REGION-BASED FRACTAL COMPRESSION FOR STILL IMAGE
Yung-Ching Chang, Bin-Kai Shyu, Jia-Shung Wang

Department of Computer Science, National Tsing Hua University,
Hsinchu, Taiwan 30043, Republic of China
e-mail: dr804339@cs.nthu.edu.tw (Yung-Ching Chang)
jswang@cs.nthu.edu.tw (Jia-Shung Wang)

ABSTRACT

Fractal image coding is a novel and attractive technique for still image compression. By utilizing the
characteristic of self-similarity, an iterated function system can automatically converts an image into a set
of affine transformation coefficients. However, the conventional block-based segmentation methods
inadequately satisfy the natural image property and thus can’t achieve an efficient performance. In this
paper, we propose a thorough fractal image compression system to approach the target of very low
bit-rate. To more efficiently utilize the property of natural images, an image dependent region-based
segmentation technique is proposed. This region-based process consists of two steps: First, we improve
the performance of quadtree decomposition by utilizing the adaptive threshold method. Second, a
merging scheme is introduced to the result of quadtree decomposition that combines several similar
blocks into a small number of regions. We also provide a quadtree-based segmented chain code to
efficiently record the contours of the regions. Moreover, a post-processing algorithm is applied according
to region-based segmentation to eliminate the blocking artifact. The experimental results indicate that the
proposed method has the potential to achieve comparable extreme low bit rate among the existing method

at the same level of quality.

Keywords: fractal image compression, region-based method, very low bit-rate.

1. INTRODUCTION

Fractal image compression, which is based on the
iterated function system (IFS), is a novel and
attractive approach to image coding [Barns88a]
[Fishe94a]. Fractal image compression encodes an
image by specifying the parameters of a contraction
mapping with a unique fixed point, which approxi-
mates the original image. To recover the approxima-
tion, the mapping is iterated from an arbitrary initial
point until converges to the fixed point. The typical
fractal image coding methods [Jacqu92a] initially
partition the original image into some
non-overlapped range blocks, and then approximate
each range block with a contractive affine
transformation of a domain block, which are
selected from the same image with different size.
Under the assumption that there has self-similarity
between range and domain blocks in an image, the
encoding problem essentially reduces to a block
matching problem. For each range block, a search is
performed within a pool of candidate domain blocks
to obtain the one that yields the best approximation.
The coefficients of the affine transformation for each

range block are then quantized and stored. At the
decoding side, an arbitrary initial image is
partitioned as done at the encoding size, and then the
decoded coefficients of the affine transformation are
applied iteratively for each range block. Base on the
constraint of contractivity, the decoded image is
gradually similar to the original one.

A number of factors can alter the perform-
ance of the fractal image compression method. The
most critical one is the segmentation of image.
Because there is a set of coefficients of the affine
transformation for each range block, the segmenta-
tion result that can maintain the same level of
distortion with fewer range blocks thus achieves
better performance. Second, because some of the
coefficients are real, an efficient quantization design
is required.

By observing the behavior of some fractal
image coding methods, we realize that the uniform
block-wise segmentation of image inadequately
satisfies the property of natural images. Therefore,
the image segmentation with various block size,
include quadtree decomposition, is introduced into

fractal image compression in some publications
[Jacks97a]. With the quadtree decomposition, the
finer range blocks can achieve better match of the
rough area of image while larger range blocks can
match the smooth area of image with lower bit rate.
Unlike other researches fixing the threshold for each
level, an adaptive threshold scheme [Shust94a] is
utilized here to obtain performance improvement.

In addition to the quadtree decomposition,
we attempt to construct a region-based segmentation
scheme to satisfy the characteristics of natural
images. This region-based process consists of two
steps: First, the image is segmented by quadtree
decomposition with adaptive threshold. Second, a
merging scheme is introduced to the result of
quadtree decomposition that combines several
similar blocks into a small number of regions.
Because there is now only a set of coefficients for a
region instead of some sets of coefficients for the
separated blocks, the bit rate can be further reduced.
Finally, the coefficients are quantized and then
entropy coded to reduce bit rate further.

The trade-off of the region-based segmen-
tation is the requirement of extra bit rate to record
the shape boundary of each region. Here, we provide
a so-called quadtree-based segmented chain code to
efficiently record the contours of the regions. At the
decoder, because of the significantly degradation of
image quality with high compression ratio, we also
provide a post-processing algorithm according to
region-based segmentation to eliminate the possible
blocking artifacts.

In this paper, the brief introduction of
fractal block coding is succinctly presented in
section 2. In section 3, we introduce the quadtree
decomposition scheme and the process of adaptive
quadtree decomposition based fractal coding.
Section 4 describes the region-based fractal image
coding. The post-processing for region-based fractal
image compression is provided in section 5. Section
6 summaries some experimental results. Finally,
some conclusions are drawn in section 7.

2. FUNDAMENTAL OF FRACTAL BLOCK
CODING

Before describing the delicate variation of fractal
image coding scheme, we give a typical example to
introduce the process of fractal block coding, which
is the essential implementation of the fractal image
coding.

In fixed-size block segmentation, an N X N
image is partitioned into several uniform
non-overlapped square block of size » X r, where r is
a factor of N. These blocks are called range blocks.
We define an affine transform w of the from:

2\ (%0 0Yx) (e
y=0%0y+f
z 0 0 sz 1

Q)

is a contractive mapping with contractivity factor |s|
and 0 <|s|< 1. For a range block R;, find a block
with size 27 X 2r from other parts of the same image,
we name it as domain block D,, to minimize the
distortion d(w(D;), R;). For each range block, there
are four fractal coefficients to be decided: s is the
contrast factor, o is the brightness factor, e and f'is
the position of the best-matched domain block. In
generally, the position distribution of the best-match
domain block, the center position of the range block
shows a slightly higher probability among all the
positions. Therefore, we assign a search range
(L+2r) x (L+2r) centered at the range block, and the
horizontal and vertical step size is &, and o,
respectively, as illustrated in Fig. 1. The coefficient e
and f are now used to represent the relative position
between R; and D, Fig. 2 depicts an example of
fractal block coding.

Range Domain
Domain pool for R;;
S et
y H
L .
¥ 5
v
e

Candidate domain block

Fig. 1. An example of domain pool

Range Domain
(approximative image) (original image)

_______ pre

s|€n i
bedi |

Sk %% e fi

Fig. 2. The coding process of a fractal block
coder

3. ADAPTIVE QUADTREE DECOMPOSI-
TION FOR FRACTAL IMAGE CODING

The limitation with fixed sized square range blocks
is that it does not take advantage of the contents of
image. In typical images, there are range blocks for
which it is impossible to find matching domain
blocks within a certain distortion tolerance when the
fixed range block size is used. Similarly, there are
regions where larger range blocks could be used and
their matching domain blocks could still be found.

This implies that higher compression performance
may be achieved if variable size range blocks are
used. Quadtree decomposition is a common method
to partition image into variable size of block, since
its flexibility and less overhead. There is some
studies [Jacks97a] utilized quadtree segmentation
into fractal image coding and obtained somewhat
improvement. However, as that will be discussed in
this section, a unique distortion threshold for various
block sizes wouldn’t be an intelligent choice.

3.1. Quadtree representation and coding

A quadtree is a tree in which each node potentially
has four subnodes. Quadtree decomposition is an
image represented by a quadtree: the root of this tree
is the original image, and each node of the tree,
except root, corresponds to a square that is a
quadrant of its parent’s square. Fig. 3 (a) is an
example of quadtree decomposition, and Fig. 3 (b) is
the corresponding quadtree representation.

F |G

I

H
N | O

—4
VWX Y

R D T U

(b)

Fig. 3. (a) An example of quadtree
decomposition, and (b) the corresponding
quadtree representation

To store and transmit the quadtree structure,
one simple way is to traverse the tree through
depth-first search. Mark “1” if a leaf node is visited,
and mark “0” for an internal node. Considering Fig.
3, the traversal of the quadtree by depth-first search
is

1010000101000000100100000.
This code is usually denoted as quadtree code.

An image can be represented by a quadtree
decomposition of any given quadtree size, in this
paper, the size is determined by the coding quality
concerned. We adjust the quadtree size by using two
parameters: minimum level and maximum level. The
assigning of minimum level means that the image at
least has to be decomposed to this level, and
therefore we have only to record the quadtree code
from the minimum level but not from the root. The

assigning of maximum level means that the image
will not be decomposed into smaller blocks than the
corresponding block size of maximum level, and
therefore we can ignore the quadtree code for the
maximum level. By given the minimum level = 2
and maximum level = 4, the reduced quadtree code
for Fig. 3 becomes
0100001010010010.

3.2. Quadtree decomposition algorithm with
adaptive threshold

In our implementation of employing the quadtree
decomposition into fractal image coding, the first
step is to decompose the image to the minimal level
of the quadtree (i.e. the largest leaf node). For each
leaf node (a range block), find the best fractal
coefficients with the minimal MSE over its domain
pool. If this minimal error is larger than a
pre-assigned threshold e and if the level of the node
is less than the maximum level, we split this leaf
node into four quadrant subnodes, and repeat the
above process until the maximum level is
augmented.

In conventional compression methods that
employee quadtree decomposition scheme, the
distortion threshold is given uniquely over the all
levels. Shusterman and Feder [Shust94a] proposed a
scheme of compressing image via quadtree
decomposition. They proved that if we use adaptive
thresholds on quadtree levels, the coding quality
would be better than that of a fixed threshold at the
same bit rate. If we choose an initial threshold e; on
the first level, a suboptimal threshold for the next
level is determined as below:

€ = 2-e 1» (2)
where e; is the threshold of level i. If the initial
threshold on level 1 is known, we can rewrite (2) as
follows

e;=2"e. (3)
We call the threshold on level 1 as initial threshold.
Suppose that the quadtree threshold is of the form

e, =ke.. 4)
When k =1, it is the conventional situation that the
threshold is fixed for all levels; when k = 2, it is the
adaptive threshold that proposed by Shusterman and
Feder.

The experimental results for various
threshold assignment indicate that the adaptive
threshold method with the factor k£ =2 is the best one
over various bit rate. In general, if the allocated bits
for each leaf nodes remain the same over different
levels, the assignment of factor £ = 2 can achieve the
best image quality.

4. REGION MERGING SCHEME

In addition to the quadtree decomposition proposed
in the previous section, we consider a more flexible

segmentation of the original image, which can take
advantage of the contents of image better than
square blocks. However, an arbitrary region-based
segmentation very tough to implement and require a
large amount of overhead on coding the shape of
regions. In this section, we propose a two-step
technique to approach the region-based concept.
First, an image is quadtree decomposed by utilizing
the adaptive threshold method. Next, we design a
merging scheme to the resulting quadtree
decomposition for combining several similar blocks
into a small number of regions. This technique
maintains the balance between the image quality and
coding bit rate.

4.1. Merging scheme

Suppose 7 is an image of size NXN, and [is
segmented by quadtree to a set of one or several
blocks Q = {Bi, By, ..., B,}. We call R a
quadtree-based region (or region in short) if R is the
union of a subset of O with the constraints that R is
connected.

In region-based fractal image compressing,
the range of each affine transformation w in the
iteration function system is a region. The mapping w

between the domain and range of is illustrated in Fig.

4.

Range Domain

Fig. 4. The mapping of region-based affine
transformations

Let R = {R|, Ry, ..., R,} be a set of regions,
which is denoted the segmentation of original image.
For each region-pair (R;, R)) in R X R, if R; and R; are
adjacent, let R, the region merged by R; and R;
geometrically, denoted by Ry, = (R, R)), we can find
the coefficients of iteration function system and
minimal error &, If there is no any domain cell
corresponding R, or if R; and R; are not adjacent,
we regard the minimal error & as infinity. The total
mean square error €& of R X R is the sum of all error
&y; of R,,;, except infinity value, in R X R.

The basic consideration for region merging
is to split the image to finer segmentation with
quadtree decomposition, then employee a merging
scheme to merge adjacent blocks with similar
property into regions. For each merging action, the
total error increase and the bit rate decrease. It seems
that we can assign a target PSNR or bit rate to

indicate the completion of merging. However, as we
will describe in the following section, the total bit
rate consist of quadtree code, fractal coefficients and
region boundary code, it is more difficult to achieve
a pre-assigned target bit rate than PSNR. Therefore,
in our implementation of the merging algorithm, the
region is merged until the total MSE grow beyond a
pre-assigned threshold.

Before the merging start, we assign a
threshold 7, and segment the image with adaptive
quadtree decomposition to an initial segmentation R
with MSE smaller that 7. The first step of merging
process is to find the error for each pair (R;, R;). Next,
find out the pair Ry, = (R;, R;) in R X R with minimal
error and then update R by removing R; and R; from
R and adding R,, into R, recalculate the MSE of
R X R. Third, repeat the last step until the MSE &7 is
great than threshold 7. We call the threshold T as
merging threshold. For convenient, we will assign a
PSNR value as the target of merging, though this
value can be easily converted to MSE.

The following algorithm is implemented in
our experiment:

Step 1. Do quadtree decomposition and let R = {R;,
Ry, ..., R,} is the decomposition result and
E is the total error of the decomposition.

Step 2. Convert the target PSNR P to total error 7.
If E > T, exit the procedure.

Step 3. For each region R; in R, find out the set of
adjacent regions 4; = {R,, R, ...}. Find the
minimal error g, for each region pair (R;,
R),x=a,b,.... Let & and €, are the error of
R; and R,, respectively. Calculate the error
increment Ag;, < (&, — & — &).

Step 4. Find the region pair (R, R;") with mininal
error increment A€y over all region pairs.

Step5. Let E < (E— & — & + gu). If E> T, exit
the procedure.

Step 6. Let Ry, < R, + R/

Step 7. Remove R; and R;' from R, and add R, into
R.

Step 8. For each region R in A, (i.e. the region that
is adjacent to R; but is not R}), find the
minimal error &, for region pair (R4, R,,).
Calculate the error increment A€y, < (E4m
— E45— En).

Step 9. For each region Ry in 4;' (i.e. the region
that is adjacent to R, but is not R}), find the
minimal error €y, for region pair (R, R,,).
Calculate the error increment A€y, <— (E4im
—Eup— Em)'

Step 10. GOTO Step 4.

After the merging process, some quadtree
blocks with similar property are merged into regions.
If three blocks combine a region, we have only to
record a set of fractal coefficients instead of three
sets. The fractal coefficients are further encoded by

the adaptive arithmetic coding. Moreover, in the
region-based implementation, we have not only the
extra bits to represent the structure of quadtree
decomposition, but also another bits to record the
combination of blocks for each region.

4.2. Adaptive arithmetic coding for fractal
coefficients

Utilizing entropy coding can further save
the bit rate for the fractal coefficients of regions. The
Arithmetic Coding [Rubin79a] is a more efficient
entropy coding tool than Huffman coding. In this
section, the Adaptive Arithmetic Coding [Witte§87a]
is employed and modified to encode the coefficients.

For a set of possible alphabet S = {sy, s,, s3,

.., Sn}, the first-order entropy coding algorithms,

like Huffman coding and arithmetic coding, allocate

bits for each symbol according to their occurrence

probability. That is, for a symbol s; with probability

P, the bit b; allocated for this symbol can be written
as:

b, =-log, p,- ®)]
For example, if symbol s; has the probability 0.25,
then the allocated bit b; is 2.

The problem of the entropy coding methods
is how to transmit the probability distribution of the
alphabet to the decoding side. Some “dynamic”
coding algorithms, like the adaptive arithmetic
coding, provide a smart solution. The probability
distribution is automatically reconstructed at decoder
by receiving each coded symbol; therefore, the
transmitting of probability distribution is omitted.

The adaptive arithmetic coding algorithm
[Witte87a] works with a symbol occurrence pool and
a window size. Initially, the symbol occurrence pool
contains an occurrence for each symbol. The
algorithm calculates the probability of each symbol
and used it to encode the new-coming data. This
new data is added into the symbol occurrence pool,
and the probability of each symbol is re-calculated.
This process is repeated, until the total occurrence of
the symbols in the symbol occurrence pool reaches
the window size. At this time, the occurrence of each
symbol is divided by two, and then continues the
coding process. In short, if we segment the input
data into chunks with a half of window size, before
encoding the first data of chunk ¢;, the occurrence o;
of each symbol in the pool can be written as:

0.=l0 +10. +10,, +...0 (6)

i 2 i,j-1 4 i,j=2 8 i,j-3
where o0;; is the occurrence of symbol s; at chunk ;.
The probability of each symbol after encoding each
new data is re-calculated by:

0, - (7

The decoder can reconstruct the symbol
occurrence pool by decoding each data, updating the
pool, and used it to decode the new data.

In the original design [Witte87a], the initial
symbol occurrence pool contains one occurrence for
each symbol. Before the occurrence converges to the
distribution of input data, there is some bit rate
wasted to encode the beginning portion of input data.
In this paper, we propose a modification to reduce
the wasting bits. A fixed probability distribution is
stored in the encoder and decoder. Before encoding,
half window size of occurrence is generated
according to the fixed probability distribution and
then added into the symbol occurrence pool. If the
probability distribution of the data to be encoded is
similar to the fixed one, the symbol occurrence pool
can be converged with fewer steps and then reduce
the wasted bit rate. This fixed probability
distribution is trained by some typical test images to
achieve a universal usability.

4.3. The representation of region boundary

In region-based fractal image coding, we have to
record the information of range regions, including
locations and shapes (contours) of these regions.
One common way to represent the shape of a region
is by using the chain code scheme.

By inspecting the region structure obtained
after the merging process, we can realize that the
original image is split into a number of adjacent
regions. If we encode each region separately, most
of the region boundary will be coded twice, as
Ebrahimi mentioned in his paper [Ebrah94a]. The
region contour tracing algorithm introduced by
Ebrahimi is employed in our implementation.

We also modify the segmented chain code
[Lu91a] according to the quadtree structure to record
the region contour. In the quadtree-based segmented
chain code (QBSCC in short), the step for each link
is no longer unique but depending on the distance
between two end points on quadtree segmentation.

The region contour tracing procedure
composed with QBSCC is listed here:

Step 1. Index the points on quadtree structure if its
degree is great then 2.

Step 2. Erase the outer boundary of the image.

Step 3. Select a not yet encoded boundary from left
to right and from top to down. An end point
with odd degree has higher priority than the
points with even degree. Record the
difference of current starting point index to
the previous one and the direction of the
start link and the run in number of link until
the direction changed.

Step 4. Record the direction of the change (0: turn
right, 1: turn left) and the run in number of
link for this segmented chain, until the next

change of the direction.

Step 5. If encounter the end of the contour, signal it
by the termination code (a special
segmented code that the run of link is zero).
Otherwise, GOTO Step 4.

Step 6. If there are not yet encoded boundaries,
GOTO Step 3. Otherwise, STOP.

In this algorithm, there are 3 cases for
which the coding bits can be saved. The first case is
that the direction of the starting boundary can be
ignored (in Step 3) if there are only one selection.
The second case is that the direction of the following
segmented chain can be ignored (in Step 4) if there
are only one selection. The final case occurs when
there is no possible following chain to be coded, the
termination code can be ignored (in Step 5). Fig. 5
demonstrates an example for tracing and encoding

the region boundary, including the three ignore cases.

Finally, the difference of starting position and the
length of runs are entropy encoded.

1

2 4
6 10 =)
11 3
14151617 1 1
20212
23l 24l 2592627 28

0,+5)(*1)(0,1)(6:6)

|

LOMHOH) 9,0,1)(1,1)(O,1)(0,1)(1,1)(6:8) 4,(0,1)(6:0)

&~

»(Z1)(1,2)(0,1)(F1)(6:8)

Fig. 5. An example for tracing and encoding of
region boundary

5. POST-PROCESSING FOR REGION
-BASED FRACTAL IMAGE CODING

Highly visible artifacts become annoying when the
coding bit rate is low. If an image is coded by a lossy
coding method, the lower the allowed bit rate
assigned, the more the artifact become noticeable
due to loss information. The coding algorithms also
influence the visual quality. The block-based coding
algorithms usually produce blockiness artifacts near
the block boundary, particularly located in flat areas
of an image. The region-based fractal image
compression method we proposed produces
significant blocking effect at the region boundary
with the PSNR lower than 30dB. Therefore, in this
section, we propose a filtering solution for the
removal of blocking effect.

There are a large amount of studies has
been done to improve the reconstructed image
quality at low bit rate [Ramam86a]. Although some
studies focus on the removal of annoying DCT
artifacts at the block boundary, the techniques for

reducing the blocking artifacts based on the local
content of image can be employed in our
region-based fractal image coding [Hu97a] [Shen98a].

5.1. Determine the pixels to be smoothed

By inspecting the merging result of the region-based
fractal image compression, we can realize that if
there is a large region exists, the image area covered
by this region is usually flat. Moreover, some large
quadtree blocks instead of small quadtree blocks
usually combine a large region. Base on this
observation, we expect to eliminate the significant
blocking effect at flat area by applying a large
smoothing filter over more pixels near the boundary
of large quadtree blocks. At the case of small
quadtree blocks, applying a small smoothing filter
over the few pixels adjacent to boundary would be a
better consideration for not over-smoothing those
pixels.

Because of the non-regular segmentation,
we define a simple method to determine which
pixels to be smoothed. Fig. 6 gives a brief
description of this method. For each segment of
vertical boundary, find the distances from this
boundary to the nearest boundaries to the left and to
the right. We call this distance as the horizontal
visual space. For each segment of horizontal
boundary, this distance named as the vertical visual
space. For a larger visual space, there would be a
larger flat area near this boundary, and therefore
more pixels have to be smoothed. Here, for each
visual space value, we pre-define an influence range
to control how many pixels to be smoothed. As
demonstrated in Fig. 6 (b), the pixels within the
influence range of each segment of boundary have to
be filtered.

Lo >

e 8 8—l—>/iii

A
l ¥ a vertical

boundary

) influence
a horizontal range

boundary
(a) (b)

ii

Fig. 6. Determine which pixels to be smoothed
5.2. Smoothing filter with variable size

The next step is to determine what smoothing filter
for each visual space. In generally, we should apply
a smoothing filter with a larger size over the flat area
and a smoothing filter with a smaller size over the
rough area. Base on this requirement, we design a
filter that can be control by the desired size. The
horizontal and vertical elements of the filter are
given in Eq. (8), where 2k+1 or 2/+1 are the

horizontal and vertical size of the filter, respectively.
If a pixel is only within the influence range of one
boundary segment, a filter with the same horizontal
and vertical size is used, and the corresponding
boundary segment determines the filter size. If a
pixel is within the influence range of a vertical
boundary and a horizontal boundary simultaneously,
the vertical visual space determines the vertical filter
size and the horizontal visual space determines the
horizontal filter size, respectively. The final 2-D
filter is the linear combination of the horizontal and
vertical elements, as given in Eq. (9). Fig. 7 (b)
illustrates an example of the filter size for each pixel
to be smoothed.

2r
h(}’l)—l—COS ﬁ+2k+1-n)n——k,—k+1,...,k (8)

-n}nz—l,—l+1,...,l

v(n)=1-cos| m + 2
2/+1

S =v@) k() i=—memtlms ()
j=_pa_p+1a~'~ap'

3 x 3 filter ! 3 x 3 filter
/

5 x 5 filter 5 x 3 filter

Fig. 7. The adaptive filter size

6. EXPERIMENTAL RESULTS

In this section, some experiments for evaluating the
proposed algorithm is provided. The test image is
8-bit gray level 512 x 512 “Lena” image. The
maximum and minimum block sizes are 32 x 32 and
4 x 4, respectively. The search range parameter L is
16 and the horizontal/vertical step size 9, and 9, is 1,
thus the bits for encoding the location of best-match
domain block is 4 + 4. The contrast factor s; and
brightness factor o; is uniformly quantized and
coded by 4 bits and 6 bits, respectively.

Table 1 lists the simulation results for
“Lena” at 27, 29, and 31dB. When the target PSNR
is 29dB, the compression ratio achieves 106. The
region structure and decoded image for PSNR at
29dB are illustrated in Fig. 8.

Quadtree|QBSCC |Fractal [Total |Bitrate |Decoded |Smoothed|
code coefs. |[bits (bit/pixel) |IPSNR |PSNR

1628 (3671 6240 |11539|0.0440| 26.66 | 27.03
2036 [4587 |13145 (19768 | 0.0754| 28.61 | 29.00
2864 (8710 (23191 (34765 | 0.133 | 30.57 | 31.02

Table 1. Some simulation results for “Lena”

] L L] ’_LH T H ___Iljl_ s
il e o
L] E prNud . j%i*,,,

Hiiaags

}7:;:: H
ﬂ l&‘ﬁ
,t:,ﬁ, !I

(b)

Fig. 8. (a) The decoded image and (b) the region
structure with PSNR = 29.00 dB and bit rate =
0.0754 bpp

Base on our poor knowledge, there are no
other fractal image compression methods can
achieve the low bit rate listed in Table 1. Most
researches based on the structure of Jacquin’s
[Jacqu92a] with only two levels of segmentation,
causes them to remain in high bit rate. Only a fairly
few methods can work well while bit rate is lower
than 0.2 bpp. Fisher and Lawrence [Fishe92a]
provide a result of PSNR = 29.2 dB with 0.21 bpp.
Chang and Kuo [Chang95a] can achieve 29.2 dB
with 0.19 bpp.

Recently, the wavelet transformation with
efficient coefficient coding [Shapi93a] [Said96a]
achieves an excellent performance. The structure of
multi-dimensional wavelet transformation, like the
quadtree decomposition, has the same potential to
encode image with very low bit rate. In Shapiro’s
article, the “Lena” image can be encoded with
0.0078125 bpp, although the PSNR is as low as
21.69 dB that no virtual usage. The following
researches [Said96a] [Xiong98a] [Khanh97a] further
improve the performance of wavelet coding that
cause wavelet coding significantly outperforms other
image coding methods. A post-processing algorithm
[Xiong98a] can reconstruct the blurred edge for low

bit rate wavelet coding. Comparing these rivals with
our proposed fractal coding method, it seems that the
wavelet coding exhibits slightly better performance
than our method. Table 2 summaries some
comparison results sorted by descending PSNR.

Author name Bit rate PSNR Bibliography
(bit/pixel) (dB)

Xiong etal. 0.20 33.34 [Xiong98a]
Fan et al. 0.15 32.02 [Xiong98a]
Khanhetal. 0.1333 31.20 [Khanh97a]
Ours 0.133 31.02

Fan et al. 0.1 30.45 [Xiong98a]
Fan et al. 0.08 29.60 [Xiong98a]
Fisheretal. 0.21 29.2 [Fishe92a]
Chang etal. 0.19 29.2 [Chang95a]
Ours 0.0754 29.00

Khanh etal. 0.0615 28.22 [Khanh97a]
Ours 0.0440 27.03

Table 2. The comparisons of different image
coding methods at low bit rate

7. CONCLUSION

In this paper, the region-based fractal image
compression algorithm is proposed. From the
experimental results presented above, we can realize
that the proposed algorithm can achieve excellent
performance at low bit rate. The adaptive quadtree
decomposition provides the flexibility for coding
images with a wide range of different bit rate. The
region-merging scheme can further eliminate
redundant bit rate with a better utilization of image
property. The modified adaptive arithmetic coding
can efficiently store the fractal coefficients. The
post-processing can eliminate the blocking effect
while coding images at low bit rate.

Comparing to other fractal image
compression methods, the proposed region-based
method can outperform other methods in a wide
range of different bit rate. However, the excellent
wavelet coding methods are still slightly ahead of us.
We believe that there are still some improvement
space at the selection and encoding of fractal
coefficients. A better post-processing algorithm may
be another hope.

REFERENCES

[Barns88a] Barnsley,M.: Fractals Everywhere,
Academic Press, San Diego, 1988.
[Chang95a] Chang,H., Kao,C.: Fractal block coding
using simplified finite-state algorithm,
Proceeding of SPIE, Vol. 2501, pp. 536-544, 1995.
[Ebrah94a] Ebrahimi,T.: A new technique for
motion field segmentation and coding for
very low bitrate video coding applications,
Proceeding of ICIP 1994, pp. 433-437.
[Fan98a] Fan,G., Cham,W.-K., Liu,J.:
Model-based edge reconstruction for low

bit-rate wavelet-based image coding,
Proceeding of ICIP 1998, pp. 2561-2564.

[Fishe92a] Fisher,Y., Lawrence,A.: Fractal image
compression for mass storage applications,
Proceeding of SPIE, Vol. 1662, pp. 244-255, 1992.

[Fishe94a] Fisher,Y.: Fractal image compression -
theory and application, 1994.

[Hu97a] Hu,J., Sinaceur,N., Li,F., TamK.-W.,
Fan,Z.: Removal of blocking and ringing
artifacts in transform coded images, Proceeding
of ICASSP 1997, Vol. 4, pp. 2565-2568.

[Jacks97a] Jackson,D., Mahmoud,W., Stapleton,W.,
Gaughan,P.: Faster fractal image compression
using quadtree recomposition, Image and Vision
Computing, Vol. 15, pp. 759-767, 1997.

[Jacqu92a] Jacquin,A.: Image coding based on a
fractal theory of iterated contractive image
transformations, [EEE Trans. on Image
Processing, Vol. 1, No. 1, pp. 18-30, Jan. 1992.

[Khanh97a] Khanh,N.-P., Hans,W.: DWT image
compression using contextual bitplane coding
of wavelet coefficients, Proceeding of ICIP
1997, pp. 2969-2972.

[Lu91a] Lu,C.-C., Dunham,J.: Highly efficient
coding schemes for contour lines based on
chain code representations, /[EEE Trans. on
Communications, Vol. 39, No. 10, pp.
1511-1514, Oct. 1991.

[Ramam86a] Ramamurthi,B., Gersho,A.: Nonlinear
space-variant post processing of block coded
image, IEEE Trans. on Acoustic, Speech, and
Signal Processing, Vol. ASSP-34, pp.
1258-1268, Oct. 1986.

[Rubin79a] Rubin,F.: Arithmetic stream coding
using fixed precision registers, IEEE Trans.
on Information Theory, Vol. IT-25, No. 6, pp.
672-675, Nov. 1979.

[Said96a] Said,A., Pearlman,W.: A new, fast, and
efficient 1image codec based on set
partitioning in hierarchical trees, IEEE Trans.
on Circuits and Systems for Video Tech., Vol.
6, No. 3, pp. 243-250, June 1996.

[Shapi93a] Shapiro,J.: Embedded image coding
using zerotrees of wavelet coefficients, /[EEE
Trans. on Signal Processing, Vol. 41, No. 12,
pp- 3445-3462, Dec. 1993.

[Shen98a] Shen,M.-Y., Kuo,C.-C.: Review of
postprocessing techniques for compression
artifact removal, Journal of Visual
Communication and Image Representation,
Vol. 9, No. 1, pp. 2-14, 1998.

[Shust94a] Shusterman,E., Feder,M.: Image
Compression via Improved Quadtree
Decomposition Algorithms, [EEE Trans. on
Image Processing, Vol. 3, No. 2, Mar. 1994.

[Witte87a] Witten,l., Neal,R., Cleary,J.: Arithmetic
coding for data compression, Comm. of ACM,
Vol. 30, No. 6, pp. 520-540, June 1987.

[Xiong98a]Xiong,Z., Ramchandran,K., Orchard,M.:
Wavelet packet image coding using space
-frequency quantization, [EEE Trans. on
Image Processing, Vol. 7, No. 6, pp. 892-898,
June 1998.

