortest geodesic,

the dashed adds one turn in the positive u-direction

and the dotted adds two turns.

line perpendicular to the base, defined by:

γ(t) = (r cos (at + b), r sin (at + b), ct + d),

a, b, c, d ∈ R.

There are an infinite number of geodesics between any

two points on the cylinder, each with a different num-

ber of turns or a different direction. In figure 5 there

are three geodesics (helices) all connecting the same

two points. The solid line is the shortest geodesic of all

possible geodesics between p1 and p2. It is important

to specify the geodesic for each edge in the parameter-

ization. How we do this will become clear in section

3.

If we parameterize the vertices and the edges of the

surface onto the cylinder with the same connenctivity

as the surface mesh and if the resulting triangles on the

cylinder are not overlapping, then we get a triangula-

tion of the cylinder. This, we call a geodesic triangu-

lation because the edges of the triangles are geodesics

of the cylinder. Such a triangulation induces a map

from points on the cylinder to points on the surface. It

is clear that this map is bijective, continuous, and its

inverse is also continuous: it is a homeomorphism and

thus also a parameterization.

Local Cylinder-Plane Isometry As we already

mentioned in the introduction, most parameterization

algorithms have the plane as their parameterization do-

main; calculations done in this plane are mostly fast

and easy. When the parameterization domain is not

flat, the computations can be harder. For example

in [PH03] the domain is the sphere and calculations

involve numerical integration which slows down the

parameterization process.

A surface is flat if it has zero gaussian curvature, for

example the plane. To check that the cylinder is flat,

we compare the first fundamental form of the cylin-

der with the first fundamental form of the xy-plane.
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If they coincide, then the cylinder is isometric to the

plane. As a concequence the cylinder has zero gaus-

sian curvature and therefore is flat.

The cylinder is parameterized by c in (1) and the xy-

plane on the other hand is parameterized by p : R
2 �→

R
3:

p(u, v) = (u, v, 0) (2)

The first fundamental form of the cylinder is given by:
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∣
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The first fundamental form of the xy-plane is given by:
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We can see that the only difference between the first

fundamental forms is between Ec = r and Ep = 1,

but if we choose the radius of the cylinder to be r = 1
then the first fundamental forms coincide.

This means that the cylinder and the plane are lo-

cally isometric, yet they are not globally isometric be-

cause the plane and the cylinder are not homeomor-

phic. This local isometry can be grasped visually: by

cutting the cylinder along a line perpendicular to the

base, the cylinder can be unfolded to the plane without

distortion. This property has several interesting conse-

quences.

First of all, due to the isometry, every geodesic of the

cylinder corresponds to a geodesic of the plane and

vice versa. The geodesics of the plane are all straight

lines, so a geodesic triangle of the cylinder corre-

sponds to a straight-line triangle in the plane. Now,

if we have to apply an algorithm to geometry on the

cylinder, we can simply transform the geometry from

the cylinder to the plane by the isometry and apply or-

dinary algorithms to the planar geometry. Once the

result is obtained in the plane, it can be transformed to

the result on the cylinder.

Another advantage of working with the correspond-

ing plane geometry, is that we can use ordinary 2d-

optimization algorithms, like the conjugate gradient

algorithm, for optimization of the vertex positions.

Also, during the optimization of the vertex positions,

we have to calculate the distortions of a geodesic tri-

angle caused by the parameterization. But thanks to

the isometry, this distortion can be calculated using

the corresponding triangle in the plane. This means

that we can calculate the distortion, using the for-

mulas from planar parameterization algorithms as in

[SGSH02].

3. METHOD
The parameterization can be computed in two steps:

first, find a geodesic triangulation of the cylinder using

the connectivity of the tubular surface so that we have

a homeomorphism. Second, optimize the positions of

the vertices on the cylinder so that the distortion of the

parametrization is minimized. Although this method

is correct, it has the disadvantage that the optimization

step is very hard and that it will probably get stuck in a

bad local minimum. It is better to construct the param-

eterization in a hierarchical way, as in [HGC99] and

[SGSH02]. The hierarchical parametrization utilizes

the progressive mesh of the tubular surface and pro-

ceeds as follows: first the base mesh is parameterized

and then we iteratively split the vertices and locally op-

timize their placement while avoiding foldovers. This

method is outlined in the following algorithm:

Algorithm 1 Parameterize(M)

1: (M0, {vsplit1, . . . , vsplitm}) = ProgMesh(M);
2: P0 = ParameterizeBaseMesh(M0);
3: iprev = 0;

4: for i = 1 to m do

5: Pi−1

vspliti−→ Pi;

6: place new vertex v inside kernel of its 1-ring;

7: OptimizePlacement(v);

8: if #Pi > factor × #Piprev
then

9: OptimizePlacement() for all v in Pi;

10: iprev = i;
11: end if

12: end for

13: OptimizePlacement() for all v in Pm;

14: return Pm;

We will now go into more detail:

Progressive Mesh Construction We first construct

the progressive mesh [Hop96] of our surface M us-

ing a quadratic error metric. A progressive mesh is

constructed by successively collapsing an edge of the

mesh; the next edge to collapse is chosen so that the

introduced quadratic error metric is minimal and that

the collapse does not violate any constraints. We im-

pose three constraints:

• Both boundaries of the tubular surface should

have at least three vertices.

• Collapse a boundary vertex only into a vertex

of the same boundary. This avoids that a ver-

tex of one boundary is collapsed into a vertex

of the other boundary, which would generate a

degenerate mesh. We also require this out of

convenience, because this way we know that an

internal vertex can never be split into a boundary

vertex which eases the parametrization process.

• The third constraint says that there may be no

triangles with all three vertices on one boundary,
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Figure 6: The shaded triangle is violating the third

constraint because its three vertices are on one bound-

ary (bold line). We remedy this by splitting the edge

that is not on the boundary, this results in two extra

triangles.

because the parametrization of such a triangle

would result in a triangle of zero area, which is

undesirable.

We have added these constraints to the progressive

mesh construction algorithm. We also require that the

original surface does not violate any of the above con-

straints. If the first or the second constraint is violated

in the original surface, then we reject the mesh. When

the third constraint is violated in the original surface,

we have a remedy: split the edge of the triangle that is

not on the boundary, this is depicted in Figure 6.

The progressive mesh is represented by the base mesh

M0 and a set of vertex splits {vsplit1, vsplit2, . . . ,
vsplitm}, which are the reverse operations of the edge

collapses in reversed order.

Base Mesh parameterization If we construct the

progressive mesh of a tubular surface, as explained

in the previous section, then the base mesh M0 will

be an open prism with a triangle as its base. This

mesh is depicted in Figure 7. Each of the three square

sides of the base mesh consists of two triangles. This

mesh is parameterized on the cylinder by separating

the three points on both boundaries by 120 degrees.

Then the vertices on one of the boundaries are rotated

until three of the edges, connecting both boundaries,

are perpendicular to the base of the cylinder. The

(u, v)-coordinates of the parameterized base mesh are

displayed in Figure 7.

We also have to determine the parameterization of the

edges; the parameterization of an egde is a geodesic of

the cylinder. A geodesic can be determined by specify-

ing its direction (negative or positive u-direction) and

its number of turns (0,1,2,. . . ). The parameterization

of an edge ((u1, v1), (u2, v2)) of the base mesh is al-

ways a geodesic with 0 turns, because the length of the

edge is at most 1/3 in the u-direction, and its direction

is positive if u1 <= u2 and negative otherwise.

In this way we obtain a geodesic triangulation of the

����� � ������� ������

����� ������� �������

�������

� ������� ������

Figure 7: Base mesh of the progressive mesh for a

tubular object, together with the (u, v)-coordinates of

its parameterization.

cylinder with the connectivity of the base mesh, and

thus we have found the parameterization P0 of the

base mesh.

Next Level Parameterization Once we have the

parameterization of the base mesh, we start by itera-

tively refining the resolution of the parameterization

using vertex splits until we end up with the parameter-

ization Pm of Mm = M. The step we explain here is

generic and takes us from a parameterizationP i to the

parameterization Pi+1.

We start by applying vspliti to Pi, this results in a new

vertex v. In order to avoid foldovers we have to put

this vertex inside the kernel of the polygon formed

by the triangles of its 1-ring. We will put the vertex

v in the center of this kernel. The kernel is com-

puted in the plane using the isometry. But first we

will have to transform the polygon to the plane. We

set the y-coordinates of the planar polygon equal to

the v-coordinates of the cylindrical polygon. We then

choose one point of the polygon as a reference and

set its x-coordinate to 0. Then we determine the x-

coordinate of the next vertex in the polygon by calcu-

lating the u-length of the geodesic edge between this

vertex and the reference vertex(taking into account the

direction and the number of turns of the geodesic).

Then the u-coordinate of the next vertex is determined

relative to the previous vertex until al vertices are as-

signed a u-coordinate and we have obtained the planar

version of our geodesic polygon.

We construct the kernel of this planar polygon using

line clipping and calculate its geometric center. Then

we transform the center to the cylinder and use this

coordinate as the placement for v. We transform the

center from the plane to the cylinder using a vertex of

the polygon as a reference. We also update the direc-

tion and number of turns of each of the edges incedent

to the vertex v. We now have a parameterization of

Mi+1.

In order to obtain a parameterization that is a balanced
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trade-off between the semantics and the uniformity

property (see section 1.), we have to optimize the pa-

rameterization. After we have split a vertex, the place-

ment of the new vertex v will be optimized, then we

optimize the placement of each of its neighbours and

we end with optimizing the new vertex v again. Also,

when the number of vertices in the parameterization

has increased with a factor (for example 1.5), we do

this optimization for each of the vertices of the param-

eterization. A single vertex is optimized by the follow-

ing steps:

1. transform the vertex v and its 1-ring polygon to

the plane;

2. use the current position of v as an initial guess

for the optimization;

3. minimize the symmetric version of the geomet-

ric stretch of the barycentric map summed over

the 1-ring triangles as defined in [SGSH02]. The

calculation of geometric stretch is based on the

Jacobian of the barcentric map, since the Jaco-

bian is invariant to isometry we can calculate the

stretch using the planar triangles instead of the

geodesic triangles of the cylinder. The optimiza-

tion of the metric is also done in the plane using

a standard 2D-optimization routine, while con-

straining the position of v to the kernel of the

1-ring polygon in order to avoid foldovers;

4. in the end, transform the optimized position of

v back to the cylinder and update the direction

and number of turns of each geodesic incident

to the optimized vertex.

There is one remark we have to make: when we pa-

rameterize tubular objects that are very long in the ax-

ial direction compared to the radial direction, the pa-

rameterization gives bad results since the triangles are

compressed in the axial direction to fit on the cylin-

drical domain of length 1. This can be remedied by

changing the length of the cylindrical domain. For ex-

ample when parameterizing a tubular surface that is

twice as long in the axial direction as it is in the radial

direction, we have to set the length of the cylindrical

domain to the double of the radius of the cylindrical

domain. Currently this length has to be estimated by

the user, in the future we hope to automate this.

Sampling the Parameterization Up till now we

have only defined the parametrization of the ver-

tices and the edges. If we would like to sample the

parametrization at arbitrary points of the cylindrical

domain, then we have to define the parameterization at

every point. As we have seen in the previous section,

the interior of a triangle is parameterized using the

surface # faces h time (s)

knot 12768 7.0 55
pipe 23248 3.0 117
head 11538 1.0 64
bow 33702 2.0 143

spring 19152 10.0 89
screwdriver 53782 3.0 268

Table 1: parameterization results of surfaces from

11K to 50K faces within 1 to 5 minutes. The height

of the cylinder (h) ranges from 1 to 10 times the radius

of the cylinder.

barycentric map. Therefore if we want to sample the

parameterization on the point (u, v) we only have to

find the geodesic triangle on the cylinder that contains

the point (u, v), the value of the parametrization is

then determined by the barycentric map from that tri-

angle to the corresponding triangle on the tubular sur-

face. To find the triangle containing the point (u, v),
we utilize a point location technique using bounding

volume hierarchies [GLM96].

4. RESULTS
We have tested an implementation of the algorithm on

different tubular surfaces, the results are summarized

in Table 1. We have parameterized surfaces with 11K
to 50K faces, within 1 to 5 minutes on a 1.2GHz com-

puter. In Figure 8 the parameterized surfaces are dis-

played. The parameterization is revealed by the texture

of the surface, the blue and the red lines on the surface

are the iso-parameter lines for respectively the u and

v parameter. Also, the quality of the parameterization

can be derived from this figure. First, the semantics

of the cylinder are ported to the surfaces because the

red lines (iso-u) are running in the radial direction and

the blue lines (iso-v) are running in the axial direc-

tion. Second, the distortion is kept low, which we can

see because the iso-parameter lines form squares or

rectangles. However, the size of the squares or rect-

angles can vary on the same surface (for example on

the screwdriver), which tells us that the parameteriza-

tion suffers from scale distortion. This is unavoidable

when parameterizing onto the cylinder. This is also

the reason why we did not add the stretch of the pa-

rameterizations in Table 1, there would be no point in

comparing them.

Once a parameterization is obtained it is also possi-

ble to generate a geometry image [GGH02] of the sur-

face. Geometry images are a completely regular im-

age based surface representation with implicit connec-

tivity. They have a number of applications: hardware

accelerated rendering, adaptive remeshing, compres-

sion, etc. Our geometry images are constructed by
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Figure 8: parameterization results, from left to right and from top to bottom: a knot, a pipe with a cross section that

morphs from a circle to a star and back to a circle, a head with the bottom of the neck open and a square hole in the

top, a bow, a spring, and a screwdriver with a hole in the tip and in the top. The texture visualizes the iso-parameter

lines of the parameterization.

Figure 9: A geometry image is generated by parame-

terizing the surface on the cylinder and unfolding the

cylinder to the plane.

sampling the cylindrical parameterization on a regu-

lar (u, v)-grid and unfolding this grid to the plane, this

process is visualized in Figure 9. One side-effect of

cylindrical geometry images is that the u and v res-

olution can be controlled separately. This results in

rectangular geometry images, which can be useful for

elongated surfaces. Figure 10 displays the cylindrical

geometry image and normal map of the bow surface at

different resolutions.

5. CONCLUSION
In this paper we propose a new method to parameter-

ize tubular surfaces. We parameterize the surfaces on

their natural domain i.e., the cylinder, which avoids

cutting. By minimizing our symmetric stretch metric

we obtaine a parameterization with a balanced trade-

off between cylindrical semantics and uniform sam-

pling. We test the algorithm on several surfaces and

summarize the results. We also propose a new kind

of geometry images for cylindrical surfaces and show

some results.

Figure 10: Cylindrical geometry image and normal

map of the bow surface at following resolutions: 257×
257, 33 × 33, 5 × 5. The remesh of the geometry im-

age at each resolution is displayed on the left and is

flat shaded.
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Future directions of research: we would like to find a

method to automatically determine the optimal length

of the cylinder when parameterizing a surface or adapt

the parameterization method so that we can use a

cylinder of unit length without artifacts. We would

also like to extend the parameterization method for

feature correspondance. This should enable us to use

the tubular parameterization for shape analysis of bi-

ological tubular objects as for example the human

cochlea.
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