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1 Abstract

This paper describes a mathematical framework for rendering algorithms. Starting from the ren-
dering equation and the potential equation, we will introduce the Global Reflection Distribution
Function (GRDF). By using the GRDEF, we are able to compute the behaviour of light in an envi-
ronment, independent of the initial lighting or viewpoint conditions. This framework is able to
describe most existing rendering algorithms.

2 Introduction

The global illumination problem is formulated by the well known rendering equation [Kajiya86].
Different methods have been proposed to solve this equation: Monte Carlo Path Tracing, which is
in fact an application of distributed ray tracing [Cook et al. 84, Shirley-Wang91, Shirley-Wang92];
various two-pass methods [Chen et al. 91, Sillion-Puech89, Wallace et al. 87], which combine a
radiosity and a ray tracing pass; methods based on particle tracing [Pattanaik-Mudur92], which are
related to solutions presented in recent heat transfer literature [Brewster92].

Algorithms which solve the global illumination problem can be subdivided into four different
classes. A first group of methods is based upon gathering techniques: the illumination of a point or
surface is computed by looking at its surroundings, and by taking into account possible contribu-
tions towards the illumination of the surface. A second group of methods simulates the propaga-
tion of light in an environment, starting from the light sources. Both these approaches can further
be divided in deterministic and probabilistic algorithms. Gathering algorithms are described by the
traditional rendering equation, but shooting algorithms are best described by the so called potential
equation [Pattanaik-Mudur93, Pattanaik93].

3 The rendering equation

3.1 Exitant and incident radiance

Radiance is the basic quantity for describing light transport. It is expressed as power per unit sur-
face area per unit solid angle. Exitant radiance (L) is the radiance leaving a surface point in a
given direction of the hemisphere. Incident radiance (L") is radiance arriving at a surface point
from a direction belonging to the hemisphere. Equation 1 gives the realtionship between exitant
and incident radiance (figure 1).
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where:
e [ (x—0): exitant radiance leaving x in direction 6 [Watt / m? sr].

e [ (y<V): incident radiance arriving at y from direction y [Watt / m? sr].
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FIGURE 1. Exitant and incident radiance

Propagation of radiance in an environment is described by the well known rendering equation (fig-
ure 2):
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FIGURE 2. Transport of exitant radiance

where:

e [, (x—0): self-emitted excitant radiance leaving x in direction 8 [Watt / m? sr].

Q,: hemisphere around x.

doy: differential solid angle around direction @.

p(x, ©): the closest point seen from x in direction .

(p'l: direction opposite to .

fl.((p'l, x, 0): Bidirectional Reflection Distribution Function (BRDF) evaluated at x, with inco-
ming direction (p" and outgoing direction 0.



® cos(®, n,): the absolute value of the cosine of the angle between direction ¢ and the normal
direction at x.

The integral over the hemisphere around x can be written as a transport operator 7" working on
L(x—0):

L(x—8) =L,(x—8) +TL (x — 6)

TL(x—>8) = [L(p(x,¢) > ¢7)f, (9, x6) cos (¢, n,) do, R
Q

X

Substituting equation 1 in equation 2, we derive a similar transport equation for incident radiance
(figure 3):
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FIGURE 3. Transport of incident radiance

In analogy with the transport equation for exitant radiance, we define an operator Q such that:

Liyewy) =L, (y<=Vy) +QL(y < V)
OLG W) = [ LW «of 9.0 (0w, W) cos (9.1, ) do, ®)

Qﬂ . ¥)

3.2 Adjoint equations

Two operators O; and O, operating on elements of the same vectorspace V, are said to be adjoint
with respect to an inner product <A, B> if:

VA, Be V:{0,A,B) = (A, 0,B) (6)

0, is called the adjoint operator of O; and is denoted as O ]*. It is easy to prove that the above
defined operators T and Q are adjoint to each other for the following inner product, defined in the
space of all functions operating on arguments (z, 0) € AxCQ:

(F.Fy) = [ [ F) (2 @) F,(z & 0) cos (9.n) do dp. %)
AQT



We will refer to the above defined transport operators as 7" and T, corresponding to exitant and
incident radiance respectively.

4 Flux

The flux is the total amount of power emitted by a set of points and a set of directions around these
points. This total set is described by a function g(x, 0). g equals 1 if (x, 8) belongs to the set, and
equals O if (x, 8) does not belong to the set. The flux, associated with a set S defined by g, can then
be written as:

(S = J.IL(z—Hp)g(z, ) cos (¢, n,) dodu. 8)
A0,

or, using the inner product defined above:
() = (L7, 8) ©)

5 The potential equation

The potential equation (referenties) describes the global illumination problem from a different
point of view. The advantage of the potential equation is that shooting algorithms are better
described using this equation. Instead of computing the radiance of all pairs (x, ©) we are interested
in, shooting algorithms compute the potential W(x, 8) for each pair (x, 0), w.r.t. a given set of
which we want to compute the flux. W(x, 0) describes the fraction of the radiance L(x—0) which
contributes to the flux of the set S. W,(x, ©) equals 1 for points belonging to the set and equals O for
all other points. The potential W(x, 8) can be described by the following transport equation (figure
3):
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FIGURE 4. Transport of potential

This equation is the same transport equation as was used to describe the transport of incident radi-
ance. Therefore, we will apply the same notion of “incidence” to potential. W(x,0) as described
here is thus incident potential and we will use the notation W(x<—8). Thus the transport equation of
W(x<—0) can be written as:

W(xe<8) =W, (x<0) +T W(x<8) (11)



In analogy with the relation between exitant and incident radiance, we can also define exitant
potential:

Wh-w) =Wph.y <y

(12)
or W(x«8)=W(p(x,0) -0

Substituting equation 12 in equation 10:

Why-w) = W,0-ow+ [ WEew =0/ @p 0w, v cos (9.1, ) do,(13)

Qp v

or
Wiy—-vwy) =W, (-=>y) +TW(y > V) (14)

Thus, we have derived two different sets of transport equations which describe the global illumina-
tion problem. On the one hand we have excitant radiance and incident potential, described by
adjoint transport equations. On the other hand, we have incident radiance and excitant potential,
also described by a set of adjoint transport equations.

From the observations above, we can derive an alternate formula for the flux. The function g can
be replaced by W, since these functions describe the same property of a point.

D(S) =(L".g)
= (L7, W)
=7, W =T W)
= (L7 WYy (LT, T W) (15)

= (L7, W) —(TL”, W)
=(L" -TL”,W")
=L, W)

In order to solve the global illumination problem, we need to compute the flux for a number of
sets. If a ray tracing approach is used, one set consist of the points and associated directions visible
to a pixel; if a radiosity algorithm is used, a set consists of a single patch with an associated hemi-
sphere for each point. We have two sets of equations at our disposal to compute the fluxes:

D(S) =7 W) @) =L, W)
(16)
L7 =17 +TL” W =W T W

The set of equations on the left corresponds to gathering algorithms. Given a set S defined by W, ",
we have to compute the corresponding L. L™ is computed by gathering all incoming radiances at
the point of interest. Ray tracing algorithms are a typical example of gathering algorithms.

The set of equations on the right corresponds to shooting algorithms. With respect to a given set S,
a potential is computed for each point belonging to a light source. W< is computed by “shooting”
light into the environment, until we eventually reach the set S. Progressive radiosity is a typical
example.



Both approaches have distinct advantages. Some two-pass methods use the advantages of both
radiosity and ray tracing algorithms.

6 Global Reflection Distribution Function

Given the transport equation of L™, it is clear that each single value L™ (x—8) can be written as a
linear combination of all possible values L, (z—®). Indeed:

L” =L +TL”

=L +T(L, +T(L, +T(L, +T(L, +..)))) A7)

N
e

=(I+T+T*+T>+T'+..)L

The fraction of each L, (z—®) that counts towards L~ (x—8) can be considered as a function F .0
over all (z, @). Thus:

L(x—>8) = (L, F g (18)

For each point (x, 0), there is a corresponding function F, g. We can express the single value
L(x—0) as an inner product by using a suitable Dirac impulse:

8, 4(z0) =0 if (z.9) # (x.6)

[ [£x.0)8, 4z @) cos (¢.n,) dodu,_ =1 (x.6) (1

AQ:

This leads to the following observations:

L7 (x—0) =(L7,8 ) =(L, . F,§)
= <Le_>’Fx.6>
=(L7 =TL”F ¢ "
= (L7, F g—(TL”,F_¢) o
= (L7 F, g)~(L”.T Fy )
=(L7.F, ¢—T Fyp)

This holds for all possible functions L™ and all values of x and 6. Therefore, we can say that:

3, :Fx’e—T*Fx,e
21
%
or F o= 8x‘6+T Fy o

F g can be expressed by the same transport equation that was used for incident potential. We can
also apply the notion of “incidence” to F g. The full transport equation then reads:

Fooew) =38 (e +T Fro(y <) (22)

We can make an analogue reasoning for the potential. We can derive a fuction G, y, such that:



—
Wy« =W, .G, )

(23)
G W(x—)G) =8y’w(x—>9) +TGy’W(x—>9)

It is clear that there must be some relationship between F g and G|, . Based on the two different
expressions for the flux of a given set, we can derive this relationshlp

D(S) =L, W, )

”L (x = 8) Wo (x < ) cos (8, n,) doydp,

A

= [ [ (L7 F, )W, (x < 8) cos (6, n,) dwgdy, @9
Q

j” (Y > W) W, (x < 0)F, (v W) cos (y,n) cos (6, n,) do, dn dogdy,
AQ

and also
®(S) =(L,, W)
=[[L7 0> W (v ) cos (. n) do, di,

25
= ij y—=>wv) (W;_,Gy’w)cos(\y, ny)d(x)waluy @)

Q
j _[Le (y > W W, (x&8)G,\, (x— 8) cos (y, n) cos (8, n,) dwgdp do, du,
Since equation 24 and equation 25 have to be equal, and since this equality holds for all possible
functions L, and W,*", the relation between F and G is found:

Foew) =G, (x—0) 6)
Because of this relationship, the functions F ¢ and G, \, can be described by a single function F:
Fx‘e(y<—\|l)=Gy'w(x—>9) =F.(y<y,x—0) (27)

F, is the global reflection distribution function (GRDF), as introduced by Lafortune [Lafor-
tune93bl.

7 Properties of the GRDF

7.1 Transport equations

Since the GRDF is defined through the definitions of F and G, the following adjoint transport
equations describe the behaviour of the GRDF:

F(yey,x—8) =8(ye—y,x—=0)+T F,(y<y,x—0) o8
F(yey,x—0) =0y« y,x—0)+TF (y< y,x—0)

This double formulation implies that there are two different ways to compute specific values of the
GRDF: a gathering approach and a shooting approach.



7.2 Physical interpretation

From the above observations, the following interpretation can be given to the GRDF:

o F(y<V, x—0) is the differential fraction of L™ (y—>y)cos(V, ny)dwydp, which contributes to
the value of L™ (x—9).

o F(y<V, x—0) is the differential fraction of W (x<0)cos(0, n,)dwgdu, which contributes to
the value of W< (y<v).

This is very similar to the definition of the common BRDEF, which describes the same property for
exitant and incident radiance in a single point. The GRDF expands on this concept and describes
the relationship between any two radiance or potential values, taking into account all possible
reflections. The BRDF can be considered as a special case of the GRDFE. The name Global Reflec-
tion Distribution Function is therefore quite appropriate.

7.3 Transforming arguments

Since the values of F,(y<—y, x—8) need to be the same, no matter which transport equations we
use to compute the values, T'F Ay, x—0) and TF (y<—V, x—0) should be equal:

TF(peywx=0) = [ Fp0w «ox>0)£(0.p0n v,y cos (9.1, ) do,

Q
P (W) (29)
TF,(y = V.x>0) = [F,(y = ¥.p (x.0) > ¢7)f,(9.x0) cos (¢, n,) dw,,
Q

X

From this equality, the following property of the GRDF can be derived:

F.(y<y,x—8) =F (p(x,08) <06 LpOy -y (30)

This relationship is the generalisation of the property of the BRDEF, in which the incoming and out-
going direction can be switched, resulting in the same value of the BRDE

8 Practical applications

The GRDF is independent of both L, and W, ", it only depends on the geometry of the scene and
the surface characteristics of the objects. If one is able to compute the GRDF in advance, applying
different values of L,” or W, is straightforward. Changing L, means that the initial lighting
conditions are changed; changing W,~ means we want to compute the flux for a different set. This
latter option also encompasses the change of viewpoint.

Since the GRDF is described by two transport equations, we have a choice of what equation to use
in order to compute different values of the GRDF:

o Ifweusethe T equation, we are actually using a gathering approach, leading to algorithms as
stochastic ray tracing [Cook et al. 84], path tracing [Kajiya86] or Gauss-Seidel radiosity.

e If we use the T equation, a shooting approach is used, leading to algorithms such as particle
tracing [Pattanaik92, Dutré et al. 93] or progressive radiosity.

e A simultaneous use of both transport equations has been described by [Lafortune93a]. This
dual path tracing algoritm involves elements of both ray tracing and particle tracing, and uses
the advantages of both.



9 Conclusion

We have described a powerful mathematical framework in which all rendering algorithms can be
defined. The Global Reflection Distribution Function (GRDF) plays a major role in this frame-
work. The advantages of the GRDF are:

e [t allows us to compute the behaviour of light in a given environment, independent of initial
lighting conditions and independent of the final choice of viewpoint.

e All rendering algorithms can be described as different ways of solving the GRDF equations.

¢ The GRDF is described by two adjoint transport equations. Combining both these equations in
a single algorithm combines the advantages of both shooting and gathering algorithms.
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