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ABSTRACT

A new algorithm for image-space CSG rendering is presented, based on subtraction of convex ob-
jects in a specific sequence. The algorithm has been implemented on OpenGL PC graphics hard-
ware, as well as SGI workstations. Advantages of the algorithm include simpler implementation,
closer affinity to hardware capabilities and comparable performance to other image-space CSG al-
gorithms. The new algorithm is described, and compared to previous algorithms, experimentally
and theoretically. Some graphics hardware issues related to image-space CSG performance are
also discussed.
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1 INTRODUCTION

Constructive Solid Geometry[Requi80a] (CSG) is

an approach to geometric modeling which applies

Boolean operations volumetrically, according to

relationships in a CSG tree. Parent nodes in a -

CSG tree represent operations such as Union (U), 9
Intersection (N) and Difference (-). Leaf nodes of

the tree represent primitive objects. It is com-

mon to associate transformations with each node, |—|—|

to allow flexible scaling, rotation and translation -

of components of the CSG model. Figure 1 illus-

trates a CSG model composed of a sphere, box .

and two cylinders.

The task of rendering an image of a CSG tree can n

be approached in different ways. Object-space ap- d
proaches, such as boundary evaluation[Requi80a, c
Requi85a] can be used to convert from CSG 1

to triangles, which are passed directly to a

rendering pipeline such as OpenGL[OglArb93a,

OglArb92a). Alternatively, an algorithm render- v
ing directly from the CSG tree can be utilised. A
Image-space approaches perform view-dependent

surface clipping in addition to visible surface de- Figure 1: CSG Tree
termination on a per-pixel bagis. Image-space ap-

proaches include ray-casting, scanline algorithms
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and hardware-based z-buffer algorithms. We use
the term clipping in a generic sense, referring to
the process of determining which surface subset
volumetrically satisfies the constraints of the CSG
model. Visible surface determination is the pro-
cess of finding the visible surface for each pixel.

This paper introduces a new image-space z-buffer
CSG rendering algorithm, which we call Se-
quenced Convex Subtraction, or SCS. The algo-
rithm is described in the context of previous
approaches, such as the Goldfeather[Goldf86a]
and Trickle[Epste89a] algorithms. OpenGL im-
plementations of the SCS and Goldfeather algo-
rithms have been developed to verify the SCS
approach and to examine performance issues.
Frame-rate results are presented for a range of
CSG models on three different hardware plat-
forms.

The primary advantage of the SCS algorithm
is significantly less z-buffer copying, due to the
reduced demands on multiple z-buffers for in-
termediate results. The algorithm is also sim-
pler to implement. Other computer graphics
problems make trade-offs between the general-
ity of handling concave objects, and the simplic-
ity and efliciency of computation on convex ob-
jects. OpenGL for example, rasterizes only con-
vex polygons — concave polygons are tesselated
into convex polygons by higher level software. Z-
Buffer algorithms such as Goldfeather and Trickle
perform conversion to convex geometry in image
space. The SCS algorithm requires convex con-
version in object space, rather than repeating this
work for each frame.

2 CSG RENDERING ALGORITHMS
2.1 The Goldfeather Algorithm

The Goldfeather CSG rendering algorithm
[Goldf86a, Goldf89a] is based on clipping one
primitive in the z-buffer at a time. A second
z-buffer is required to accumulate the z-buffer
result, in the usual z-less test manner. The
algorithm assumes that the CSG tree is con-
verted to sum-of-products form. It has been
shown[Goldf86a, Goldf89a] that any CSG tree
may be mormalised into sum-of-products form:
P, UP,U...U Py, where p is the number of prod-
ucts. A product consists of objects related by
only intersection and difference operations.

The Goldfeather Algorithm is outlined below.
The near and far clipping planes of the viewing

system are denoted as Zyeqr and Zg,,.

Goldfeather:
initialise output z-buffer to Z¢,,
for each product P in CSG tree
for each primitive Q in P
if Q is subtracted
draw back of Q into temp z-buffer
if Q is intersected
draw front of Q into temp z-buffer
for each primitive R in P
if R is not Q
clip temp z-buffer against R
merge temp z-buffer into output z-buffer

The operation of the Goldfeather algorithm is il-
lustrated in Figure 2, using the CSG tree from
Figure 1. Each row corresponds to a pass of the
algorithm. The first column shows the primitive
selected for clipping in the current pass. In the
second column, the appropriate front or back sur-
face is drawn into the z-buffer. In the third col-
umn, the z-buffer surface is clipped against all
other primitives in the product. The final step
is to merge the clipped z-buffer into the output
z-buffer.
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Figure 2: Goldfeather CSG Rendering Al-
gorithm

Clipping of a z-buffer is implemented by counting
the number of surfaces in front of each pixel. An



Figure 3: CSG Object: X - A-B

odd number means that the pixel is ingide the
volume of the primitive. This can be implemented
in OpenGL by toggling a stencil bit[OglArb93a]
at each pixel for every rasterised surface closer
than the current one.

Concave primitives are handled by clipping each
layer of the primitive in a separate pass. The
number of passes corresponds to the depth com-
plexity of the object, since only one z-buffer sur-
face can be clipped at each pixel per pass. A sim-
ple algorithm can be written in OpenGL to draw
the n’th layer of a concave primitive[Goldf89a,
Stewa98a]. The stencil buffer is used to incre-
ment a counter for each fragment drawn into a
pixel, updating the z-buffer only when the counter
equals the desired layer.

The Goldfeather algorithm has been implemented
in OpenGL[Stewa98a, Wiega96a]. Two z-buffers
are required by the algorithm — the additional
z-buffer can be simulated by copying between
the z-buffer and system memory. The basic re-
quirements are therefore a single colour buffer,
a single z-buffer, a stencil buffer and the abil-
ity to save and restore the contents of the z-
buffer[Wiega96a].

Z-buffer copying can be a significant bottle-
neck on OpenGL hardware platforms [Stewa98a,
Wiega96a). The Layered Goldfeather Algo-
rithm[Stewa98a] can reduce this problem in cer-
tain circumstances by clipping layers, rather than
primitives. The idea is to take advantage of depth
complexity k, resulting in O(kn) time, rather
than O(n?). Major speedups are observed when
k < n. Object-space optimisations have also been
proposed [Goldf89a, Wiega96a).

2.2 The Trickle Algorithm

The Trickle CSG rendering algorithm[Epste89a]
subtracts layers from front to back with respect
to the viewing direction. Two auxillary z-buffers
are used to iterate through the sequence of layers,
the accumulated result is stored in a z-buffer, and
another z-buffer is used as a temporary scratch-
space — a total of four z-buffers. The Trickle

algorithm is designed to handle CSG products in
the form: X — O — ... = Op N Opy1 N ... N Oy,
Although the algorithm operates on a subtractive
basis, intersection can be supported via inversion.

Trickle:
initialise output z-buffer to Z¢,,
draw front surface of base primitive
for each layer of subtracted volumes
extract the front surface of n'th layer
into front z-buffer
extract the back surface of n'th layer
into back z-buffer
replace output z-buffer with back z-buffer
where frontZ < outputZ < backZ
replace output z-buffer with Z;,, where
outputZ > back surface of base primitive

Figure 4 illustrates application of the Trickle al-
gorithm to a CSG tree of three boxes (X —A— B)
as illustrated in Figure 3. Initially, the front of
the base object X is drawn into the z-buffer. The
closest front-facing and back-facing surfaces of
subtracted objects are determined for each pixel.
This forms the first layer, which is subtracted
from the z-buffer. Subtraction replaces the z-
buffer with Lp,.r, the back-facing surface of the
layer, for each pixel where Lrons < 2 < Lpgep.
Then, the next layer is formed by finding the
next closest front and back facing surfaces for
each pixel. Each layer is subtracted from the z-
buffer in turn, from nearest to furthest. Layers
are view-dependent, since changing the viewing
direction affects the relative distances of surfaces
to the viewer.

Front Facing Subtract Layer

Surface

Back Facing
Surface

Figure 4: Trickle CSG Rendering Algorithm

The subtraction of an individual convex object
(or layer) is illustrated in Figure 5. The Trickle
algorithm repeats Steps (b) to (d) for each layer
of subtracted volume.

The Trickle algorithm depends on layers being
subtracted in front to back order. Since the z-
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Figure 5: Convex Subtraction From Z-Buffer

buffer has capacity for only one surface per pixel,
it is not possible to account for holes behind the
current z-buffer surface. By ensuring that closer
subtractions are performed earlier, holes behind
the current z-buffer surface are known to be oc-
cluded, and can be ignored.

Layers are extracted iteratively, based on the
previous layer. The algorithm searches for the
closest surface which is further than the current
layer surface. Incoming triangles are depth tested
against two different z-buffers. Fragments closer
than the current layer z-buffer are rejected. Frag-
ments further than the “closest seen so far” in
the temporary z-buffer are also rejected. Once all
rasterisation is complete, the temporary z-buffer
contains the next closest surface and replaces the
contents of the layer z-buffer. A collision count
for each pixel is maintained, to handle the case
where more than one surface occupies the same
z value at the same pixel. The layer extraction
algorithm is as follows:

ExtractNextFrontFacinglLayer:
on first pass
initialise front z-buffer to Z,,00r
initialise collision count to zero
on subseqgent passes
decrement collision count for each pixel
initialise temp z-buffer to Z¢,,
for each front facing surface S
replace temp z-buffer with S where
frontZ < S < tempZ
and
collision count is zero
for each pixel where collisions is zero
count collisions

Extraction of the back-facing surface of the layer
is performed similarly, except that back-facing
surfaces are considered rather than front-facing.

It should be noted that the architecture of Open-
GL does not support depth testing of a fragment
against two z-buffers. This can be simulated in
OpenGL, but is costly. Other architectures sup-
porting deep frame-buffers, multiple z-buffers, ex-
tended fragment testing or high-bandwidth are
more promising[Eyles97a, Molna88a, Molna92a,
Rossi90a].

The Trickle algorithm handles intersections by
subtracting inverted primitives. The inverse of
a convex primitive X spanning [X ¢ront, Xpack)] 18
[ZnearaXfront] and [Xbackazfar]- Implementing
this inversion involves swapping the front and
back-facing surfaces, and “tricking” the layer ex-
traction algorithm. Initialising the front collision
count for each pixel to the number of intersected
primitives simulates the Z,,.,, surfaces. The nec-
essary Zyqr surfaces result from the convergence
of the layer extraction algorithm to Zg,,.

3 THE NEW ALGORITHM
3.1 SCS Overview

The Sequenced Convex Subtraction (SCS) CSG
rendering algorithm is based on subtraction of
convex objects in a specific sequence. The SCS
algorithm operates on a similar basis to Trickle,
in that convex volumes are subtracted from the z-
buffer. However, rather than extracting a sorted
sequence of layers, convex primitives are sub-
tracted in a sequence that handles every possible
order in the viewing direction. In the best case,
no pixel is covered by more than one primitive,
and any sequence that includes all primitives will
suffice. In the worst case, all primitives overlap
the same pixel and all n! scenarios need to be
catered for. Interestingly, these can all be en-
coded in an n? length sequence.

Figure 6 illustrates the subtraction sequence nec-
essary to handle the two possible dependencies
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Figure 6: Subtraction sequence for two objects.

between two subtracted objects. While the se-
quence X — B — A would be sufficient in this par-
ticular case, the sequence X —A— B— A is assured
to work for any viewing direction or position of
the primitives. In fact, the same sequence will
work for any CSG tree in the form: X — Oy — Os.

The SCS CSG rendering algorithm can only han-
dle convex objects. Concave objects must be de-
composed into convex primitives in object-space.
This idea is also reflected in the design of a hy-
brid object-space/image-space CSG rendering al-
gorithm [Rappo97a).

SCS performs no image-space surface sorting, in
contrast to the Trickle algorithm. It can be
cheaper to perform redundant subtractions than
to sort. SCS requires no z-buffer management for
a single product, in contrast to both the Gold-
feather and Trickle algorithms. However, the
convex representation required by SCS results in
more surface information than needs to be pro-
cessed by other algorithms. The performance im-
plications are examined in Section 4.3.

3.2 SCS Product

The SCS Algorithm for rendering a CSG product
is as follows:

SCSProduct:
initialise z-buffer to Zg,,
draw front surface of base primitive
for each E in SCS sequence
if primitive[E] is subtracted
for each pixel in range of primitive[E]
replace z-buffer with primitive[E].back
if primitive[E] is intersected
for each pixel closer than primitive[E].front
replace z-buffer with primitive[E].front
for each pixel further than primitive[E].back
replace z-buffer with Z¢,,
for each pixel not covered by primitive[E]
replace z-buffer with Z¢,,

The first if-then block implements subtraction, as
illustrated in Figure 5. The second if-then block
implements intersection via logical inversion. The
algorithm requires one z-buffer and no z-buffer

copying.

3.3 SCS Tree

Rendering more than one CSG product requires
some z-buffer management:

SCSTree:
initialise output z-buffer to Z¢,,
for each product P
SCSProduct into temp z-buffer
merge temp z-buffer into output
with z-less test

This algorithm assumes that the CSG tree is in
sum-of-products form, and merges products via
the standard ’less than’ z-buffer operation. It is
similar to the outer loop of the Goldfeather algo-
rithm, except that rather than merging clipped
primitives, the SCS algorithm merges clipped
products. There are usually fewer products in
a normalised CSG tree than primitives.

3.4 Sequence Generation

The SCS algorithm performs CSG rendering by
subtracting in a sequence that encodes every per-
mutation of the objects. These sequences have
been formulated abstractly as permutation em-
bedding sequences[Galbi76a]. A sequence is em-
bedded if it can be formed by deleting other en-
tries. For example, cab is embedded in abcbabe:
**xcxabx, where x represents a deletion.

A simple algorithm can be used to construct per-
mutation embedding sequences. The algorithm
uses a permutation denoted s;. Concatenation of



n copies of s; results in a sequence embedding ev-
ery permutation. The length of these sequences
is n2. For example:

n =3, s;1 = abc
818181 — abc abe abe — abecabeabe

A shorter sequence can be obtained by alternating
between s; and so, where s9 is the reversal of s;.
At each boundary between s; and sg the repeated
entries can be collapsed into one. For example:

n =3, s = abe, so = cba
818281 — abe cba abe — abebabe

These can be proven to be permutation embed-
ding sequences. Since each block contains each
possible entry, any permutation can be formed by
selecting the appropriate entry from each block.
Collapsing repeated entries does not affect this
property, since a different entry is required from
neighbouring blocks.

Table 1 lists permutation embedding sequences
for 1 < n < 6. The length of these sequences is
n? —n + 1. Shorter sequences[Galbi76a] can be
generated for n > 3, but are more complicated.
Determining optimal permutation embedding se-
quences is thought to be an open problem.

l | sequence
1|a

3 | aba

7 | abcbabe

13 | abedebabedcba
21 | abededcbabededcbabede
31 | abede fedcbabede fedcbabede fedcba

S Ut LN =3

Table 1: Subtraction Sequences for n < 6

3.5 Depth Complexity Optimisation

If the maximum depth complexity of the sub-
tracted objects is known, shorter subtraction se-
quences can be used. The sequences previously
discussed cater for every permutation, but can be
shortened to take depth complexity into account
when k < n. k concatenated blocks are sufficient,
where k is the maximum number of subtracted
objects overlapping any pixel. For example:

n=3,k=2,s; =abc, so = cba
8189 — abe cba — abcba

The length of sequences in this form is kn—k+1,
or O(kn).

Depth complexity can be determined with
OpenGL by using the stencil buffer to count the
number of objects covering each pixel[Stewa98a].

3.6 Limitations

Several general limitations apply to z-buffer CSG
rendering algorithms, including the SCS algo-
rithm. Primitive objects must have distinct front
and back facing surfaces, and contain no holes or
gaps in the tesselation. Also, the viewing system
must be chosen so that no primitives span the
near or far clipping planes.

4 IMPLEMENTATION
4.1 Overview

The Goldfeather[Goldf89a), Layered Goldfeather
[Stewa98a] and the SCS CSG rendering algo-
rithms have been implemented in C++ using
OpenGL and GLUT. The implementation makes
use of per-frame depth complexity sampling, but
not object-space separability information. This
presents a problem, since it is not known how
to apply this information to SCS, but the Gold-
feather algorithm makes effective use of it. This
experiment can be regarded as an indication
of CSG rendering integrated at a low level of
the graphics environment, where this information
could be expected to be absent. We intend to di-
rect future efforts towards a clearer performance
comparison between the SCS and Goldfeather ap-
proaches.

Three hardware OpenGL platforms have been
used to obtain experimental results. The first is a
Silicon Graphics 02, with a 180 Mhz MIPS R5000
processor, 160 Mbytes of RAM, running IRIX 6.3.
The second is a Silicon Graphics Indigo2, with a
195Mhz MIPS R10000 processor, 128 Mbytes of
RAM, High Impact graphics board running IRIX
6.2. The third is a 300Mhz Intel Pentium II, Win-
dows NT 4.0 SP 5, and ASUS AGP TNT2 V3800
TVR 32MB Graphics Card. The OpenGL win-
dow is 200x200 pixels, 24 bit z-buffer and 8 bit
stencil buffer.

4.2 CSG Objects

CSG objects used in this experiment are illus-
trated in Figure 7.

The Widget object is a CSG product with one
intersection and two difference operations. The
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Figure 7: CSG Test Cases.

depth complexity is constant from every viewing
direction since all primitives overlap the center of
the model.

The Grid object is a CSG product with 25 spheres
subtracted from a rectangular block. Depth com-
plexity varies according to the viewing direction.

The Swiss Cheese object is a large CSG tree in-
volving subtraction of more than 50 convex ob-
jects. Despite the large number of objects, the
depth complexity is often between 4 and 6.

The Machine Tool object consists of a tesselated
helix subtracted from a cylinder. Two versions
of the helical mesh have been used, a concave
boundary representation for Goldfeather render-
ing, and a convex decomposition for SCS.

The Hollow Pipe dataset is three CSG products
forming a bent hollow pipe.

4.3 Benchmark Results

The results indicate that the performance of SCS
is comparable to the other algorithms tested.
Rendering performance is sensitive to the model,
viewing direction, and graphics hardware design.

The best overall speedup for SCS was observed
on the TNT2 hardware. This environment has
very fast triangle rasterisation, relative to z-buffer
copying. The Indigo2 is the opposite, having rel-
atively good bandwidth. The results for the ma-
chine tool model neatly illustrate the sensitivity
of each algorithm to the hardware design.

As discussed previously, a more favorable compar-
ison for the Goldfeather algorithm would include

Dataset | Algorithm Frame Rate (frame/sec)
02 | Indigo2 | TNT2

Widget | Goldfeather 5.20 15.18 141
Layered Gold. 3.51 10.85 1.01

SCS Product 14.93 26.18 15.27

Grid Goldfeather 0.31 0.73 0.15
Layered Gold. 1.10 2.54 0.71

SCS Product 1.64 3.66 2.67

Swiss Goldfeather 0.09 0.34 0.06
Cheese Layered Gold. 0.36 0.74 0.31
SCS Product 0.46 0.98 0.74

Machine | Goldfeather 5.41 18.98 1.46
Tool Layered Gold. 4.15 14.81 1.23
SCS Product 4.93 11.12 6.95

Hollow Goldfeather 1.48 4.74 0.41
Pipe Layered Gold. 0.72 2.43 0.22
SCS Tree 3.24 8.46 1.57

Table 2: Benchmark results.

object-space separability information. In the ab-
sence of this information, SCS can achieve useful
frame-rates for the models we investigated.

5 CONCLUSION

The Sequenced Convex Subtraction (SCS) CSG
rendering algorithm has been described, and
shown to have certain advantages over previous
algorithms. The basis of the algorithm is to sub-
tract volumes in a sequence that caters for all pos-
sible orderings in viewing direction. Permutation
embedding sequences have been shown to cor-
rectly render CSG products from different view-
ing directions.

Taking view dependent depth complexity into ac-
count, sequences of length O(kn) produce the cor-
rectly rendered result. O(kn) is asymptotically



similar to the performance of other algorithms.
The advantage of the SCS Algorithm is fewer
z-buffers and fewer z-buffer copying operations.
Therefore, SCS is particularly advantageous in
low-bandwidth environments.

5.1 FURTHER WORK

The SCS Algorithm is driven by a sequence en-
coding each possible depth dependency between
subtracted volumes. View-specific depth com-
plexity information results in an O(kn) sequence.
Additional information such as object-space sep-
arability can further reduce the sequence length.
If two subtracted volumes are known not to in-
tersect, there is no need to encode the depen-
dency into the sequence. We would like to de-
velop sequence generation techniques that make
use of this information. It would be interesting
to benchmark SCS and Goldfeather implementa-
tions making use of the same object-space sepa-
rability information.
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