Figure 1: Forming a general arc

Figure 2: Final form of the style

-

X Window System

Ales Limpouch

Department of Computers
Faculty of Electrical Engineering, Czech Technical University
Karlovo nam. 13, 121 35 Prague 2
Czech Republic
e-mail: limpouch@cs.felk.cvut.cz

Abstract

The X Window System has, over the last few years, become increasingly impor-
tant and it is now accepted as the window system for workstations, mainframes
and supercomputers. It has become the standard means of providing graphical
facilities on UNIX systems. This paper gives a brief overview of fundamental prin-
ciples, concepts and architecture of the X system and describes in detail essential
characteristics of the X server.

Keywords
graphical user interface, window management system, X Window System, X server

1 Fundamental principles

As a visual (graphical) form of information is more natural, illustrative and under-
standable, intensive change to the graphical way of communication between human
and computer has taken piace within the past few years. The term graphical user
interface (GUI) is used for environments, which enable this way of interaction. In
addition, it makes it possible to take advantage of multitasking operating systems,
such as UNIX, more effectively. The X Window System (X) represents the window
management system, which has become standard for UNIX workstations.

1.1 X Window System

During the 1980’5, the X Window System became the standard means for the
development of graphical user interfaces and interactive applications with visual
interfaces in UNIX. X began at MIT and its authors had defined ambitious aims,
which Jed to advanced features and model of the system. The important reason
for its acceptance was the decision to make the source code of X available free of
charge. However, the X system is not public domain and is protected by copyright.

197

The X Window System does not represent complete GUI It is 2 window manage-
ment system, which provides only graphical facilities and window manipulation
functions. The main aim during the design of the system was to give the means for
the development of graphical user interfaces and applications without restricting
people to a particular look and feel. X does not define any particular attribute of
the user interface. Authors wanted to provide “mechanism, not policy”. High flex-
ibility and various mechanisms for future extensions of the system make it possible
to adjust it for user needs, special devices and new hardware.

One fundamental characteristic of the system is its device independence. The X sys-
tem enables applications to display text or graphics within overlapping windows on
any device supporting X protocol. X’s network and operating system transparency
allow high portability of applications. Sun’s NeWS (Network Extensible Window
System) is the only competitive window management system in the UNIX environ-
ment.

1.2 History

The development of X began in 1984 at the Massachusetts Institute of Technology
within the Athena and Argus projects. Version 10 was publicly released in late
1985 and was ported during a few months to various platforms. Preparation of
the new version was started in May, 1986, taking into account the experience with
the previous one. The first technical conference on X was held at MIT in January,
1987. Eleven main computer manufacturers declared full support for the new version
during this conference. The X Window System Version 11 Release 1 (X11R1) was
then released on September 15, 1987.

The MIT X Consortium was founded in January, 1988 to foster development of X
and to control the X standards. The consortium associates more than 100 orga-
nizations (e.g. DEC, HP, Sun Microsystems), which are interested in the future
development and use of X. The current release is the X Window System 11 Release
5 (X11R5), which has been available since September 5, 1981. This release has
introduced support for scalable fonts, font servers, a new device-independent color
management system and support for internationalization based on the ANSI stan-
dards. A sample PEX (PHIGS extension to X) for 3-D graphics was first included
in this release. The PEX application interface is fully compatible with the PHIGS
and PHIGS PLUS standards. A new release of the X system is expected during the
first half of 1994.

Two predominant graphical user interfaces (OPEN LOOK and OSF/Motif) in
UNIX are based on X. Motif was developed by the Open Software Foundation
(OSF), which is a consortium of manufacturers including DEC, HP and IBM. The
look and feel of Motif is similar to that of Microsoft Windows. OPEN LOOK
is the standard of the UNIX International (UI) consortium for GUI, which was
developed primarily by AT&T and Sun Microsystems. Sun’s OpenWindows is user
and development environment compliant with the OPEN LOOK standard. This
environment takes the X Window and NeWS systems as equivalents.

1.3 System architecture
The architecture of the X system is based on the client-server model. X client

is an application program, which sends requests for window manipulations and
drawing texts or graphics. X server handles these requests and controls the

198

-

display (screen, mouse and keyboard). 1t transmits user actions to clients in the
form of events. The X client and X server are two independent processes, which
communicate with each other by the X protocol, which is the main standard of the
MIT X Consortium. Simplified structure of the client-server model is illustrated in
Figure 1.

Sun Sparc TT— -
Se:) it
s, J,@ Ol x server
VAX B
Lo -——-1
=11 . N
o § =
______ ! User
"l' Client sends
requests to server |
X client

Network

Figure 1: Client-server model

The client and server may run on different machines and communicate through a
network. Tie X system is network transparent and operates over various network
protocols including TCP/IP and DECnet. A server can handle more clienis and
clients can use services of several servers. A client running on one machine can
display its results at the same time on any computer for which an X server is
available. This fact greatly increases portability of applications. The X server
actually provides implementation of the X Window System on & particular device
and appears to be a standard graphics terminal for applications. It is the only part
of X which is device-dependent. This concept ensures application independence on
graphics hardware.

1.4 Application structure

One main part of X is the X client, which sends graphics requests to X server
and is responsible for handling user actions as well. It serves a large number of
functions, which are not included in the X server - provides look and feel, defines
user interface objects, interprets user input and redraws its windows. A special
client called a window manager gives the user means for window manipulations
such as resizing or iconifying and solves problems related to window size or position.

The X system provides several layers for application construction. The basic inter-
face of X represents the X protocol by means of which applications communicate
with X server. It is defined in terms of high-level packets (requests and events) and
is not practically used for programming. Applications are created by the use of k-
braries with various levels of abstraction. Some of them are standardized within X;
others are part of the MIT X distribution or development environment for particular
GUls. :

Basic X client functions are provided by the Xlib library. It consist of a large
set of C functions for display, window, input, event and resource manipulations.
These functions allow direct access to the X protocol requests and events and full
control of the system. Application development based on this library is very complex

199

and tedious. For this reason it is used mainly for the implementation of high-level
libraries and is avoided during application development as much as possible. Similar
interfaces exist in other programming languages such as LISP, ADA or Fortran.

Programmers prefer toolkits for the development of X clients. There are several
toolkits for X, available in different languages. They make application implemen-
tation, in general, easier and hide some details from programmers. The standard
toolkit of the X Window System is the X Toolkit. The X Toolkit consists of two
parts: the Xt Intrinsics framework and a set of user interface objects called wid-
gets in X. The Xt Intrinsics is a construction kit for building widgets and provides
fundamental mechanisms for the creation and use of widget sets. Its architecture is
based on object-oriented principles and techniques, which are very suitable for user
interface design. The Xt Intrinsics forms the object-oriented kernel of the X Toolkit
in C language.

While the Xt Intrinsics gives only tools for user interface design, the look and feel
of applications is defined by the particular widget set, which was used for their
creation. The MIT X distribution provides the Athena Widget Set as a sample
implementation of a widget set based on Xt Intrinsics. It was designed during the
development of MIT clients and utilities. The library is written in C language and
contains a sort of widgets (buttons, scroll bar, menu) sufficient for a large scale of
interactive applications. Figure 2 shows the typical structure of application based
on the X Toolkit and Athena Widget Set.

‘ Application ’
{
(Athena Widget Set '

‘ Xt Intrinsics)

w)

X protocol

Figure 2: General structure of X clients

While the Xt Intrinsics is the MIT X Consortium standard, there is no standard
widget set at present. In addition to Athena, there are a lot of various sets, toolkits
and frameworks. The OPEN LOOK Intrinsics Toolkit (OLIT) is an Intrinsics-based
toolkit for the design of applications compliant with the OPEN LOOK standard.
This toolkit is a standard part of Sun’s OpenWindows. The Motif Toolkit is another
Intrinsics-based toolkit, which is provided by the OSF for the development of
applications within OSF/Motif. There are also a lot of toolkits in C++. InterViews
from Stanford University is very popular and widely used. ET++ framework from
ETH Ziirich constitutes a complete application framework for the development of
interactive applications. Clear design, high compactness and portability makes this
library very remarkable.

200

[¥]

2 X server

The X server plays the key role in X and actually represents its imple{nemaflon
for a particular graphics device, workstation or operating system. In th}s section,
we describe its essential characteristics and in more detail some features important
from the point of view of computer graphics.

2.1 Server concepts

The main role of the X server is handling connections to multiple simultaneous re-
mote and local applications. Server-client communication is based on the X Protoc.o:
and is transmitted asynchronously. The communications link can be available in
any form of inter-process communication (shared memory, pipe) or network proto-
col. Clients send requests to the server, where they are stored in queue. A.lthou'gh
the server processes requests from each particular application in the order in which
they arrive, they are not necessarily processed immediately. Clients do qot usua.lly
wait for processing, but they can explicitly request synchronous handling, which
usually results in considerable slowing down of the system.

Graphics output processing is one of the main functions of the X server. It handles
clients’ requests for window manipulations and drawing texts or graphics. (At the
same time, the X server maintains all resources used by X, including windows,
pixmaps, cursors, colormaps, fonts and graphics contexts. These resources are cre-
ated and controlled by clients, but they are stored and maintained by the X server.
This feature decreases the amount of transmitted data between clieni and server
considerably. Clients can identify resources by unique resource identiﬁerfy W.hld’
are assigned by the X server. Resources can be shared among different applications.

The X server informs applications about user activities in the form of events, which
are generated either as direct or indirect results of user actions (key press, mouse
move, mouse button press). The X server also informs clients about changes of
window state, e.g. sends & client an Expose event when 2 window’s contents n.eed
to be restored. X supports a variety of input devices. Depending on implfmentaflOH»
a server can support tablets, trackballs or other data input and pointing de_VIcﬁ-
However, the most common input devices are the keyboard, used for textual input,
and the mouse, which serves as both a pointing and selection device.

The MIT X Consortium produces sample implementations of the X system for a
wide range of UNIX systems. Hardware manufacturers and third-party vendors
have developed servers for other workstations and operating systems. An X server
is usually software, but some graphics device manufacturers provides X-term:.na-ls,
where hardware and firmware provide an implementation of the server. X-terrmnals
represent, like ordinary terminals, input and output devices for X clients, Wthh. are
running remotely on central hosts. Some vendors have ported the X server in a
similar way to personal computers such as DOS PC or Atari, which are not suitable
for running X clients.

In X, many functions, which in other systems would usually be handled b}f the base
window system, are not performed by the X server but are left to the client. T.he
server does not automatically redraw the contents of windows. There are no special
facilities for resizing pictures in a window. The server does not provide any user
interface components such as menus, buttons, or scroll bars and does not mtfel'Pl'et
mouse or keyboard input. The server does not give users any means for w!ndow
manipulations such as resizing or iconifying and does not solve problems of window

201

size or position. These tasks are left to a special client - a window manager. These
features fully correspond with authors’ wishes to avoid any particular definition of
look and feel of the system and must be handled by clients.

2.2 Window management

The most important resource of X is the window. The X window represents a
bordered rectangular area of the screen filled with a background color or pattern.
In contrast to other systems, the X window has no title bar, scroll bar or other
decoration. The X server creates windows in response to requesis of clients. The
server stores and maintains them and clients refer to the window using its identifier.
Each client, which knows the identifier, can manipulate the window. This feature
is used by window managers to control the position of windows on the screen.

X organizes windows on the screen hierarchically into the window tree. The
root window is created automatically by the X server and occupies an entire
screen. Every window except the root window has & parent window (ancestor)
and can also have child windows (subwindows). As child windows may also have
subwindows, an arbitrarily deep window tree structure can be created. Figure 3
illustrates this hierarchical model and these relationships. Only the area of a child
window, which lies within the bounds of its parent, is visible. X automatically
maintains the clipping of subwindows.

Application window Root window

Menu
T Application window
Scroll thumb —-’

Drawing area

Drawing
Scroll bar /e Menu =000 Sa'olllbar

Root window Seroll thumb

Figure 3: Window tree hierarchy

X supports overlapping windows in a way that resembles papers on a desk. Windows
may occupy the same region on the screen and one window can completely or
partially obscure another one. The X system maintains automatically correct
overlapping of windows based on the stack metaphor. Although each X window
is associated with a rectangular area on the screen, all windows are not necessarily
visible. A window is not displayed automatically after its creation. A client must
issue a map request to display that window. But it still might not be visible
for various reasons. It might be clipped by its parent or completely obscured by
another window. Another reason might be that any ancestor of the window is
not mapped. A window that is mapped, but has an ancestor that is not mapped,
is called unviewable. Such a window automatically becomes viewable when all
ancestors are mapped.

Every window system with overlapping windows must in some way solve the problem
of preserving window’s contents when that window is covered by another window to
be able to restore its contents later. At present, there are three common methods
of solving this problem. Some systems preserve covered windows and all their
changes are performed ofl-screen in memory, so they can be restored at any time.

202

”

This method is called backing-store. Some systems preserves areas, which are
obscured by another window in the frozen state and any change of this area is lost.
This method is called save-unders. Other systems do not preserve any window’s
contents and pass this responsibility to applications. X allows the combination of
all three methods, but the first two are not guaranteed by the system and have
only supplementary character. Its availability depends on the particular X server
implementation and the required amount of memory. The primary principle of X is
based on the last method. Every client must be able to redraw the contents of its
windows on request at any time.

The previous paragraphs show fundamental principles and concepts of window man-
agement. It should be noted, that the X server is not in fact responsible for window
management. For the reason of high fiexibility, window management is handled by
a client with special rights - 2 window manager. Entire output to the screen
is limited to main application windows, which are direct children of the root win-
dow. Problems related to size, position, stacking order, overlapping and iconifying
of main application windows are solved by the window manager, which also adds
their title bars, controls and other decorations. The window manager also medi-
ates inter-client communication and handles their inter-operation, co-existence and
competition for system resources. The ICCCM (Inter—Client Communication Con-
ventions Manual) standard regulates inter-client communication and co-existence.
X provides standard functions and mechanisms, which make it possible to create
window managers and to carry out their tasks. The MIT X distribution includes
Tab Window Manager (twm). Two predominant GUls have thei- own window
managers ~ OPEN LOOK Window Manager (olwm) and Motif Window Manager
(mwm).

2.3 Graphics

The X server enables applications to send requests for drawing graphics or text
within windows. In relation to drawing graphics, there are problems of graphical
attributes, color specification and text fonts. X supports two-dimensional graphics.
A picture is represented by a matrix of pixels. Graphics operations can be per-
formed within windows as well as pixmaps, which are stored off-screen in memory.
The common term drawable is used in X for both windows and pixmaps.

Each drawable has its own integer coordinate system with the base point (0,0)
in the upper left corner. The x coordinate increases toward the right and the y
coordinate increases toward the bottom. All dimensions are expressed in pixels.
The X server has no special facilities for resizing pictures in an X window. The
third dimension of drawables is the number of bits representing pixel, which is
called depth. Drawable can be divided in this dimension into planes, whose depth
is 1. The X server provides requests for drawing graphics primitives and their sets,
including point, line and polyline, rectangle, arc and filled rectangle, polygon and
arc. There are also functions for clearing area and copying area between drawables
available.

X represents pictures internally in the server as pixmaps. Bitmap (1-bit depth
pixmap) can be considered as a special case used in X for the definition of filling
patterns, icons and cursors. Bitmap is also used to specify a clipping region for
graphics operations. This technique provides an easy way to display non-rectangular
windows on the screen. Image is a structure defined in X for easier off-screen
manipulation with raster data, which are independent of particular X server and
portable across different platforms and graphics devices.

203

Each result of grapbics operations is dependent on a large number of graphical
attributes, which are provided in X. These attributes are stored within the X server
in the graphics context resource. The X system supporis many usual and some
unusual attributes: foreground and background colors, line width and style, cap and
Join styles, dash lengths and offset, fill style, tile and stipple pixmaps and offset,
polygon filling rule, arc filling mode and font. The clipping mask, plane mask and
logical display function define exactly destination pixels of graphics operations.

2.4 Colors

Window management systems should solve problems of color display, matching
and management. X supports & wide range of displays from simple monochrome
to modern true color dispiays. The most commoniy used displays are based on
colormap architecture. These devices are usually able to display at one time fewer
colors than can be chosen from the palette. Colormap is a color lookup tabie,
which stores actual colors, and pixel value in some way represents an index to this
table. The X system uses color representation based on colormaps.

Considering the big differences of graphics devices, X divides them according to
visual type into 6 visual classes (visuals). A list of supported visuals with de-
tailed descriptions is then available for each device. Server representation of colors
is internally based om a triplet of 16-bit red, green and blue (RGB) values. The
server also maintains the database of color names and their RGB representation.
This database enables clients to indicate colors by names such as “green™, “or-
ange” or “pink”. Colors can also be specified by their RGB values and the server
automatically chooses a matching color, which the device is able to display.

A much bigger problem seems to be the allocation of colormap to applications and
sharing colormap among them. X provides multiple software colormaps and each
window can have its own colormap associated with it. One of these is then installed
into hardware colormap. The window manager is responsible for the instaliation of
active colormap and uses the colormap of the current window in compliance with
convention. This means that other applications and windows may be displayed in
incorrect colors, because their colors are changed. X allows the sharing of particular
colors in colormaps across windows and appiications and then helps to eliminate
this problem in some cases. But at the sam+ time the provided mechanism grants
the right to allocate and change the whole colormap to applications.

The RGB scheme for specifying colors is closely dependent on a particular graphics
device. Then other color spaces were developed, which are independent of graphics
bardware. Release X11R5 has introduced Xcms (X Color Management System),
which provides the CIE XYZ, CIE xyY, CIE L*u*v, CIE L*a*b and TekHVC
color spaces for the specification of colors. This extension includes functions for
conversion between color spaces and also mechanisms for the definition and use of
new individual color spaces. Specification of color and illumination characteristics
or device calibration is required for the use of this extension. Xems is not part of
X server, which still uses the RGB scheme, but is provided as an extension of the
standard Xlib library.

2.5 Texts and fonts

In the X system, there are several requests for drawing and bandling texts and
manipulating fonts. Besides drawing texts. font characteristics and text dimensions

204

ot]

can be queried. Texts are drawn horizontally and cannot be rotated. Multiple fonts
and character sets can be used simultaneously. Characters in fonts can be ex.lcoded
as one or two bytes. Up to release X11R4, raster fonts, which are stored as bitmaps
on the server, were used exclusively. Release X11R5 has introduced support for
scalable and outline fonts. A scaler for bitmap fonts has been included and the
Bitstream Speedo technology for scalable outline fonts has been incorporated.

The XLFD (X Logical Font Description) standard defines the font pame scpeme
and the method of font description. This standard provides conventions for uniform
font names and characteristics, which are independent of a particular X server,
operating and file system. The full XLFD font name also includes a character s‘et
indication. X presently supports ISO 8859 character encodings (Latin 1-5, Arabic,
Cyrillic, Greek, Hebrew) as well as some oriental standards (JIS, KS, GB). C"ItEXT
(Compound Text) is a format for multiple character set data, such as m?lltl-lmgual
texts. It is intended as an external representation and can be used for inter-client
communication and interchange among various environments and platforms.

The distribution of raster fonts across platforms is enabled by the standardized
portable, plain-text, format called BDF (Bitmap Distribution Format). X servers
use the effective internal format PCF (Portable Compiled Format) for text handh.ng
in release X11R5, or SNF (Server Natural Format) in earlier releases. Despite
these standards, administration of fonts is & complex problem. The instullah.on
of new fonts and special technologies is especially difficult in a large network. w1t.h
many different platforms. Also the server memory and disk space consumption 1s
remarkable for the use of many fonts.

To overcome these problems, font servers were introduced in release X11R5. X font
server is a special server, which sends the X server requested font information and
character bitmaps. The X server, instead of reading font files directly, can ask the
font server for particular information. Font servers enable central storage of font
files and easy installation. The X server can be connected to more than one font
server, which can be chained together. The introduction of new font technology or
format could be easily accommodated through the installation of a new font server
supplied by its font vendor.

2.6 Server extensions

Certain funciionality was for various reasons not incorporated into the base X sys-
tem and would have to be added later on. X bas been built as an opcn.system
and provides various methods for the extension and addition of new fqnctnons. .It
makes it possible to adjust X in a clean way for novel hardware and special graphics
devices. This feature can be used for solving special user needs or demands found
during the use and administration of X.

One way to extend X is by means of server extension. The X system provides
& well-defined standard hanism for such an extension, which actually repre-
sents an X protocol extension and defines new primitive services supported by the
X server. Therefore a special extension library usually makes it possible to u.woke
new functionality and to issue extra requests for new services. Queries for avm}able
extensions and their versions can be made. So applications may be written lx}de—
pendently of server extensions. An X client, which needs a particular extension,
unfortunately depends on a certain X server, but may still be device-independent.

SHAPE (X11 Nonrectangular Window Shape Extension) provides non-rectangular
windows in X. It is the most popular extension, which has become the X standard.

205

MIT-SHM (MIT Shared Memory Extension) facilitates memory-sharing for cer-
tain data on one machine between the server and client. Input extension (X1J
Input Extension Protocol Specification and X1f Input Eztension Library Specifi-
cation) is the standard mechanism for the definition and use of additional-input
devices. Support for 3-D graphics introduced in the current release X11R5 is imple-
mented as an extension of the X server as well. The X3D-PEX (PHIGS extension
to X) extension is defined in the draft X standard.

Some vendors provide their own extensions of the X servet. The MIT X Consortium
controls the registration and standardization of these extensions. Currently, there
are more than 40 different extensions of the X server registered. Some of them are
limited to one platform; others are widely available. A well-known frequent ex-
tension is support for the Display PostScript language (Adobe-DPS-Extension).
Special hardware and software of Silicon Graphics workstations can be used by
means of the SGI-XGL extension.

References

[1} Asente, P. - Swick, R.R.: X Windov. System Toolkit. The Complele Program-
mer’s Guide and Specification. X Version 11, Release 4. Digital Press, Bedford,
MA, 1990.

[2] Barkakati, N.: UNIX Deskiop Guide to OPEN LOOK. SAMS, Carmel, IN,
1992.

{3} Limpouch, A.: X Window System - programovéni aplikaci. Grada, Praha, 1993.

[4) McCormack, J. — Asente, P.: An Overview of the X Toolkit. Proceedings of the
ACM SIGGRAPH Symposium on User Interface Software (Banfl, Oct. 17-19,
1988), ACM Press, 1988, pp. 46--55.

[5] Mikes, S.: X Window System Program Design and Developmeni. Addison-
Wesley, Reading, MA, 1992.

[6] Scheifler, R.W. - Gettys, J.: X Window System. The Complete Reference
to Xlib, X Protocol, ICCM, XLFD. X Version 11, Release 4. Digital Press,
Bedford, MA, 1990.

[7) Young, D.A.: X Window Systems: Progr ing and Applications with X1.
Prentice Hall, Englewood Clifis, NJ, 1989.

[8] Peterson, Ch.D.: Athena Widget Set - C Language Interface. X Window Sys-
tem. X Version 11, Release 5. MIT, Cambridge, MA, 1991.

[9] Rosenthal, D.: Inter~Client C ication C. tions Mansal. Version 1.1.
MIT X Consortium Standard. X Version 11, Release 5. MIT, Cambridge, MA,
1991. .

[10) Flowers, 1.: X Logical Font Description Conventions. Version 1.4. MIT X Con-
sortium Standard. X Version 11, Release 5. MIT, Cambridge, MA, 1991.

[11] Gettys, J. - Scheifier, R.W.: Xlib - C Language Interface. MIT X Consortium
Standard. X Version 11, Release 5. First Revision. MIT, Cambridge, MA, 1991.

[12] McCormack, J. - Asente, P. ~ Swick, R.R.: X Toolkit Intrinsics - C Language
Interface. X Window System. X Version 11, Release 5. First Revision, MIT,
Cambridge, MA, 1991.

206

-

An Algorithm for Fast Voxel Scene Traversal

Milo3 Srémek*
Institute of Measurement Science
Slovak Academy of Sciences,
Dibravské cesta 9, 842 19 Bratislava,CSFR

Abstract

Together with improvement of tomographic methods of scanning 3]? data, r;
siding in an increase of distinguishing ability of the scanners, ‘the qua.hty. ?f fin
3D reconstruction of the data comes into foreground. An inevnablg co.nd.ltlon for
visualization of small details, comparable with the voxel size is application of such
algorithms, which enables to define a surface of the scannec"l object on subvoxel level.
Coming out from paper published at previous year of Winter School on Computeetl'
Graphics and CAD Systems we present an algorithm for fast .traversal c?f the vox:
scene, which enables to find a nearest intersection of a ray with t.he object surface
defined in such a way. High speed of the algorithm utilizes object coherency f’f
the scene, which means that voxels belonging to the object are usually grouped in

nected regions.
conThe a.lgroer?thm consists from two steps: preprocessing and scene traversal. In th'e
preprocessing phase we assign 10 each background voxel of the segmentfed s;e;:e &
value equal to its chessboard distance from the nearest object vo'xel, wh‘xch e ne:<
a cubic macro region with no object voxels inside. While generating a discrete 1'3 ,
we can jump over this region, which results in up to 6-fold speed up of t.h.e traversal.
The algorithm has no additional demands on memory, since the distance is stored in
originally "empty” background voxels.

1 Introduction

Together with improvement of tomographic methods of si:anning 3D data, resxdmgt in a.r;
increase of distinguishing ability of the scanners, the quality 9{ ﬁnal 3,D reconstruc(1 ion 1o
the data comes into foreground. An inevitable condition for vxsuahgatlon of small e;: S
comparable with the voxel size is application of such algorithm., which 'enables toddeLC;7a
surface of the scanned object on subvoxel level. Traditionally, tr.langula.tlon metho sL ceu}
are used, which approximate object surface defined within a neighborhood of 8 voxe (cell)

207

