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ABSTRACT

Reassembling unknown broken objects from a large collection of fragments is a common problem
in archaeology and other fields. Computer tools have recently been developed by the authors and
by others, which try to help by locating pairs of fragments with matching outline shapes. These
tools have been succesfully tested on small collections of fragments. Here we address the question
of whether such tools can be expected to work for practical instances of the problem (10% to 10°
fragments). To that end, we describe here a method to measure the average amount of information
contained in the shape of a fracture line of given length. This parameter tells us how many false
matches we can expect to find for that fracture among a given set of fragments; and we show that
outline comparison should give useful results even for large instances.
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1 Introduction |

Reassembling unknown broken objects from a —~ L S e
large collection of irregular fragments is a prob- ‘
lem that arises in several contexts, such as archae- AN el |
ology (ceramic vessels), failure analysis (debris), (> I
paleontology (fossil bones), conservation (mural o o o
paintings), and so on. Large instances of the
problem—involving tens of thousands of of ran-
domly shaped and featureless fragments—are not
uncommon, and their reassembly often requires
years of tedious and delicate work. The most dif-
ficult part of the problem is finding the pairs of
matching fragments, those that were adjacent in
the original object.

Figure 1: Digitized outlines of ceramic fragments.
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Figure 2: Some matching fragment pairs.

This problem could obvioulsy use some computer
help; and indeed programs have been developed,
by us and by others [Gama 98, Ucolu97, Burde89]
that, given a set fragment outlines like the ones
shown in figure 1, can identify a substantial frac-
tion of the matching pairs, as shown in figure 2,
at reasonable computing cost.




1.1 Scaling up to large problems

While computer matching has proven effective for
small instances of the problem (about a hundred
fragments), it is not obvious that it will work for
realistic instances, with 10% to 10° fragments.

One may wonder that, among such large col-
lections, there will be far too many “false
positives” —pairs that were not adjacent in the
original object, but whose outlines have the same
shape, just by chance. A program that pro-
duced thousands of false matches for each frag-
ment would not be of much help.

For a rough analysis of the question, suppose we
have N fragment outlines, with average perime-
ter L. For a given point p on the boundary of
one fragment, there are O(NL) points on other
fragments that could be matched to p in the re-
constructed object. In order to identify the cor-
rect match ¢, we need to extract log, (N L)+ O(1)
bits of useful information from the shape of the
outline in the neighborhood of p—“useful” in the
sense that the same bits can be extracted, with
high probability, from the outline around g. This
observation is encouraging, in that it says that the
amount of information required grows very slowly
(logarithmically) with the size of the problem.

In fact, experience suggests that the shape of a
ceramic fragment contains a lot of information
about its matching partner. Anyone who has
tried to put back together a broken vase knows
that a correct pair of fragments, even relatively
small ones, will “fit” together vastly better than
an incorrect pair; so that the latter is hardly ever
mistaken for the former. The reason is that, for
suitable materials, the two sides of a fracture will
remain congruent to within a fraction of a mil-
limeter, for most of their length. Given their
irregular, random shape, the probability of ob-
taining such a precise fit among two unrelated
fragments is practically nil. See figures 3 and 4.

In this paper we try to turn the above intu-
ition into a quantitative statement. Specifically,
we describe a method for determining the aver-
age amount of useful information contained in a
piece of fragment outline of given length, given a
sample of correctly matched fragment outlines.
This method is not used in the matching al-
gorithm proper, which has been described else-
where [Gama 99]. Its purpose is to enable a priori
analysis of the effectiveness of shape comparison.
The data provided by this method can be used
to estimate the number of false matches that one
can expect to find among a large collection of seg-
ments, the minimum length of common boundary

that is needed for reliable matching, and the pre-
cision with which the outlines must be digitized,
and so forth.

We illustrate the method with an artificial but
fairly realistic sample of ceramic fragments. The
information contents we observe (about 17.2 bits
per centimeter) means that, for a fracture 1.1 cm
long, we can expect about one false match every
200 fragments or so.

Figure 4: Corresponding parts of two match-
ing fragments, magnified. Grid lines are 1 mm
apart. The outlines were digitized at a nomi-
nal resolution of 300 dpi (0.085 mm/pixel) and
smoothed with a Gaussian filter of characteristic
length o = 0.085 mm.

2 Fracture model

Our fragment matching algorithms are special-
ized for objects with a smooth and locally flat
surface, such as tiles, plates, tablets, large vases,
frescoes, etc. The algorithms’ input consists of
the digitized fragment contours or outlines, mod-
eled as a collection of plane curves.

We assume that two fragments which were adja-
cent in the original object were separated there by
an ideal frature line of zero thickness. The con-
crete manifestation of that line is a pair of match-
ing segments on the contours of those two frag-
ments. See figure 5. Note that, in general, it is
not possible to identify the endpoints of these seg-
ments without knowing the matching fragment.
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Figure 5: Original object with ideal fracture
lines (a) and the observed fragment contours

(b).

Needless to say, two matching segments will never
be precisely congruent: there will be some differ-
ences, either real (e.g. due to loss of small frag-
ments) or artificial (due to errors in the contour
extraction process, such as parallax, shadowing,
quantization, etc.). The useful information con-
tents of a piece of contour is determined by the
magnitude of all these errors, relative to the size
of the characteristic details that can be used to
identify the matching piece.

3 Interpreting curves as signals

Before we can apply the tools of information the-
ory to this problem, we must turn each curve into
a signal—a real function of some real parame-
ter t. The transformation must turn matching
contour segments into similar signals, even if the
fragments were digitized in random orientations.

A well-known rotation-invariant representation of
a curve is the graph of its curvature (t) as a func-
tion of its arc-length ¢ from an arbitrary reference
point. However, since the curvature is essentially
a second derivative, it tends to magnify the effect
of small-scale noise, and its shape looks quite dif-
ferent from the shape of the curve. While these
defects may not be significant for the Fourier-
based analysis below, it seemed prudent ot use
representation as close as possible to the original
curve itself.

Therefore, we have chosen to use a shape function
derived from the curve segment as described be-
low. We assume that the curve segment in ques-
tion has length L and is given by n +1 =2 41
equally spaced sample points ¢y, .. ¢, on the plane.
The shape function s is conceptually defined on
the interval [0 __ L], and is computed as n + 1

real sample values sg, s1, .. Sp, with sg = s, = 0,
by this recursive procedure:

1. if n = 0, return sg = 0.

2. let r be the index of the middle sample,
r = n/2. Recursively convert the sequences
co,-- ¢ and ¢y, ..c, to signals sg,..s, and
Spyee Spy-

3. let a be the angle between the vectors u =
¢, —cog and v = ¢, — ¢, Add to the sam-
ples so,..s, a sequence go,.. g, With go =
gn = 0, g» = aL/4, and other values de-
fined by linear interpolation between these
values (i.e. a triangular pulse of height h).
Return the sequence sg, .. Sp.

This transformation is fully invertible: given the
length L, the point ¢, the line ¢oc,,, and the sam-
ples s;, the original points ¢; can be reconstructed
by running the algorithm in reverse. This repre-
sentation does not magnify the small-scale noise,
and moreover it preserves qualitatively the shape
of the curve. See figure 6.
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Figure 6: A curve and its shape function.

One drawback of this transformation is that a
local disturbance in the curve may change its
length, and therefore cause a global shift of the
shape function from that point on. Neverthe-
less, one verifies experimentally that the shape
functions of corresponding contour pieces, like the
ones shown in figure 4, generally remain in sync
over most of their length, as shown in figure 7.
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Figure 7: The shape functions of the two cor-
responding segments shown in figure 4.



4 Information contents of outlines

We can view a digitized fragment contour ab-
stractly as a signal (the fracture line) corrupted
by noise (the material losses and data acquisition
errors). Specifically, the shapes of the two cor-
responding segments of a pair can be written as
a(t) = s(t) + n'(t) and b(t) = s(t) + n"(t), where
s is the shape of the ideal fracture line, and n’, n"”
are “noise” functions that represent loss of mate-
rial, acquisition errors, etc.

Since the shape function s(t) of a curve, as defined
above, is known only at a finite set of uniformly
spaced t values t; = jd, for 0 < j < n, we can
express it as a discrete Fourier series
m
27k
s; = s(t;) = Z Sk exp(th) (1)

k=—m

where T = nd is the period, m = |n/2] is the
mazimum frequency, and i = /—1 is the imag-
inary unit. (Recall that the Fourier coefficients
Sy, of a real-valued series satisfy S_, = S} for
all k; moreover Sy is real, and S,, is real when
n is even. Therefore, we get exactly n degrees of
freedom in the coeflicients Sk.)

Let Ay, By, Sk, N, and N}/ be the Fourier coeffi-
cients of a, b, s, n', and n", respectively. We can
generally assume that the coefficients Sy, N}, and
N;! are independent random variables with zero-
mean, symmetric Gaussian distributions over the
complex plane. We can assume also that N, and
N/ have the same variance Nj. Then the in-
formation given by each coefficient Ay about the
corresponding coefficient By, [Lathi68] is

A By,
Ska + Aka
Q T )2
log M
(25 + Ni) Ny,

I

(2)

(All logarithms here are on base 2.) The total
information about b carried by a is then sim-
ply Liot = Y peolr. Note that the summation
includes only the terms with positive k, since
the Fourier coefficients with negative k are de-
termined by the constraint S_;, = S}. Moreover,
if the signals are shape functions as defined in sec-
tion 3, we must leave out the term I, since the
condition ag = 0 implies that coefficient Ay can
be computed from other coefficients.

Determining S, and Ng. Unfortunately, we
have no direct information about the variance of

the original signal Sj, (the shape function of the
ideal fracture line) or of the noise Ny, (the differ-
ence between the fracture lines and the observed
contours). However, we can estimate these pa-
rameters by comparing sections of fragment con-
tours that are known to correspond to the same
fracture line in the original object — such as the
highlighted part in figure 3.

Let’s then denote by a(t) and b(t), for t € [0.. T,
the shape functions of two corresponding pieces
of contours, as in figure 7, selected so that the
midpoints a(7/2),b(T/2) of the two graphs cor-
respond to the same point of the ideal fracture
line. Let m(t) = [a(t) + b(t)]/2 be the average of
the two signals, and d(t) = a(t) — b(t) their differ-
ence. See figure 8. Then the Fourier coefficients
Mj, and Dy, of signals m and d have variances

N Sk+N;¢+Sk+N;€l

My, = var 5
= S+ Ly
— k 2 k

Dy = var[(Sk + N}) — (Sk + N
= 2N,
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Figure 8: The average m(t) = [a(t)+b(¢)]/2 and
difference d(t) = a(t)—b(t) of the shape functions
of figure 7.

Thus, given a sample of matching segment pairs,
we can compute the variances Mj, and Dy, and
then estimate Sy, Ny by the formulas

. . 1. - 1.

Sy = My, — ZDk Ny = §Dk (3)
Therefore, by formula (2), the amount of infor-
mation provided by the frequency-k component

of curve a about the same component of its part-
ner b is

L = log A(Ak)Q i i
i (2(Mk — ka) + %Dk> (%Dk)
[
= log _Mka (4)

When estimating the variances M, and Dk, we
must note that they are used as arguments to the



logarithm function, which is highly nonlinear in
this case. Therefore, instead of computing the
variances by the usual formula, it is safer to ex-
pand formula (4) into

I, = 2log Ay, — log My, — log Dy, (5)

then estimate the term log Ay, by averaging
log(|Ak|2) for several segments, and similarly for
log M}, and log Dy,.

Consistency check. As a consistency check,
let’s consider what would happen if a(t) and b(t)
were the shape functions of two unrelated contour
segments with the same length. In this case, we
have a = s’ +n' and b = s + n", where s’ and
s" are independent signals. The variances of the
coefficients M}, and D;, would be

1, . A 1.
D, = 2(Sk + Nk) =24
Formula 5 would then evaluate to
~ 1 . N
I, = 2log Ay, — log(iAk) —log(24%) =0

as it should.

5 Experimental results

To test this theory, we shattered five unglazed
ceramic tiles into about a hundred fragments,
ranging from 10 to 50 mm diameter. We dig-
itized those fragments with a 300 dpi flatbed
scanner, and extracted their outlines with simple
thresholding and contour-following algorithms.
To remove the quantization noise, we smoothed
the outlines with a geometric Gaussian fil-
ter [Gama 99], with characteristic width o =
1pixel ( = 0.085mm), and resampled each set
with uniform stepsize 0.25pixel ( = 0.022mm).
Some of those contours are shown in figures 1
and 3.

From these contours, we selected 40 pairs of frag-
ments that were adjacent in the original tiles, and
extracted by hand the approximately matching
parts of their outlines, 128 pixels (10.8 mm) long.
We converted these trimmed curve segments to
shape functions a(t) and b(t), as explained in sec-
tion 3, and computed the mean and difference
signals m(t) and d(t) for each pair. Figures 4 and
and 8 show one of these pairs.
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Figure 9: Average power spectra of the mean
(M}) and difference (Dy) signals for 40 match-
ing pairs.
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Figure 10: Useful information contents I per
frequency k, computed from a sample of 40 cor-
responding segments.

Figures 9 and 10 and table 1 show the estimated
variances Ak, Mk, and bk, and the useful infor-
mation contents I for each component frequency
k, as computed by formula (5). Note that the
variance A, was estimated by averaging the loga-
rithms of |4;|? for all the samples, as discussed in
section 4, and then computing the anti-log. The
same holds for ]\ka and ﬁk.

k| A My | Dy I, | I;/L
mm? | mm? | mm? bits %

1| 11.93 | 12.29 | 0.590 | 4.29 | 0.396
2 | 2.371 | 2.401 | 0.238 | 3.30 | 0.304
3| 1.262 | 1.196 | 0.287 | 2.21 | 0.204
4 1 0.579 | 0.493 | 0.161 | 2.08 | 0.192
5 | 0.366 | 0.298 | 0.181 1.32 0.121
6 | 0.147 | 0.147 | 0.060 | 1.29 | 0.119
71 0.105 | 0.079 | 0.080 | 0.78 | 0.072
8 | 0.069 | 0.057 | 0.058 | 0.53 | 0.049
9 | 0.044 | 0.031 | 0.042 | 0.55 | 0.051
10 | 0.034 | 0.023 | 0.031 | 0.63 | 0.058
11 | 0.022 | 0.015 | 0.023 0.47 0.043
12 | 0.019 | 0.015 | 0.023 | 0.01 | 0.001
13 | 0.011 | 0.006 | 0.015 | 0.24 | 0.022
14 | 0.007 | 0.004 | 0.006 | 0.90 | 0.083
15 | 0.004 | 0.002 | 0.010 | 0.00 | 0.000
total 18.59 | 1.716

Table 1: Results for a set of 40 pairs of match-
ing contour segments: power spectra of the con-
tour (Ay), mean (My), and difference (Dy) sig-
nals, estimated information contents (I;) and
density (Ix/L), per frequency k.



Table 2 shows the information contents condensed
by logarithmically-spaced frequency bands (scales
of detail), and accumulated up to each scale.

k wavelength Ing Ibd/L
mm bits %

1 1 10.84 .. 5.42 4.29 0.396
2 3 542 .. 2.71 5.51 0.508
4 7 271 .. 1.35 5.46 0.504
8 15 1.35 .. 0.68 3.33 0.307
16 256 0.68 .. 0.00 0.00 0.000
total 18.59 | 1.715

Table 2: Information contents (Ij) and infor-
mation density (I} /L), accumulated by scale of
detail (frequency band).

As a control experiment, we repeated the process
with 40 pairs of non-matching contour segments.
Figures 11 and 12 show the average power spectra
and useful information contents I (rather, the
lack thereof) for that sample.
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Figure 11: Power spectra of the mean
and difference signals for a set of 40 non-
corresponding contour segments.
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Figure 12: Useful information contents Ij per
frequency k computed for a set of 40 non-
corresponding contour segments.

6 Conclusions and future work

Based on these results, we conclude that, in our
sample curves, the shape of an outline segment
10.8 mm long contains at least 18.6 bits of use-
ful information about the shape of the matching
segment. This information lies almost entirely

in components 1..15 (wavelengths from 10.8 to
0.72mm).

The average perimeter L of the fragments in our
sample was about 2000 pixels (170mm). Since
the outlines were digitized with a sampling step
of 0.25 pixel, each contour had about 2'! poten-
tial segments that could be matched to a given
segment. Thus the 18.6 bits contained in a given
10.8mm of contour could identify the matching
pair, with fixed reliability, among 218:6/211 =
276 ~ 190 fragments. Or, said another way:
among a set of N fragments similar to our sam-
ple, we can expect that on the order of N/190
fragment outlines will be found to match a given
piece of outline 10.8 mm long, to the accuracy of
our measurements.

These numbers are of course specific to the
unglazed ceramic fragmens used in our test.
Unglazed ceramic is particularly appropriate for
shape-based reconstruction, because of its highly
irregular fracture lines. Still, we conjecture that
our basic result — there is enough information
in the fragment outlines to solve the problem
— holds also for many other materials. For
instance, glass fragments scanned at the same
resolution will have relatively smooth outlines—
meaning lower Si’s and hence lower information
contents. On the other hand, their outlines are
much sharper, and material losses are smaller, so
they can be measured with greater accuracy—
leading to smaller Nj. This intuition ought to be
checked experimentally.

Of course most practical instances of the fragment
reconstruction problem involve three-dimensional
objects with curved surfaces, such as vessels and
statuary. For such instances, one would proba-
bly acquire the fragment outlines through stereo
vision techniques, and encode them in some in-
variant representation (e.g. local curvature in
the plane tangent to the object’s surface) such
that adjacent fragments will have matching out-
line segments. In that case one could use the
techniques of this paper to measure the informa-
tion contents of the encoded outlines. We believe
that the result will be roughly the same as for
flat fragments of the same material digitized to
the same accuracy.

We expect that the main source of “noise” in real-
world instances of the problem will be the erosion
of fragment edges, not only from natural causes
but mainly from rough handling of the fragments.
(Archologists routinely use sieving to separate ce-
ramic fragments from soil, a process which may
destroy most of the edge details at sub-millimeter
scale.) One could reduce the severity of that



problem by tracing the outline of each fragment
at a fixed depth relative to the object’s surface,
rather than at the surface itself. Alternatively,
one could use the mean inclination of the frac-
ture surface relative to the object’s surface as an
additional component of the “signal.”

Taking this idea to its natural limit, one should
consider fractures as surfaces rather than curves,
and use surface-matching techniques (as pro-
posed by Berequet and Sharir [Bareq96] and
Levoy [Levoy99]) to find the adjacent fragments.
This approach will surely supersede contour-
based methods, once ways are found to reduce
its formidable computational cost. In any case,
it seems likely that the Fourier-based techniques
of this paper can be extended to two-dimensional
signals, and used to measure the information con-
tents of fracture surfaces (as opposed to one-
dimensional contours).
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