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ABSTRACT
Noise reduction is an important preprocessing step for many visualization techniques that make use of feature

extraction. We propose a method for denoising 2-D vector fields that are corrupted by additive noise. The method

is based on the vector wavelet transform, which transforms a vector input signal to wavelet coefficients that are

also vectors. We introduce modifications to scalar wavelet coefficient thresholding for dealing with vector-valued

coefficients. We compare our wavelet-based denoising method with Gaussian filtering, and test the effect of these

methods on the signal-to-noise ratio (SNR) of the vector fields before and after denoising. We also compare

our method with component-wise scalar wavelet thresholding. Furthermore, we use a vortex measure to study

the performances of the methods for retaining relevant details for visualization. The results show that for very

low SNR, Gaussian filtering with large kernels has a slightly better performance than the wavelet-based method

in terms of SNR. For larger SNR, the wavelet-based method outperforms Gaussian filtering, because Gaussian

filtering removes small details that are preserved by the wavelet-based method. Component-wise denoising has a

lower performance than our method.
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1. INTRODUCTION
Data acquired by physical measurements are often cor-

rupted by noise. In fluid mechanics, such data may be

obtained by, for instance, particle image velocimetry

(PIV). This is a technique that provides global veloc-

ity measurements by recording the position over time

of small tracer particles inserted into the flow [Pra00].

Noise in the recorded images is a source of errors in

PIV measurements, and it can result in spurious vec-

tors or global noise in the reconstructed vector field.

The spurious vectors can be repaired by averaging or

median filtering, however, the global noise requires a

different removal method.
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The process of removing noise is called denoising, and

its goal is to suppress the noise while retaining the rel-

evant details. A commonly used denoising method is

smoothing by Gaussian filtering. However, this does

not only affect the noise, but also may destroy small

features in the data.

Better performance is usually obtained by a smoothing

technique that is edge-preserving, such as anisotropic

diffusion [Per90]. This technique has been extended

for smoothing orientation fields [Per98], but it has

not been tested in a practical application, and has not

been evaluated on directional fields. Another success-

ful iterative method for image denoising is based on

minimizing the total variation of the image subject to

constraints that involve the noise statistics [Rud92].

This approach has been extended to vector-valued

functions, and has been used for denoising color im-

ages [Blo98]. In a recent paper, this method was used

for the reconstruction of flow velocity images acquired

by magnetic resonance velocity imaging [Ng03]. Such

images are used in the study of cardiovascular function

by analyzing the blood flow patterns and their inter-

action with cardiovascular structure. Noise has detri-
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mental effects on this analysis, and it is very important

that features in the data are retained by the denoising

method.

Another class of denoising methods is based on thresh-

olding of wavelet coefficients, an idea introduced

about one decade ago by Donoho [Don95]. Since

then, much work has been done in this area, and

many wavelet-based denoising methods have been

proposed for scalar signals [Str01], natural images

[Cha00, Sim96], and medical images [Piž03, Win04],

to name a few.

The purpose of this paper is to report on work in

progress on denoising 2-D vector data that are cor-

rupted by additive noise. Our method performs thresh-

olding on wavelet coefficients that are obtained by a

so-called vector wavelet transform [Xia96]. This is

an extension of the scalar wavelet transform that deals

with vector data, and it maps vector data to wavelet co-

efficients that are also vectors. It is important to note

that the vector wavelet transform is different from a

component-wise scalar wavelet transform, and that the

mathematical foundation is based on multiwavelets.

We introduce extensions to the scalar wavelet-based

denoising technique, in order to be able to deal with

the vector-valued coefficients.

The organization of this paper is as follows. Sec-

tion 2 discusses the mathematical background of vec-

tor wavelets, and describes the algorithm to compute

the vector wavelet transform efficiently. In Section 3

we briefly describe wavelet-based denoising of scalar

data, and we introduce our modifications for dealing

with vector data. Section 4 compares the results of

vector wavelet-based denoising and Gaussian smooth-

ing, and we perform an experiment with component-

based scalar wavelet denoising. Finally, we draw con-

clusions in Section 5 and discuss future work.

2. VECTOR WAVELETS
The concept of a vector wavelet transform has ex-

isted for about a decade, and the theory follows scalar

wavelet theory closely [Xia96]. Vector wavelet trans-

forms are based on so-called multiwavelets, which ex-

pand a scalar function by several scaling functions and

wavelet functions rather than by a single pair. In the

following, we briefly describe multiwavelets, and we

refer the readers to the papers [Tan99] and [Xia96] for

full details.

2.1 Multiwavelets
A biorthogonal multiwavelet basis consists of a multi-

scaling function vector Φ(t) := [φ1(t), . . . ,φr(t)]
T and

its dual Φ̃(t) := [φ̃1(t), . . . , φ̃r(t)]
T, with r an integer,

and xT denoting the transpose of x. Typically, r = 2 or

r = 3 in practical applications with 2-D and 3-D vec-

tor fields, respectively. These multiscaling functions

satisfy the two-scale dilation equations

Φ(t) =
√

2∑
n

HnΦ(2t −n),

Φ̃(t) =
√

2∑
n

H̃nΦ̃(2t −n),
(1)

in which Hn and H̃n are real-valued r × r matrix se-

quences. The multiwavelet functions Ψ(t) and Ψ̃(t)
are associated with the multiscaling functions by the

two-scale wavelet equations

Ψ(t) =
√

2∑
n

GnΦ(2t −n),

Ψ̃(t) =
√

2∑
n

G̃nΦ̃(2t −n),
(2)

in which Gn and G̃n are also real-valued r× r matrix

sequences.

The expansion of an input vector signal f T(t) on a

biorthogonal multiwavelet basis is given by

f T(t) = ∑
k

(cM
k )TΦM,k(t)+

M

∑
j=1

∑
k

(d j

k)
TΨ j,k(t),

Φ j,k(t) = 2− j/2Φ(2− jt − k),

Ψ j,k(t) = 2− j/2Ψ(2− jt − k),

(3)

where M denotes the depth of the decomposition. The

coefficients cM
k and d

j

k are called approximation coef-

ficients and detail coefficients, respectively, as in the

scalar case. Note that these coefficients are now r×1

column vectors.

2.2 Fast vector wavelet transform
Given coefficient sequences Hn, Gn, H̃n, and G̃n that

are r× r matrices, and which satisfy the perfect recon-

struction conditions, we can compute the 1-D discrete

vector wavelet transform of the input sequence c0 by

the pyramid algorithm of Mallat. The main difference

with the scalar algorithm is that scalar multiplications

are replaced by matrix-vector multiplications. The M-

level wavelet decomposition computes the coefficients

c
j

k and d
j

k as

c
j

k = ∑
n

H̃n−2kc j−1
n d

j

k = ∑
n

G̃n−2kc j−1
n . (4)

Reconstruction is computed as

c
j−1
k = ∑

n

HT
k−2nc j

n +∑
n

GT
k−2nd j

n. (5)

The extension to a 2-D transform is done in the stan-

dard way by applying the 1-D transform to the rows
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Figure 1. Coefficients of a three level 2-D (vector)

wavelet transform.

and columns. The wavelet transform for M levels then

results in approximation coefficients cM
k,l and three sets

of detail coefficients d
j,τ
k,l , j = 1, . . . ,M, τ = {1,2,3}.

The coefficients are ordered as shown in Fig. 1.

2.3 Filter coefficients
In principle, the filter coefficients of the multiwavelets

available from the literature could be used for comput-

ing the vector wavelet transform. However, it turns out

that the performance for vector signal processing ap-

plications is poor [Fow02]. The source of the problem

lies in the fact that constant input signals are not pre-

served when performing a reconstruction from wavelet

approximation coefficients only. Constant in the con-

text of vector fields means that all vectors point in

the same direction. Intuitively, one would expect a

constant signal, however, most multiwavelets result in

an oscillatory distortion. This means that the coeffi-

cients cM
k,l do not consist of a low resolution approxi-

mation of the original data. This is rather disturbing,

as most denoising and compression schemes preserve

the approximation coefficients and discard detail coef-

ficients.

Fowler and Hua [Fow02] have proposed a scheme to

design filter coefficients that define a multiwavelet ba-

sis that does not suffer from the problem mentioned

above. The resulting wavelets are known by the name

omnidirectionally balanced symmetric-antisymmetric

(OBSA); part of this name refers to the constraints for-

mulated for the construction process. In the remainder

of this paper, we will use the OBSA 5-3 and OBSA 7-5

filters. The numbers denote the lengths of the coeffi-

cient sequences Hn and H̃n, respectively.

3. WAVELET-BASED DENOISING
We assume that the noise is additive, and has a normal

distribution with zero mean and variance σ2
n , denoted

as N(0,σ2
n ). Wavelet-based denoising methods in the

1-D scalar case then work in three steps. (1) Compute

an M-level wavelet transform. (2) Modify the detail

coefficients d
j

k , j = 1, . . . ,M, by a threshold function.

The approximation coefficients cM
k are not modified.

(3) Compute the inverse wavelet transform. The ex-

tension to higher dimensions is straightforward.

There are two popular threshold functions in use: hard

and soft thresholding. Both set the coefficients below

the threshold T to zero. Hard thresholding retains the

coefficients above the threshold unaltered. Soft thresh-

olding, also called shrinkage, reduces the amplitude of

the coefficients above T as follows

ηT (x) = sgn(x) ·max(|x|−T,0). (6)

For image denoising, soft thresholding generally

yields more visually pleasing results than hard thresh-

olding, and it is therefore the preferred choice.

Many methods have been proposed to select a good

threshold T , a number of which are contained in the

WaveLab software [Buc95]. In this paper, we use a

method called BayesShrink [Cha00], which computes

a data-driven estimate of T for each set of detail coef-

ficients d
j,τ
k,l , τ = {1,2,3} independently. This method

was proposed for image denoising, and it is based on

the observation that the detail coefficients in a subband

of a natural image can be characterized by a gener-

alized Gaussian distribution (GGD) [Mal89, Sim96].

The probability density function is given by

p(x) =

[
νη(ν ,σ)

2Γ(1/ν)

]
e−[η(ν ,σ)|x|]ν , (7)

with

η(ν ,σ) =
1

σ

√
Γ(3/ν)

Γ(1/ν)
, (8)

where Γ(x) denotes the gamma function. The shape

parameter ν controls the exponential rate of decay. A

Gaussian distribution is obtained by ν = 2. The pa-

rameter σ is the standard deviation.

We have observed that the individual components of

the vector detail coefficients also follow a GGD. Fig-

ure 2 shows parts of the histograms of the second-level

vector detail coefficients d
2,1
k,l , d

2,2
k,l , and d

2,3
k,l of a slice

of a hurricane data set as an example. The top row

shows the histograms of the first components of the

vectors, and the bottom row shows the histograms of

the second components. All these histograms can be

qualitatively described by a GGD. It is therefore valid

to use the BayesShrink method.

We can now describe our modifications to the scalar

wavelet-based denoising scheme for dealing with vec-

tor data. Calculations that involve the absolute value

of a scalar coefficient now use the vector magnitude of
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Figure 2. Histograms of vector wavelet detail co-

efficients at level 2 of an example data set. His-

tograms of the first vector components are on the

top row and of the second components on the bot-

tom row. From left to right are d
2,1
k,l , d

2,2
k,l , and d

2,3
k,l ,

respectively. All histograms can be described qual-

itatively by a generalized Gaussian distribution.

that coefficient. Furthermore, we define the variance

σ2 of an N ×N vector field vk,l as

σ2 =
1

rN2

N

∑
k=1

N

∑
l=1

||vk,l − v̄||2, (9)

where the average v̄ is a vector that contains the

component-wise averages of vk,l , and || · || denotes the

Euclidian norm. This definition includes a division by

r, the number of components of the vectors, for the

following reason. If a vector field contains only noise,

i.e., each component contains noise distributed as nor-

mal N(0,σ2), the equation above will yield precisely

σ2.

The threshold is dependent on the variance σ̂2
d of the

coefficients d
j,τ
k,l under consideration and the global

noise variance σ2. If the noise characteristics of the

data acquisition process are known, it may be possible

to determine the global noise variance from that infor-

mation. Alternatively, the global noise variance can be

estimated from the detail coefficients d
1,3
k,l by the robust

median estimator [Cha00]:

σ̂ =
median(|d1,3

k,l |)
0.6745

. (10)

Finally, the threshold T is computed as

T =
σ̂2

√
max(σ̂2

d − σ̂2,0)
. (11)

If the denominator in this equation becomes equal to

zero, the threshold T becomes ∞, and all coefficients

are assigned the zero vector.

For our method, we adapted the soft thresholding

method such that it shrinks the vector magnitudes. We

define the modified soft thresholding ~ηT (x) for a vec-

tor x as

~ηT (x) = x · max(|x|−T,0)

|x| . (12)

When |x| = 0, we set ~ηT (x) = [0,0]T.

4. RESULTS
We conducted a series of experiments in which noise

of known standard deviation was added to a slice

(490× 490) of a hurricane data set, consisting of 2-

component velocity vectors, see Fig. 3(a). The re-

sulting noisy vector fields had signal-to-noise ratios

(SNR) of {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. An

example rendering of the vector magnitudes of a noisy

vector field with SNR = 10 is shown in Fig. 3(b). The

SNR is expressed in dB and computed from the stan-

dard deviations σ (data) and σn (noise) as

SNR = 20log10

σ

σn

.

To provide some intuition, an SNR around 40 dB is

considered acceptable in image processing.

We applied our wavelet-based denoising method to the

resulting noisy vector fields, using the biorthogonal

OBSA 5-3 and OBSA 7-5 multiwavelets. The depth of

the wavelet decomposition was fixed to three. We also

performed filtering with Gaussian kernels of various

widths. The width of the Gaussian kernel is described

by its width in pixels at half of the maximum of the

height of the Gaussian, a measure called Full Width

at Half Maximum (FWHM). For example, a Gaussian

filter with FWHM = 5 contains 13 pixels when sam-

pled between −3σ and 3σ . Filter values beyond 3σ
are negligibly small, and are therefore not used.

Example renderings of the vector magnitudes of the

results of both Gaussian filtering and our method are

shown in Fig. 3(c) and Fig. 3(d), respectively. The

noisy input vector data had SNR = 10 (Fig. 3(b)), a

high noise level at which the standard deviation of the

noise is about one-third the standard deviation of the

data. Qualitatively, both output images look similar,

although the Gaussian filtered data appears to be more

smooth, due to the large filter kernel used. The per-

formance of the methods is comparable, as they both

yield similar output signal-to-noise ratios.

Figure 4 shows the output SNR plotted against the in-

put SNR. The plot shows that Gaussian filtering with

large kernels performs slightly better than the wavelet-

based method for very low SNRs. For an SNR be-

tween 15 and 20 dB, both methods show similar per-

formance. For larger SNRs, the Gaussian filtering
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(a) (b)

(c) (d)

Figure 3. The images show color-encoded vector

magnitudes; red corresponds to high velocities and

dark blue to low velocities. (a) Noise-free test data.

(b) Noisy test data with SNR = 10. (c) Result af-

ter denoising by Gaussian filtering with FWHM 5.

The filtered data has SNR = 23.4. (d) Result after

denoising by wavelet coefficient thresholding. The

resulting data has SNR = 22.3.

method smooths to strongly, and for SNRs above 30

dB, the output SNR is actually lower than the input

SNR. The wavelet-based method does not have this

problem, and the output SNR is in the worst case equal

to the input SNR. We also performed the experiment

(results not included) with the OBSA 5-3 wavelet, and

its performance is similar to the performance of the

OBSA 7-5 wavelet. However, the performance for

low SNR is worse, which can be explained by the fact

that the OBSA 5-3 wavelet is not as smooth as the

OBSA 7-5 wavelet.

For comparison, we implemented component-based

scalar wavelet-based denoising, i.e. we treated each

component of the vector field as a scalar data set,

and applied scalar denoising. We used a fourth-

order B-spline wavelet [Chu92] as a basic wavelet.

It is clear that component-wise denoising has a con-

sistently lower performance than a vector-based ap-

proach for the wavelets we tested, see Fig. 4. We pre-

sume this is due to possibility of changing the orienta-

tion of a vector when its components are thresholded

independently. A more extensive investigation is nec-

essary to see if this is indeed the cause of the lower

performance.
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Figure 4. The output SNR plotted against the in-

put SNR of wavelet-based denoising (OBSA 7-5)

and Gaussian filtering (FWHM) with filters of in-

creasing width. Also plotted is the performance

of scalar wavelet-based denoising of the individual

vector components independently of each other.
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Figure 5. Output MSE plotted against the input

SNR of wavelet-based denoising (OBSA 7-5) and

Gaussian filtering (FWHM) with filters of increas-

ing width. Also plotted is the performance of scalar

wavelet-based denoising of the individual vector

components independently of each other.

We also computed the mean square errors (MSE) be-

tween the original data and the denoised data, and the

results are shown in Fig. 5. The vertical axis is on a

logarithmic scale. The plot confirms that Gaussian fil-

tering smooths too much when the noise level is low,

which results in an MSE that is almost two orders of

magnitude larger in comparison with our method.

Although the SNR is a good measure for the overall

performance, it is not suitable to measure how well

local features are retained. A problem, however, is that
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(a) (b) (c)

Figure 7. Detail images of a larger coherent feature

in the data, selected from the larger structures in

the upper left quadrants of the images in the third

row of Fig. 6. (a) Noise-free data. (b) Gaussian fil-

tering. (c) Wavelet-based denoising. Note how the

small vertical structure on the left disappears with

Gaussian filtering.

we do not actually have suitable quantitative measures,

therefore, we render an image of the feature of interest,

and make a visual assessment of the performance. Our

feature of interest is a measure of vorticity, commonly

referred to as the λ2-definition [Jeo95]. The method

computes the eigenvalues λ1, λ2, and λ3, λ1 ≥ λ2 ≥ λ3,

of the matrix

M =

[
J + JT

2

]2

+

[
J− JT

2

]2

. (13)

Here, J is the velocity gradient tensor. Vortex cores are

defined as the points where λ2 is negative.

Figure 6 shows color-encoded (blue to red) λ2 val-

ues in a selected range for some of the generated

noisy vector fields (left column), and the results of de-

noising these data sets by Gaussian filtering and our

method. The middle column shows the best results

obtained by Gaussian filtering, and the right column

shows the results of our method using the OBSA 7-5

multiwavelets. The SNR is displayed below each im-

age, as well as the filter size of the Gaussian kernel,

and the percentage of wavelet coefficients that remain

after thresholding. These percentages are indicative of

the power of wavelets to capture relevant features with

only a small number of coefficients.

For the high SNR input (almost noise free), Gaussian

filtering misses details, especially in the areas with fine

detail. An example of loss of detail is shown in Fig. 7,

in which a small vertical structure is visible in the orig-

inal data (Fig. 7(a)), which is lost by Gaussian filtering

(Fig. 7(b)), but retained by our wavelet-based method

(Fig. 7(c)).

We have seen that for high noise levels, Gaussian fil-

tering performs better, because stronger low-pass fil-

tering is needed. However, this is also possible to

perform with our method. It appears that the thresh-

old selection process underestimates the noise level,

(a) (b)

(c) (d)

Figure 8. Denoising of the noisy vector data with

SNR = 10. All images show color-encoded λ2 val-

ues in a selected range. (a) Rendering of the noise-

free data. (b) Result of Gaussian filtering with

FWHM 5. (c) Wavelet-based denoising with au-

tomatic threshold selection. The threshold is such

that 5% of the largest detail coefficients remain af-

ter thresholding. (d) Wavelet-based denoising with

the threshold lowered to a value such that only 2%

of the largest detail coefficients are retained.

and that a lower threshold value is necessary. We per-

formed a simple experiment with the noisy vector data

with SNR = 10 to see if it is possible to improve the

output of our method, and the results are shown in

Fig. 8. The λ2 values of the noise-free data are shown

in Fig. 8(a). We repeat the results of Gaussian filtering

and our method in Fig. 8(b) and Fig. 8(c), respectively.

Our method retains about 5% of the largest detail co-

efficients. When we lower the threshold such that only

2% of the largest coefficients are retained, we obtain

the image shown in Fig. 8(d). The SNR improves only

slightly to SNR = 22.5, but the visual appearance of

the features is much improved, and we also see a re-

duction of artifacts, i.e., features introduced that were

not in the original noise-free data. Although this shows

that it is possible to obtain a more ‘smooth’ result with

our method, the problem is that this approach intro-

duces a parameter (the number of coefficients to re-

tain) in the method.
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Noisy inputs Gaussian filtering Wavelet denoising

SNR = 10 FWHM 5; SNR = 23.4 OBSA 7-5; SNR = 22.3; 5.1%

SNR = 25 FWHM 2; SNR = 29.8 OBSA 7-5; SNR = 29.4; 16.8%

SNR = 50 FWHM 2; SNR = 31.7 OBSA 7-5; SNR = 50.4; 70.4%

Figure 6. Results of denoising using Gaussian filtering and wavelet-based denoising. All images show color-

encoded λ2 values in a selected range. Left column: noisy input data of various signal-to-noise ratios.

Middle column: results of Gaussian filtering using the filter with the best performance. Right column:

wavelet-based denoising with the OBSA 7-5 multiwavelets. The depth of the wavelet decomposition was

fixed at three levels. The resulting SNR after denoising is shown below the images. Additionally, the right

column shows the percentage of remaining wavelet detail coefficients.
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5. DISCUSSION
We have proposed a denoising method for 2-D vec-

tor fields that are corrupted by additive noise. The

method is an extension of scalar wavelet-based denois-

ing techniques to vector data, and makes use of a vec-

tor wavelet transform.

We have shown that the proposed method outperforms

Gaussian smoothing for low to moderate noise levels.

For very high noise levels, the wavelet threshold se-

lection appears to underestimate the noise level, and

in such case, Gaussian filtering performs better. How-

ever, by adapting the threshold, we have demonstrated

that the result can be improved. This should be in-

vestigated in a more systematic way, and it would be

interesting to see if other wavelet coefficient threshold

selection schemes produce better results.

We have also performed a simple experiment in which

we used scalar denoising applied to the vector com-

ponents independently. The result of this experiment

shows that it is necessary to treat the vector compo-

nents in a coupled way. It would be possible to use

a component-wise scalar wavelet transform combined

with our proposed vector coefficient thresholding. We

expect, however, that the performance will still be

lower, since the vector wavelet transform already con-

siders the coupling of the vector components during

the decomposition phase.

Currently, we are working on an extension to vec-

tors with three components. This is challenging, since

most research has focussed on multiwavelet design

for vectors of only two components. This extension

would open up the possibility of denoising 3-D vec-

tor fields, and could also result in a promising denois-

ing method for diffusion-tensor MRI volumetric data.

It may also be useful for the study of cardiovascular

function, and a comparison with the method proposed

by Ng [Ng03], should be made. Finally, it is neces-

sary to evaluate the method on PVI data sets, which is

ongoing work.

6. ACKNOWLEDGEMENTS
This research was funded by the project SFB 382 of

the German Research Foundation (DFG), and by the

Alexander von Humboldt Foundation with a Hum-

boldt Research Fellowship for the first author.

7. REFERENCES
[Blo98] Blomgren, P. and Chan, T. F. Color TV: total

variation methods for restoration of vector-valued

images. IEEE Trans. Image Processing, 7(3):304–309,

1998.

[Buc95] Buckheit, J. B. and Donoho, D. L. WaveLab and

reproducible research. Technical Report 474, Dept. of

Statistics, Stanford University, 1995.

[Cha00] Chang, S. G., Yu, B., and Vetterli, M. Adaptive

wavelet thresholding for image denoising and

compression. IEEE Trans. Image Processing,

9(9):1532–1546, 2000.

[Chu92] Chui, C. K. An Introduction to Wavelets.

Academic Press, 1992.

[Don95] Donoho, D. L. De-noising by soft thresholding.

IEEE Trans. Information Theory, 41:613–627, May

1995.

[Fow02] Fowler, J. E. and Hua, L. Wavelet transforms for

vector fields using omnidirectionally balanced

multiwavelets. IEEE Trans. Signal Processing,

50:3018–3027, 2002.

[Jeo95] Jeong, J. and Hussain, F. On the identification of a

vortex. J. Fluid Mechanics, 285:69–94, 1995.

[Mal89] Mallat, S. G. A theory for multiresolution signal

decomposition: the wavelet representation. IEEE Trans.

Pattern Analysis and Machine Intelligence,

11(7):674–693, 1989.

[Ng03] Ng, Y.-H. P. and Yang, G.-Z. Vector-valued image

restoration with applications to magnetic resonance

velocity imaging. J. WSCG, 11(2):338–345, 2003.

[Per90] Perona, P. and Malik, J. Scale-space and edge

detection using anisotropic diffusion. IEEE Trans.

Pattern Analysis and Machine Intelligence,

12(7):629–639, 1990.

[Per98] Perona, P. Orientation diffusions. IEEE Trans.

Image Processing, 7(3):457–467, 1998.
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