Raytracing 3D linear graftals

Ph. Bekaert,

Y. D. Willems

Department of Computing Science
Katholieke Universiteit Leuven

Celestijnenlaan 2004,

3001 Leuven, Belgium

philippe@cs.kuleuven.ac.be

Abstract

Many objects in nature, like trees, moun-
tains and seashells, have a property called
selfsimilarity. Sometimes this property is
very pronounced, other natural phenom-
ena exhibit this property to a lesser degree.
During the past years much attention has
been paid to fractals, purely selfsimilar ob-
jects. We present a formalism, based on
the wellknown object-instancing graph, to
represent objects which are not necessarily
purely selfsimilar. We show that Iterated
Function Systems and some famous vari-
ants can be described elegantly in this for-
malism. We also present an algorithm to
raytrace such objects.

Keywords: rendering, fractals, formal lan-
guages, raytracing

1 Introduction

B.B.Mandelbrot [9] pointed out that many
objects in nature, like trees and mountains,
share the property that they seem to consist
of downscaled copies of themselves, a prop-
erty called selfsimilarity. He called such ob-
jects “fractal” objects. One distinguishes
between deterministic and random (or sta-
tistical) selfsimilarity. In the latter case the
parameters of the downscaling transforma-
tions are not constant, but subject to sta-
tistical spread. One also distinguishes linear

deterministic fractals, where the downscal-
ing transformations are linear, from nonlin-
ear fractals, like the Mandelbrot set. Ran-
dom fractals have been used with success for
the simulation of terrain in computer graph-
ics {4; 10] whereas deterministic fractals are
well suited for the computer generation of
e.g. plausible trees and seashells.

Linear deterministic fractals are attrac-
tors of Iterated Function Systems (IFSs) [1).
An TFSis a set {w; |1 = 1...nwithn €
N} of contractive affine linear transiorma-
tions w,. A transformation is contractive
if it has, roughly spoken, the property of
downscaling all possible geometrical figures.
Each such set defines a unique figure, called
the attractor of the IFS. The collage theo-
rem [1] provides us with a means of con-
structing such a set of transformations for
a given geometrical figure. The use of IFS’s
in computer graphics is presented in [2;
3.

Lindenmayer-systems (L-systems) [8] are
based on the theory of formal languages. L-
systems are parallel rewriting systems that
are used for describing the growth of plants
and trees in 2 biologically motivated way.
An introduction to L-systems and some
excellent computer generated pictures of
plants and trees can be found in [12]. The
figures resulting from an L-system descrip-
tion are in general not purely selfsimilar and
thus, as such, not fractals. However, they

L0

"n

r 7

clearly show features of fractals: some, but
not all, parts of such figures are copies of
the complete figure or parts of it. Such fig-
ures are called graftals. [12] shows how an
L-system description of a purely selfsimilar
object can be converted into an IFS.

In this article we present an L-system-
like formalism for describing all possible lin-
ear graftals and an algorithm for raytrac-
ing them. The formalism is based on the
notion of object instancing graph, a well-
known concepi in computer graphics. In
§2 we present the formalism and in §3 the
raytracing of the objects described by the
formalism.

2 The Formalism

2.1 Object instancing

A database of graphical objects to be vi-
sualized often has a hierarchical structure.
Down in the hierarchy are simple, primitive
objects from whick more complex objects
are composed. These composed objects can
be used for composing even more complex
objects. The composition is done by trans-
forming a primitive object to the location
where it is needed. This transforming is
called “instantiating”. Such an approach
has several benefits: it makes the modeliing
of objects easier and it saves memory.

The way objects are defined in terms of
other objects can be represented by a di-
rected graph, the object instancing graph.
The nodes in the graph represent graphical
objects and the edges are transiormations.
An edge from node A to node B denotes
that a graphical object A4 is composed of an
instance of a graphical object B according
to the transformation w associated with the
edge (fig.1).

Such an abject instancing graph is nor-
mally acyclic. If the graph contains cycles,
the graphical object denoted by the topnode
of the graph has parts that consist of copies
of itself and thus is 2 graftal (fig.2). A suf-

41

Figure 1: An acyclic object instancing
graph

Figure 2: A cyclic object instancing graph

ficient criterion for convergence is that the
composition of all transformations in each
cycle is a contractive transformation.

In the next section we propose an L-
system-like formalism that describes object
instancing graphs in the most general case.

2.2 IFS codes with restrictions

An object instancing graph can be repre-
sented by the following parallel rewriting
system:

¢ Let V be an alphabet. An alphabetisa
set of symbols. These symbols label the
nodes of the object instancing graph;

o Let W be a set of transformations
closed under composition: the com-
position of two transformations of W



is always a transformation of W too.
In this paper we think of the full set
of linear affine transformations in the
three dimensional euclidian space. It
was stated in §2.1 that such transfor-
mations are associated with the edges
of the graph;

Let (V xW)* and (V x W)* be the set
of resp. all and all non-empty words,
written with couples (4, w) € (V xW).
We write such a couple (4, w) as w(4)
and, if w is the unity transformation,
also as A. Such a couple corresponds
to an instance of a graphical object,
labeled A, according to the transfor-
mation w. A word w(A)v(B) denotes
a graphical object composed of an in-
stance of A and B according to the
transformations w resp. v.

An arbitrary object instancing graph can
be represented by a quadruple (V,W,w, P)
with w € (V X W)¥, called the axiom, and
P CV x(VxW), called the production
rules.

There can be, but does not have to be, a
geometry associated with each symbol A in
V. This means that A represents a sphere
or a cube or some other primitive geomet-
rical shape. In general this will be the case
only for the terminal nodes, the leaves, of
the object instancing graph. Such a termi-
nal node corresponds to a symbol for which
no production rule, except the identity pro-
duction A — A, is given. There must al-
ways be a geometry associated with each
terminal node. This does not have to be
the case for non-terminal nodes since non-
terminal nodes denote objects which are
composed of other objects.

The axiom w is the object represented by
the top of the graph. It will normally be a
couple (0, e) with no geometry associated
with O and e the identity transform. We al-
low the axiom to be any possible non-empty
word, but the general case can be reduced

to this special case by introducing a produc-
tion rule O — w that produces the axiom w
from O.

A production rule

A = wy(By)...wn(Bn)

with predecessor A denotes the edges that
Jeave from the node labelled A of the object
instancing graph: there are n edges con-
necting A with B, ...B, with transforma-
tions wy ... wy, associated with them. Thus,
A consists of instances of B; ... B, accord-
ing the transformations w;...w, (fig.3).
wy(By)...wn{By) is called the successor of
the production rule. If no production rule is
given for & symbol, we assume the identity
production rule A — A. Such a symbolis a
terminal symbol.

Application of a set of production rules
A; = ... to a word of couples (A;,w;) is
done by substituting each symbol 4; in the
word by the successor of the production rule
with predecessor 4;. We agree that the suc-
cessor be a non-empty word, although in
general also empty successors are allowed.
Application of 4 — wy(B;)...wa(By) to
w(A) thus yields

w(wi(By).. -wn(Bn))
= (w o wl)(Bl) .. .(w o wn)(Bn)

with w o w; denoting the composition of w
after w;.

We acquire a (generally long) word rep-
resenting the graphical object described by
the object instancing graph by repeatedly
applying the production rules P on the ax-
jom w of the parallel rewriting system. If

42

r

—-—

the object instancing graph is acyclic, this
process will end, since after a finite number
of iterations the resulting word will contain
only terminal symbols for which the iden-
tity production rule applies. If the graph is
cyclic, we have to look for an appropriate
stopcriterion.

When rendering the graphical object rep-
resented by this word, we are free to choose
a geometry for symbols with no associated
geometry Our convention is to ignore such
symbols when there are symbols with an as-
sociated geometry in the graph, i.e. leaves,
and to choose a random geometry which en-
closes the limit-figure in case there are no
symbols witk associated geometries. In the
latter case the object instancing graph has
no leaves and represents an object that con-
sists of only instances of (parts of) itself, as
is the case for e.g. the attractor of an IFS
code.

The examples in §2.3 will make clear
why we call the quadruples (V, W,w, P)IFS
codes with restrictions.

2.3 Examples
2.3.1 IFS-codes

The attractor of an IFS-code {wy,...,wn}
[1] is a figure composed of only instances
of itself according to the transformations
wy,...,Wn. The object instancing graph is
shown in figure 4. The graph consists of one
node A and n loops and is represented by
the following paraliel rewriting system:

w : A
P A—- w(Aw(A4)... . wa(4)
The first derivations are:
A
w1(A) ... wa(4)

(w1 0wy )(A)(wrowa)(A4) ...
oo (Wn o Wno )(A)(wn o wa)(A4)

¥y

Figure 4: Object instancing graph of the
attractor of an IFS-code

The derivation of length k consists of the k-
th order images of A. The graphical objects
represented by the derivations form a series
which converges to the attractor of the IFS-
code, whatever geometry is associated to A.

2.3.2 IFS-codes with condensation
set

Figure 5 shows the object instancing graph
of the attractor of an IFS-code with con-
densation set (CIFS-code) [2]. The graph
has two nodes A and B. Node A has n
loops annotated with the transformations
w;,..., Wy of the code and one edge to node
B. B is a terminal node and thus must have
an associated geometry. If wp is the trans-
formation corresponding to the edge from
Ato B, then wgp(B) is the condensation set
of the CIFS-code. The graph is represented
by the following parallel rewriting system:

w : A
P A— wp(Blwi(4) ... wa(4)
ps : B—- B

The derivation of length 1 is
wp(B)w(A)wa(4) ... wa(A)

and of length 2

wa(B)
wi(wp(B)) wi(wi(4)) ... wa(wa(4))
wa(wp(B)) wa(wi(4)) ... wa(wa(4))
wn(wB(B)) wﬂ(wl(A)) oo wn(wn(A))



Figure 5: Object instancing graph of the
attractor of a CIFS-code

The derivation of length k contains all im-
ages up to order k of the condensation
set wp(B) according to the transformations
wy,...,wy of the CIFS code. If we ignore
the symbol A when rendering the graphical
objects represented by the derivations, we
get in the limit the attractor of the CIFS
code.

2.3.3 Hierarchical IFS-codes

The condensation set of a CIFS-code can
be the attractor of an IFS-code in its turn.
In that case the code is called a hierar-
chical IFS code (HIFS) [2]. A HIFS-code
{{1}1, . -)'"m}: {wh .. -;wn}} lmphes an ob-
ject instancing graph as shown in figure
6. The difference with the CIFS object in-
stancing graph of figure 5 is that now node
B also has loops and, since it is not a ter-
minal node, does not have to have an asso-
ciated geometry. A HIFS-code corresponds
to the following parallel rewriting system:

w : A

¢ A— wp(Blwi(A)wi(A) ... wa(A4)
p2 1 B—u(B)v(B)... mm(B)

There are no edges leading from B to A.
The transformations w; in the resulting
derivations will always be to the left of the
transformations v;: when rendering, the
transformations w; will never be applied be-

fore the transformations v;. The deriva-
tions represent a series of graphical objects

Figure 6: Object instancing graph corre-
sponding to a HIFS-code

that converge to the attractor of the HIFS-
code.

One easily extends to the case of more
than two hierarchical levels, and the case
with an arbitrary condensation set in the
lowest level. Omne also sees how to gener-
ate schemes for arbitrary object instancing
graphs with two or more geometries and
many arbitrary cycles.

The attractor of the HIFS-code is
part of the attractor of the IFS-code
{1,-++yUmyWi,..., Wn}. By imposing re-
strictions on the order in which transfor-
mations may be composed, one obtains an
object that is not purely seifsimilar any-
more like the attractor of plain IFS-codes.
The production rules allow to impose ar-
bitrary restrictions, whence the name IFS-
codes with restrictions.

[12] shows a way to convert L-systems for
purely selfsimilar figures to an IFS code.
The same method can be applied to convert
a much broader range of L-systems into our
IFS-codes with restrictions.

In the next section we show how the ray-
tracing of objects described by our IFS-
codes with restrictions can be done.

a4

o

3 A raytracing algorithm

The attractor of an IFS code with restric-
tions is part of the attractor of a plain
IFS code. The raytracing can be done in
a way similar to the one proposed in {6].
The main difference with the algorithm pro-
posed there is that our method also ac-
counts for systems with geometries in it.
This kind of systems is most usefu! for mod-
elling.

3.1 Ray-graftal intersection test

As pointed out in [6], fractals, and also
graftals, are well suited for raytracing by
constructing a hierarchy of bounding vol-
umes, a wellknown raytracing acceleration
technique [5]. Such a hierarchy is con-
structed by applying the transformations of
the IFS-code with restrictions in all possi-
ble ways to an initial bounding volume G
that encloses the limit-figure, taking into
account the restrictions in the code. §3.2
explains how such an initial bounding vol-
ume G can be generated automatically.

There are several ways to construct
children-volumes from a given volume in the
hierarchy. Premultiplication is needed for
the parent volume to enclose the children
[7). Also, all transformations in the code
must be contractive to get a good hierarchy
of bounding volumes.

There is no need to keep the whole hier-
archy in memory all the time, not even for
constructing it all at once. It is sufficient
to construct only that part of the hierar-
chy that is needed for & given ray and to
start over for the next ray. This is done by
maintaining a list of volumes in the hierar-
chy that can give rise to an intersection and
refine it until the list becomes empty or we
are sure that we will not find a closer inter-
section or a given stopcriterion is met. The
refinement is done by constructing the chil-
dren of the closest volume on the list and
move those that are hit by the ray to the

list. The list initially contains the initial
bounding volume.

The algorithm presented here works only
for codes with axiom w = (0,e). It was
stated in §2.2 that the general case can be
reduced to this case by introducing a new
production rule O — w. For understanding
it one must see that there is a one to one
correspondence between images of the ini-
tial bounding volume G, and images of the
graphical object represented by the axiom
w. Instead of keeping a list of images of
the initial bounding volume, we keep cou-
ples deduced from the axiom w = (0,e€),
which is equivalent.

We assume that the ray, for which ray-
graftal intersection is tested, hits the initial
bounding volume §. This is a necessary
condition for having an intersection with
the graftal:

1. initialize the list with one couple, being
the axiom (O, e);

2. until the list is empty, do

(2) find the couple {X,w) on the list
for which the intersection distance
to w(G) is smallest;

(b) remove this couple from the list;

(c) if w(G)is “small enough”, then do

i. if there are no geometries in
the code, we take the inter-
section with w(G) as an in-
tersection with the graftal.
Stop;

ii. if there is a geometry & asso-
ciated to the symbol X, and
the ray hits w(X’), remem-
ber this intersection if it is
closer than all other intersec-
tions found until now.

(d) otherwise, for each couple (¥;, %)
in the successor of the production
rue X — (Y3,11)...(Yn, ), do

i. if ; is 2 terminal symbol with
associated geometry )i, and

45



the ray hits (w o v;}()s), re-
member this intersection if it
is closer than all other inter-
sections found until now;

ii. if the ray hits (wov;)(G), add
the couple (¥;,w o v;) to the
list.

3. no or closest intersection found. Stop.

The advantage of this algorithm is that
it is able to raytrace attractors of 3D IFS,
CIFS and HIFS codes and many more in
2 quite efficient way. To improve effi-
ciency when testing shadow rays against the
graftal, we can also stop when the first in-
tersection is found, since we are not inter-
ested in the closest intersection: one only
wants to know if there is an intersection or
not. Another optimization is to remove all
couples (Z, t) from the list for which the dis-
tance to ¢(¢) is larger then the distance to a
newly found intersection point in step 2(c)ii
and 2(d)i.

Step 2(c)ii may seem unnecessary at first
sight. It ensures that the geometries of non-
terminal symbols will be rendered the mo-
ment the stopcriterion “small enough” is
met. It is of no importance when we con-
sider codes with geometries associated to
terminal symbols only, which is the most
useful case.

The stopcriterion “small enough” needs
some more explanation: it can be

o “a fixed recursion level is reached”: in
that case we keep not only the couples
and intersection distances on the list,
but also the recursion level. The recur-
sion level of the axiom (0,e¢) is 0 and
if the recursion level of a given item on
the list is n, the one of its children is
n+l;

“the size of w(G) is smaller than a pre-
defined size”. The best way to calcu-
late an approximation for the size of
w(G) is to calculate the contractivity

46

of the transformation w and multiply
with the size of §. See [6; 7];

“w(G) is smaller than one pixel”: this
implies calculating the width of a beam
originating at the eyepoint and fitting
one pixel on the screen, eventually after
reflections and refractions, and com-
paring this width with the size of w(G).
See [6). This method is used in our im-
plementation.

Raytracing also requires 2 normal to be
computed at the intersection points:

o if there are geometries in the system,
intersections are always intersections
with images of these geometries (step
2(c)ii and 2(d)i). In this case we take
the normal at the point of intersection
on the image of a geometry;

o if there are no geometries in the code,
we compute a weighted average of nor-
mals at intersection points with the
w(G) volumes that led to this intersec-
tion (step 2(c)i), the way it is done in
el.

A nice variant is to test for intersection
not with (wov;)();) in step 2(d)i, but with
the image of an alternative geometry when
(wov;)(G) is “small enough”. For a CIFS-
code this reduces to the method in {11] for
rendering fractal trees when we take a ge-
ometry for a branch as condensation set and
for a leaf as alternative geometry.

3.2 Initial bounding volume

The construction of a good initial bounding
volume G is of crucial importance for the
efficiency of the algorithm. A good initial
bounding volume should

¢ be a bounding volume: it should en-
close the limit-figure of the code. I
not, not only the parts of the limit fig-
ure that lay outside the initial volume

L)

-

will not be rendered, but generally also

a whole series of images of these parts.

This “fractal clipping” can be usefui

in some cases but is generally an un-

wanted effect. This may seem bizarre

since we don’t know the limit-figure in
" advance.

v

be as small as possible: smaller bound-
ing volumes will give rise to less ray-
bounding volume intersection tests in
the algorithm of §3.1. Tests showed
that the execution time is significantly
reduced when the right initial bound-
ing volume is chosen: e.g. the Barnsley
fern in figure 7 can be rendered 27%
faster when using a box instead of a
sphere.

The following algorithm produces a good
bounding volume of any possible geometry
(a sphere, box, ...) for a given code. It
takes as argument a couple (X,w) and is
initially called with the axiom w = (O,e).
It assumes that an arbitrary geometry H
(e.g- the unit spbere) has been chosen be-
forehand for symbols with no associated ge-
ometry:

1. if there is no geometry associated with
X, and w(H) is “small enough”, then
the result is the bounding volume of
requested geometry enclosing w(H);

2. otherwise, if w(X’) with A" the geome-
try associated to X, is “small enough”,
or X is a terminal symbol, then the
result is the bounding volume of re-
quested geometry of w({&’);

3. otherwise, for each couple (¥;, v;) in the
successor of the production rule X —
(Y1,01) .. (Yn, ), do

{(a) calculate (recursively) the bound-
ing volume G, of {¥;,wov;).

The result is the smallest bounding vol-
ume uof requesied geometry of the vol-
umes G,.

Figure 7: Barnsley fern: A HIFS with 6
transformations in 3 levels. No geometries.

The criterion “small enough” is similar
to the same criterion in the algorithm of
§3.1 except that comparing with pixelsizes
makes no sense here. In our implementation
“small enough” means that the image of a
volume is smaller than a predefined fraction
of the size of the volume itself.

This brute-force algorithm has the advan-
tage that it is applicable for any possible ge-
ometry for the bounding volume, not only
a sphere, and, for spheres, it seems to give
smaller volumes than the algorithm from (6}
(the Barnsley fern in figure 7 was rendered
three times faster with our algorithm). It
has the disadvantage of being a quite inten-
sive calculation, but since this calculation
has to be performed only once, before the
raytracing, this is not so much a problem.

A criterion for deciding between alter-
native geometries for the initial bounding
volume can be the average projected area,
which is said to be one fourth of the to-
tal surface area for convex geometries [5].
In our implementation we compare spheres
and boxes and chose the one with smallest
average projected area.

47



3.3 Results

We implemented a specialization of the gen-
eral algorithms in §3.1 and §3.2 for the ex-
ample cases of §2.3, which are the cases
of most practical use. Figures 7 to 9
show some pictures made with our imple-
mentation in the public-domain raytracer
rayshade.

Figure 7 shows a variation of the famous
Barnsley fern [1}, a prototype of a hierarchi-
cal IFS, in this case with 6 transformations
in 3 Jevels. Figure 8 shows a temple-like
construction and is described by a CIFS-
code with 4 transformations and a compos-
ite condensation set. The scene in figure
9 is described by a hierarchical code with
also 3 levels and in total 4 transformations
with a geometry for a branch in the low-
est level and an alternative geometry for 2
leaf, as proposed in §3.1 for drawing trees
2 la [11]. All these scenes are composed
of several hundreds of tousands of primitive
objects, making it impossible to compute 2
list of primitive objects and raytrace these
using e.g. space partitioning to improve ef-
ficiency.

The raytracing of these images takes
about 15 minutes and 100 Kbytes of mem-
ory on an IBM RS/6000-320 system. The
examples were chosen to show that quite
complex pictures can be made from an ex-
tremely short description, a property of
fractal-like objects. The raytracing can be
done in reasonable time and with almost
negligible memory usage.

4 Conclusion

In §2 we presented a formalism that can de-
scribe arbitrary linear graftals. IFS-codes,
CIFS-codes, HIFS-codes emerge as simple
examples. In §3 we presented an algorithm
for raytracing objects described by this for-
malism, which is very general. We imple-
mented a specialized version, suitable for
the interesting cases of multilevel HIFS and

Figure 8: Temple: a CIFS with 4 transfor-
mations and composite condensation set.

Figure 9: Trees: described by a code with
4 transformations in 3 hierarchical levels, a
condensation set and alternative geometry.

A0

Lo

CIFS codes. Our experience is that we now
have a very powerful and easy to use tool
for describing very complex objects that are
not necessarily purely selfsimilar. The ren-
dering of these objects is feasible.

As yet, however, we did not implement
the most general algorithm. Our conclu-
sions are based on a specialized version.
One other point that may require further
work is to investigate under which con-
ditions the conversion of L-systems into
our formalism is possible and/or useful.
There are also some variants of L-systems
(stochastic L-systems, ...) which might
find an analog in our formalism. Nothing
is known, as far as the author is aware of,
about the usefulness of such variants. Since
initial bounding volumes play an important
role for the efficiency of the raytracing, some
more work can be done on this subject too.

References

[1] M. Barnsley. Fractals Everywhere.
Academic Press Inc, 1988.

[2] M.F.Barasley, L. Hodges, and B. Nay-
lor. Harnessing chaos for image syn-
thesis. Computer Graphics, 22(4):131,
1988.

(3} S. Demko. Construction of fractal ob-
jects with iterated function systems.
Computer Graphics, 19(3):271, 1985.

[4] A.Fournier, D. Fussell, and L. Carpen-
ter. Computer rendering of stochastic
models. Commaunications of the ACM,
25(6):371-384, June 1982.

[5] A.S. Glassner, editor. An Introduction
To Ray Tracing. Academic Press Ltd.,
1989.

[6] 3. C. Hart and Th. DeFanti. Effi-
cient antialiased rendering of 3d linear
fractals. Computer Graphics, 25(4):91,
July 1991.

[7) D. Hepting, P. Prusinkiewicz, and
D. Saupe. Rendering methods for it-
erated function systems. In H. O.
Peitgen, J. M. Henriques, and L. F.
Penedo, editors, Fractals in the fun-
damental and applied sciences, pages
183-224. Elsevier Science Publishers
(North-Holland), 1991.

[8] A. Lindenmayer. Mathematical mod-
els for cellular interactions in develop-
ment, parts i and ii. Journal of Theo-
retical Biology, 18:280-315, 1968.

[9] B. B. Mandelbrot. The Fractal Geome-
try of Nature. W. H. Freeman and Co.
(San Fransisco), 1982.

[10] F. XK. Musgrave, C. E. Kolb, and R. 5.
Mace. The synthesis and rendering
of eroded fractal terrains. Computer
Graphics, 23(3):41-50, 1989.

[11] P. E. Oppenheimer. Real time design
and animation of fractal plants and
trees. Computer Graphics, 20(4):55-
64, 1986.

[12] P. Prusinkiewicz and A. Lindenmayer.
The Algorithmic Beauty of Plants.
Springer-Verlag, 1990. '

49



