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ABSTRACT
Modeling dynamic characters, in observance of calligraphic rules can be done with the help of parametric
curves. The class of Bézier curves is a powerful tool for modeling the outlines of the surface razed by a nib's
calligrapher. Unfortunately, after capturing the character's hand-drawn outlines, the surface delimited
by the outlines doesn't correspond to the space to shade when writing the character. Some of the curves
pieces of the outlines are to be subdivided at some appropriate points. In order to identify these points,
decompositions of the Bézier curves involved, with respect to particular directions, are necessary. This
paper presents a simple and e�ective mathematical method for doing such decompositions.The proposed
method helps to determine the points as extrema of certain functions. Then, the method is implemented
and used to design some Arabic dynamical characters. This will help in building dynamic fonts respecting
calligraphic strong rules.
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1. OVERVIEW

One of the big challenges in typesetting Arabic
alphabet based texts consists on designing Ara-
bic dynamical fonts respecting strong rules of a
very well established calligraphy. The characters
are context dependent. Some of them are to be
stretched and inter-connected with small curves
called Kashida [MEss 87].

Traditional software assisting to develop fonts,
such as FontCreator [HiLo 05] and others don't
provide enough support for developing Arabic
fonts which can respect the calligraphic rules.
In particular, stretching characters, with small
curves, according to the context is not avail-
able. The general features and characteristics of
a software to support these special needs are out of
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copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission
and/or a fee.

the scope of this paper. One of the preliminary
problems to solve before designing applications
for generating fonts can be stated as follows:
after capturing hand written characters, or more
precisely the nib's motion outlines, blacken the
surface delimited by the Bézier curves [Bézi 77]
representing the movement of the nib's vertices
will not produce the original character. In
order to reproduce the original characters, these
Bézier curves have to be decomposed in some
particular points. Then the nib's motion have to
be considered according to the resulting curves
separately. How to identify these points? This
paper proposes a mathematical method to do so.
�nding out these points leads to the study of the
variations of parametric curves with respect to a
given direction. The method presented in this pa-
per concerns parametric curves in general. Cubic
Bézier curves are particular cases. Such curves
are used in font development languages such as
PostScript [Adob 99] and Metafont [Knut 86] .

After showing the need for a method for study-
ing variations of parametric curves according to a
given vector, the proposed mathematical method
will be presented in detail. Then the way to de-
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compose some Bézier curves will be presented and
illustrated by an example.

2. PROBLEM

One of the ways to build a program that can
help in developing Arabic fonts can be described
as follows: After displaying a scanned image of
the character, the font developer will seek the
draw with it's mouse pointer as if it were a nib's
head. Therefore, the program will generate the
PostScript encoding corresponding to the charac-
ter in the font. The program will have to take
into account the curvilinear stretching, or Kashida
[MEss 87], of the characters .

In the Arabic writing, the nib's head can be repre-
sented as a shaded rectangle whose width is one/a
sixth of the length. The character is materialized
by the surface razed by this rectangle. Accord-
ing to the writing style, Naskh, Roqaa, Diwany
etc..., the angle between the rectangle's length and
the baseline can vary a little or remain unchanged
while writing. For instance, in the Naskh style
this angle remains at about 70° with the baseline
[MEss 87, MEss 94] (See Figure 1).

70˚

Figure 1. Nib's head in Naskh style, in
12mm size.

In the Arabic writing, many characters are dy-
namic, the shape and size of the character are
context dependent. The stretching or change of
size of the character in a given context is not a
linear scaling nor a simple enlargement. There-
fore, no suitable vectorial modeling can be found
of a character through focusing on the outlines of
the surface razed by the nib's head. The opti-
mal solution consists on the curves modeling the
nib's head motion instead of those representing
the razed surface outlines. Then, the draw mod-
eling the character is to be shaded taking into ac-
count the nib's head movement.

The rectangle modeling the nib's head can be con-
sidered as a rigid body (the length, width and
angles between sides are invariant). The move-
ment of one of the rectangle vertices determine en-
tirely the movement of the other vertices through
simple translations. The rectangle represented
in Figure 2 has a length M10M20 and a width
M10M40. It makes an angle α with the baseline.
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Figure 2. Surface S1 razed by the side
[M10M20]

The movement of the vertex M10 is represented
by the Bézier curve with four control points M10,
M11, M12 and M13. From now, we make the as-
sumption that the angle α remains invariant while
the rectangle is in motion (all movements are re-
duced to simple translations, no rotations are per-
formed). Taking into account rotations will need
supplementary e�orts on approximation. Now, it
is out of the scope of this paper. The three ver-
tices will seek a similar movement through trans-
lations of vectors −→u , −→u + −→v and −→v respectively

(
−−−−−→
M10M20,

−−−−−→
M10M30 and

−−−−−→
M10M40). How to shade

the surface razed by the rectangle? A way to
do so consists on shading the surface razed by
each of the rectangle's sides. So for the segment
[M10,M20], we will have to shade the surface de-
limited by the Bézier curve B1 with control points
M10, M11, M12 and M13, the segment [M13,M23],
the Bézier curve B2 with control pointsM23 ,M22,
M21 andM20, and �nally the segment [M20,M10].
The points M20, M21, M22 and M23 are de-
rived from M10, M11, M12 and M13 trough the
translation of vector −→u . Consider the movement
of the segment [M10,M20], then we de�ne the
Bézier outlines associated to this movement to be
the multi-curve (B1, [M13,M23] , B2, [M20,M10]).
This way is meaningful. Actually, the PostScript
language supports operators for shading outlines
as with graphic development languages such as
Java [Java 05].

This method of shading surfaces doesn't provide
always the desired results. Actually, consider a
very smart nib (a nib with a negligible thickness
(width)) or simply a segment in motion (in gen-
eral case, the surface razed by the nib's head is ob-
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tained through considering the surfaces razed by
all the edges). As in Figure 3 where the segment
[M10,M20] is in movement, the extremityM10 fol-
lows the cubic Bézier's curve B. The surface razed
by the segment is presented in Figure 4 and the
surface delimited with the outlines associated to
the movement doesn't �t exactly with the surface
razed by the segment [M10,M20] (See Figure 5).
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Figure 3. M10 path

M
10

M
20

i

j

O

Figure 4. The Surface razed by the segment
[M10,M20]

M
10

M
20

M
13

M
23

i

j

O

Figure 5. Surface delimited by the outlines
associated to the movement

Now, let us decompose the curve B with the gen-
eralized algorithm of re�nement [Bars 85, Je� 81,
Hosa 80, Gold 82] (case of none median decom-
position) with respect to the coe�cient T =
0.3613981051. We get two Bézier curves B1 and
B2 that can represent the vertex's M10 movement
(See Figure 6). Let S1 and S2 be the surfaces de-
limited by the outlines associated to the curves B1

and B2 (See Figure 7 and 8). Superposing S1 and
S2 will give a shaded surface that �ts exactly with
the surface razed by the segment (See Figure 9).
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Figure 6. M10 path Decomposition
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Figure 7. Area corresponding to B1
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Figure 8. Area corresponding to B2
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Figure 9. Superposing areas S1 and S2

The coe�cient of decomposition T is an extrema
of the Bézier parametric curve. Of course, there
is no order relation in an a�ne plane. Next, we'll
de�ne comparison operators that will make the
study of parametric curves as easy as the study of
real functions with a single variable.

3. ORDER IN AN AFFINE PLANE
IN R3

Consider P an a�ne plane in R3 containing the

origin O. Let −→u be a given vector in
−→
P , the di-

rector vectorial plane associated to P. We will
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de�ne in P an equality operator =−→u
and an order

operator ≤
−→u

with respect to the vector −→u .

In the sequel, we consider:

� The a�ne space R3 with the rectan-
gular Cartesian system of reference

R
(
O,−→ı ,−→ ,

−→
k
)
.

� An a�ne plane P in R3 containing the origin

O. Then,
−→
P stands for the vectorial space

of translations in P . A direct orthonormal
basis of

−→
P will be denoted by p =

(−→
P1,
−→
P2

)
.

� Let −→u ∈
−→
P .

De�nition 1 (Equality with respect to a
vector in an a�ne plane )
We de�ne an equality relation =−→u

, among points

in P, with respect to the vector −→u by:
∀M1,M2 ∈ P,
M1 =−→u

M2 ⇔
(−→u ∧ −−−→OM1

)
=
(−→u ∧ −−−→OM2

)
De�nition 2 (Direct orthogonal range with
respect to a vector and a basis)

Let M in P, the value
(−→u ∧ −−→OM) · (−→P1 ∧

−→
P2

)
,

denoted by R(−→u ,p) (M), is called the direct orthog-
onal range of M with respect to a given vector −→u
and a normed direct basis p.

Remark 1

The direct orthogonal range is the component of

the surface vector with respect to
−→
P1 ∧

−→
P2.

Property 1 Let M1,M2 ∈ P, then:
M1 =−→u

M2 ⇔ R(−→u ,p) (M1) = R(−→u ,p) (M2).

This property allows to establish a relation of
equivalence in the set of points P. Classes of
equivalence are identi�ed as parallel lines in P
with the same direction −→u .

Proof (Property 1)
The implication from left to right is obvious.
Conversely,
suppose that R(−→u ,p) (M1) = R(−→u ,p) (M2)

it means
(−→u ∧ −−−→OM1

)
·
(−→
P1 ∧

−→
P2

)
=(−→u ∧ −−−→OM2

)
·
(−→
P1 ∧

−→
P2

)
We have −→u ∈

−→
P ,
−−−→
OM1 ∈

−→
P and

−−−→
OM2 ∈

−→
P .

Therefore
(−→u ∧ −−−→OM1

)
= λ

(−→
P1 ∧

−→
P2

)
and(−→u ∧ −−−→OM2

)
= β

(−→
P1 ∧

−→
P2

)
.

It follows that(−→u ∧ −−−→OM1

)
·
(−→
P1 ∧

−→
P2

)
= λ ·

∥∥∥−→P1 ∧
−→
P2

∥∥∥2

and(−→u ∧ −−−→OM2

)
·
(−→
P1 ∧

−→
P2

)
= β ·

∥∥∥−→P1 ∧
−→
P2

∥∥∥2

But
∥∥∥−→P1 ∧

−→
P2

∥∥∥ 6= 0.
Consequently λ = β.

We then get
(−→u ∧ −−−→OM1

)
=
(−→u ∧ −−−→OM2

)
and �nally M1 =−→u

M2.

De�nition 3 (Order with respect to a vec-
tor in an a�ne plane )
The relation ≤

−→u
de�ned in the set P, with respect

to the direction −→u , by:
∀M1,M2 ∈ P, we have:
M1 ≤−→u

M2 ⇔ R(−→u ,p) (M1) ≤ R(−→u ,p) (M2)

is a total order.

Proof (De�nition 3)

� Re�exivity: obvious

� Antisymmetry:
Let M1,M2 ∈ P such that M1 ≤−→u

M2 and

M2 ≤−→u
M1 .

then R(−→u ,p) (M1) ≤ R(−→u ,p) (M2) and
R(−→u ,p) (M2) ≤ R(−→u ,p) (M1).
So R(−→u ,p) (M1) = R(−→u ,p) (M2)
according to the property 1, it follows
M1 =

−→u
M2

� Transitivity:
Let M1,M2,M3 ∈ P such that M1 ≤−→u

M2

and M2 ≤−→u
M3.

Then R(−→u ,p) (M1) ≤ R(−→u ,p) (M2) and
R(−→u ,p) (M2) ≤ R(−→u ,p) (M3).
It follows R(−→u ,p) (M1) ≤ R(−→u ,p) (M3).
So M1 ≤−→u

M3

� Total order:
Let M1,M2 ∈ P, then we have
R(−→u ,p) (M1) ≤ R(−→u ,p) (M2) or
R(−→u ,p) (M2) ≤ R(−→u ,p) (M1)
and therefore, M1 ≤−→u

M2 or M2 ≤−→u
M1

Thus ≤
−→u

is a total order relation.

4. FUNCTIONS FROM R INTO AN
AFFINE PLANE IN R3

The equality and order relations de�ned before
will allow studying parametric functions de�ned
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from an interval in R into an a�ne plane in the
space R3 reported to a rectangular Cartesian sys-

tem of reference R
(
O,−→ı ,−→ ,

−→
k
)
in terms of ex-

trema and variations.

In the following, let P be an a�ne plane contained
in R3, containing the origin O, with director vecto-

rial plane associated
−→
P and a normed direct basis(−→

P1,
−→
P2

)
.

Consider a given vector −→u ∈
−→
P and a closed in-

terval [a, b] ⊂ R.
Let f be a parametric function (parametric curve)
such that:

f : [a, b] −→ P
t 7−→ (f1 (t) , f2 (t))

where f1 and f2 are two real functions de�ned on
[a, b].

In the following, we will establish some lemmas
and generalize theorems about real functions in
order to take into account parametric functions
with respect to a given vector. Before that, let us
give an obvious property that will next be used.

Property 2 Let f be a continuous function de-
�ned on the interval [a, b]. Suppose that f is di�er-
entiable on ]a, b[. Then R(−→u ,p)◦f is continuous on

[a, b], di�erentiable on ]a, b[ and
(
R(−→u ,p) ◦ f

)′
=

R(−→u ,p) ◦ f ′.

Theorem 1 (Rolle's theorem) If f is a con-
tinuous function on [a, b] such that:

� f (a) =−→u
f (b) and

� f is di�erentiable on ]a, b[

then ∃ c ∈ ]a, b[ such that f ′ (c) =−→u
O (O is the

point with null coordinates in P).

Proof (Theorem 1)
The function R(−→u ,p)◦f is continuous on [a, b], and
di�erentiable on ]a, b[ (from the property 2) and(
R(−→u ,p) ◦ f

)
(a) =

(
R(−→u ,p) ◦ f

)
(b) .

from Rolle's theorem for real functions of one vari-
able we get:

∃ c ∈ ]a, b[ such that
(
R(−→u ,p) ◦ f

)′
(c) = 0 .

Consequently
∃ c ∈ ]a, b[ such that R(−→u ,p) (f ′ (c)) = 0 .
Thus, ∃ c ∈ ]a, b[ such that(−→u ∧ −−−−→Of ′ (c)

)
·
(−→
P1 ∧

−→
P2

)
= 0 .

It follows ∃ c ∈ ]a, b[ such that(−→u ∧ −−−−→Of ′ (c)
)

=
−−−−→
(0, 0, 0) ,

because −→u ∧
−−−−→
Of ′ (c) and

−→
P1 ∧

−→
P2 are collinear and

−→
P1 ∧

−→
P2 is not null.

Then, we will have

∃ c ∈ ]a, b[ such that −→u ∧
−−−−→
Of ′ (c) = −→u ∧

−−→
OO.

�nally ∃ c ∈ ]a, b[ such that f ′ (c) =−→u
O.

Theorem 2 (Mean value theorem) If f
is a continuous function on [a, b], di�eren-
tiable on ]a, b[, then ∃ c ∈ ]a, b[ such that

f ′ (c) =−→u
f(b)−f(a)

b−a .

Proof (Theorem 2)
As in the previous proof (Theorem 1), consider
the real function R(−→u ,p) ◦ f .
By the Mean value theorem for real functions of
one variable, we get:

∃ c ∈ ]a, b[ such that f ′ (c) =−→u
f(b)−f(a)

b−a .

De�nition 4 (Monotony) A function f is
monotone increasing (respectively decreasing) on
[a, b] with respect to the direction −→u if and only
if:
∀t1, t2 ∈ [a, b] , t1 ≤ t2 ⇒ f (t1) ≤−→u

f (t2) (respec-

tively ∀t1, t2 ∈ [a, b] , t1 ≤ t2 ⇒ f (t2) ≤−→u
f (t1)).

Remark 2

The monotony is strict whenever the order rela-
tion <

−→u
is used.

Lemma 1 The functions f and R(−→u ,p) ◦ f have
the same monotony.

Theorem 3 (variations sens) If f is continu-
ous on [a, b] and di�erentiable on ]a, b[ then:

� ∀t ∈ ]a, b[ , f ′ (t) ≥
−→u
O ⇔

f is monotone increasing on [a, b] with
respect to the direction −→u .

� ∀t ∈ ]a, b[ , f ′ (t) ≤
−→u
O ⇔

f is monotone decreasing on [a, b] with
respect to the direction −→u .

Proof (Theorem 3)
That's an obvious corollary of the lemma 1.

De�nition 5 (Extrema) The function f admits
a maximum (resp a minimum) at the point t0 ∈
[a, b] with respect to the direction −→u if and only if
there exist t1, t2 ∈ [a, b], t1 6= t2 such that:
t0 ∈ ]t1, t2[ and ∀t ∈ [t1, t2] f (t) ≤

−→u
f (t0) (resp

f (t0) ≤−→u
f (t)).
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Lemma 2 The functions f and R(−→u ,p) ◦ f have
the same extrema.

Theorem 4 (Extrema and derivative)
Suppose that f is continuous on [a, b] and
di�erentiable on ]a, b[. Let t0 ∈ ]a, b[. Then

if −→u ∧
−−−−→
Of ′ (t) vanishes at t0 and changes its

direction, f admits an extrema in t0 with respect
to the direction −→u .

Proof (Theorem 4)
As previously, consider the real function R(−→u ,p) ◦
f .

The vector −→u ∧
−−−−→
Of ′ (t) is collinear with

−→
P1 ∧

−→
P2,

and
−→u ∧

−−−−→
Of ′ (t) is null at t0 and changes in direction.

This will imply that R(−→u ,p) ◦ f ′ is null at t0 and
changes in sign,
it follows that t0 is an extrema of R(−→u ,p) ◦ f on
[a, b]
We will have from the lemma 2, that t0 is an ex-
trema of f on [a, b].

Remark 3

At t0 ∈ ]a, b[ which is an extrema according to

the theorem 4, the directional tangent
−−−−−→
Of ′ (t0) is

collinear with the vector −→u .
In the Arabic document processing area, there is
no system that typeset Arabic documents with
a quality that is like the one in the calligrapher
handwritten texts. The simple cause is that the
development of fonts respecting the Arabic cal-
ligraphy rules isn't a simple continuation of the
works done concerning the latin documents. The
problem is not simple as the majority had thought
in the beginning. The �rst step and mandatory
in this area is to o�er to the community a good
formalization of the problem. So the goal of the
paper is not to invent a new theory but to give an
adequate and direct mathematical formalism. The
theory studied here would be extended in some
coming works to o�er mathematical ways to de-
velop dynamic fonts of Arabic letters in stretch-
able outlines when the nib's head is translated
without and with rotations.

5. BÉZIER CURVES DECOMPOSI-
TION

Up till now, a way to decompose parametric curves
characterizing a segment motion has been devel-
oped. So, the surface razed by the segment can
be obtained. It is the same for any rigid body.
Now, we will focus on the polar Bézier curves. In
the following, we'll give a method for decomposing
Bézier curves of any degree. An example with a
cubic Bézier curve will be given as illustration.

� Let R3 be the a�ne space with the
rectangular Cartesian system of reference

R
(
O,−→ı ,−→ ,

−→
k
)
.

� Let P denote the R2 a�ne plane with direct
normed basis p = (−→ı ,−→ ) passing through the
origin O.

� Let [M10,M20] be a segment to be translated
in P.

� [a, b] = [0, 1].

� The Bézier curve B describes the move-
ment of M10. Suppose that their control
points M10, M11, . . . ,M1n are such that
M1i = (xi, yi, 0).

The curve B can be de�ned in R3 through consid-
ering a null component with respect to the vector−→
k :

B : [0, 1] −→ P

t 7−→
n∑

i=0

(
n
i

)
ti (1− t)n−i

M1i

In order to decompose a Bézier's curve into mono-

tone curves, with respect to the direction
−−−−−→
M10M20,

we should determine the set of extrema of the di-
rect orthogonal range R

(
−−−−−→
M10M20,p)

◦ B on [0, 1].
Then, these extrema will be classi�ed by increas-
ing order. Let T0 = {t01, t02, . . . , t0m} be this or-
dered set, with m ≤ n − 1. Thus, we decompose
B with respect to t01, we get two Bézier curves
B0 and B1 such that B0 has a constant monotony

with respect to
−−−−−→
M10M20 on [0, 1] and B1 is a curve

to decompose. We don't need to determine the ex-

trema of B1 with respect to
−−−−−→
M10M20 because the

set of these extrema is T1 =
{
t11, t12, . . . , t1(m−1)

}
where t1i = t0(i+1)−t01

1−t01
(the formula can be estab-

lished by a an easy calculation). We continue the
process until obtaining the last monotone curve.
This method is presented as an automatic algo-
rithm in the following.
Suppose that we have already de�ned the follow-
ing data structures and algorithms:
Point a data structure modeling a point in R3,

Vector a data structure modeling a vector in
−→
R 3,

(the Point data structure can be used instead of
this one),

Bezier a data structure modeling a Bézier's
curve,
PtVect(M10:Point,M20:Point):Vector a func-
tion that results in the vector de�ned by two
points.
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ExtremaNbr(B:Bezier,U:Vector):INTEGER a
function that results in the number of extrema of
B with respect to U,

Extremas(B:Bezier,U:Vector):

array[1..NMax]of REAL a function that re-
sults in an array of extrema of B with respect to
U,

LDecp(B:Bezier,t:REAL):Bezier a function
that results in the left Bézier curve by decompos-
ing B with respect to t,

RDecp(B:Bezier,t:REAL):Bezier a function
that results in the right Bézier curve by decom-
posing B with respect to t.

Now, we will give the meaning of some variables
and algorithms.

M10, M20 are the points which determine the seg-
ment,

U is the decomposition direction,

B is the curve to decompose,

Nx is the B extrema number according to U,

AExt is the array displaying all the extrema of B
according to U,

DBC is the array displaying the Bézier curves ob-
tained by decomposition of B according to U,

Ctrd and Ctre : are indexes for accessing DBC
and AExt arrays

...

M10,M20 : Point;

U : Vector;

B : Bezier;

Nx : INTEGER;

AExt : array[1..Nmax] fo REAL;

DBC : array[1..Nmax+1] of Bezier;

Ctrd, Ctre : INTEGER;

BEGIN

/* B, M10, M20 initialising
...

U ← PointVector(M10,M20);

Nx ← ExtremaNumber(B,U);

AExt ← Extremas(B,U);

FOR Ctrd=1, Nx, +1

BEGIN

DBC[Ctrd]←LDecp(B,AExt[Ctrd]);

B←RDecp(B,AExt[Ctrd]);

FOR Ctre=Ctrd+1, Nx, +1

AExt[Ctre]←
(AExt[Ctre]-AExt[Ctrd])/(1-AExt[Ctrd]);

END

DBC[Nx+1]←B;

END

We can remark that there is no need for two sepa-
rate functions LDecp and RDecp since both parts

of the subdivided curve can be computed by one
execution of the algorithm of de Casteljau. We use
two functions for better clarity and also when we
use the algorithm of de Casteljau we must extract
the decomposition parts separately.
The Method will be illustrated through an ex-
ample modeling the movement of a segment
[M10,M20] with a cubic Bézier curve B with two

extrema with respect to the vector
−−−−−→
M10M20 (See

Figure 10).
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Figure 10. A cubic Bézier curve of a move-
ment

The surface razed by the segment [M10,M20] (See
Figure 11) is di�erent from the surface delimited
by the outlines associated to the movement (See
Figure 12). The reason behind this is that B is

not monotone with respect to
−−−−−→
M10M20.
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Figure 11. Surface razed by the segment
[M10,M20]
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Figure 12. Surface delimited by the associ-
ated outlines

We will have to decompose the curve B into
monotone sub-curves with respect to the direc-

tion
−−−−−→
M10M20. The B control points are M10 =

(95, 50), M11 = (130, 100), M12 = (135, 20) and
M13 = (165, 70). We determine the direct orthog-
onal range of B. In order to �nd the extrema
on ]0, 1[, we derive this range. Then, we �nd
that the direct orthogonal range has two extrema
T01 = 0.1571942250 and T02 = 0.8301512030. We
decompose B with respect to T01 to obtain two
curves; B1 monotone, and a curve B2 to decom-
pose again (See Figure 13).

39 Journal of WSCG



B
1 B

2

M
10

M
20

i

j

O

Figure 13. First decomposition

Then, the curve B2 is decomposed with respect
to T11 = T02−T01

1−T01
, say for instance, T11 =

0.7984721960. The decomposition gives two
curves B21 and B22. Both of them are monotone

with respect to
−−−−−→
M10M20 (See Figure 14).
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Figure 14. Second decomposition

If we superpose all the surfaces delimited by the
outlines associated to the three curves B1, B21 and
B22 (See Figure 15), we get exactly the surface in
Figure 11.
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Figure 15. Superposition of the surfaces of
decomposition

6. CONCLUSIONS
A method for the determination of the extrema
of a parametric curve is now ready for use. This
method has been used to �nd the decomposition's
coe�cients of cubic parametric curves. This al-
lows generating the PostScript code which sup-
ports the movement of an Arabic nib that remains
with a constant angle of inclination with the base-
line. The case where this angle is changing will be
presented in a next work. The study of both the
Bézier curves variations and angle's variations will
lead to use also approximations with polar curves.
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