PERSISTENT NAMING FOR PARAMETRIC MODELS

Dago AGBODAN, David MARCHEIX and Guy PIERRA

Laboratory of Applied Computer Science (LISI)
National School of Engineers in Mechanics and Aeronautics (ENSMA)
Téléport 2 — 1 avenue Clément Ader — BP 40109
86961 Futuroscope Chasseneuil cedex
FRANCE

agbodan, marcheix, pierra@ensma.fr

http://www.lisi.ensma.fr/

ABSTRACT

Nowadays, many commercial CAD systems support history-based, constraint-based and feature-based
modelling. The use of these new capabilities raises the issue of persistent naming which refers to the
problem of identifying entities in an initial parametric model and matching them in the re-evaluated
model. The goal of this paper in to propose a naming mechanism and an hierarchical structure enabling to
identify topological entities and to apprehend the "design intent".

Keywords : CAD/CAM, geometric modelling, parametrics, feature taxonomy.

1. INTRODUCTION

Static solid modelling systems (B-rep, CSG, etc.)
largely used in the Computer Aided Design (CAD)
area are more and more replaced by dynamic model-
ling systems (known as history-based, constraint-
based and feature-based modellers) which allow both
to express and to record conceptual designs and
"design intents". These dynamic modelling systems
are often gathered under the term of parametric
modelling systems. A parametric model is composed
of a representation of an object, of a set of parame-
ters (characterising the object) and of a list of con-
straints (equations or functions) applied to the ob-
ject. By extension, a parametric modeller is a system
for geometric design which preserves not only the
explicit geometry of the designed object (called
"parametric object" or "current instance"), but also
the set of constructive gestures used to design it
(called "design process" or "parametric specifica-
tion").

This two-fold data structure enables rapid
modifying by re-evaluation. But when re-evaluation
leads to topological modifications, references
(between entities) used in the constructive gestures
are difficult to match in the new context, giving
results different from those expected. A persistent
naming system, robust regarding some topological
modification, proves useful to preserve, from a re-
evaluation to another, references between topologi-

cal entities. It is the problem known as "persistent
naming" or "topological naming” [Kripac95],
[Capoy96]. The persistent naming mechanism should
enable, on the one hand, unambiguous identification
of geometric and topological entities of the paramet-
ric model (1% issue) in order "to find" them in the re-
evaluated model (2nd issue) and on the other hand
should enable to represent the "design intent" or
rather to represent different semantics that might be
expressed by the designer (3" issue).

This paper mainly focuses on the 1" and the
3™ jssue. It is structured as follows. In section two,
we give a detailed account of the major issues about
parametric modelling. The third section discusses
some pre-existing works, essentially two of the main
works about topological naming. Each of these
works only partially addresses 1 and 2™ issue. None
addresses the 3™ one. We introduce, in section four,
an alternative approach. In section five, we propose
a new feature taxonomy, suited to our approach.
Finally, in section six and seven we precisely de-
scribe our naming mechanism as well as the structure
enabling to handle such a mechanism.

2. MAJOR ISSUES

The main problem for parametric re-evaluation is to
characterise geometric and topological entities of a
parametric model. Characterising entities consists in
giving them a name at design time and "finding

them" again at re-evaluation time (i.e. matching
entities of the initial model and entities of the re-
evaluated model.) Let us take the example of Figure
1 to illustrate this problem.

Initial e e

model | |—| [I] L

=
AN
CL Ao LS 3

swept block horizontal slot vertical slot round |edge;

model ¢
T ﬁz 3 T

Figure 1 : Naming and matching problems.

In the above example the initial model is designed by
means of a parametric specification containing four
successive constructive gestures. The fourth one
consists of rounding edge "e". If the initial model is
saved after this fourth step, the current instance no
longer contains edge "e": it was removed by the
rounding function. Thus the rounding function which
has edge "e" as input parameter cannot any longer be
represented in the parametric specification part of
the model. Therefore "names" are needed to repre-
sent the entities referenced in the parametric specifi-
cation whether or not they exist in the current in-
stance.

Moreover each constructive gesture creates a
number of entities which have to be distinguished
and therefore named, to be referenced by further
constructive gestures, even if the same number of
entities exist in all possible re-evaluation (no topo-
logical change). The problem is even more complex
for parametric models, of which the entities and the
number of entities change from one evaluation to
another. Let us return to the above example, but this
time in the re-evaluated model. We notice that, at
step 3°, the edge "e" has been split into edges "e;"
and "e,". Thus at step 4’ the problem is to determine
which edge(s) has(ve) to be rounded. The problem is
to identify, i.e. to match, edge "e" with edges "e;"
and "e," despite topology changes. Thus, when re-
evaluation leads to topology changes a new issue is
to match two different structures.

It is thus necessary to have, in addition to the
naming mechanism (1" issue), a robust matching
mechanism (2™ issue) regarding re-evaluation.

Initial model Re-evaluated models

BL Do ET) A 85

Figure 2 : Different semantics.

The third identified problem is to be able to express
different semantics that capture the "design intent"
by using high level abstractions (aggregates of geo-
metric/topological entities). For example, the de-
signer might want to express that a feature is applied

on the global shell rather than on a particular face.
Figure 2 illustrates this problem. The object is de-
signed in three steps : creation of the block by ex-
truding a polygonal contour, creation of the cylinder
on the block, then rounding the edge between the
block and the cylinder. According to whether the
rounding function was expressed between the cylin-
der and face 1.1 (case 1) or between the cylinder and
the upper shell composed of faces 1.1 and 1.2 (case
2), the re-evaluated model is different because the
"design intent" is different. In the first case one ob-
tains model (a) where the round disappeared since it
cannot be made any more between the cylinder and
face 1.1. In the second case one obtains model (b)
where the round always exists since it could be made
between the cylinder and the upper shell. To support
these two different semantics, the naming mechanism
should provide for naming and matching high level
entities such as shells.

3. RELATED WORK

Following the pioneer work of Hoffmann and Juan
[Hoffm93], over the last few years several authors
have analysed the internal structure of parametric
data models, proposing some editable representa-
tions [Hoffm93], [Pierr94], [Solan94], [Pierr96],
[Laakk96], discussing their underlying mathematical
structures [Pierr94], [Ragho98], describing the
problems, either of the semantic of modelling opera-
tions [Hoffm93], [Chen94], [Agbod99] or of con-
straint management [Bouma93]. Most of them dis-
cussed parametric modelling in terms of creation
(but not re-evaluation). Several naming scheme and
persistent naming mechanisms have also been pro-
posed. In particular Kripac [Kripa94] and Chen
[Chen95] proposed solutions to address some of the
problems mentioned in section 2. The first essen-
tially developed a matching algorithm whereas the
second focused rather on the unambiguous entity
naming.

3.1 Kripac

Kripac [Kripa94] focuses on the name matching. He
proposes an API (Application Programming Inter-
face) encapsulating its topological identification
system and guaranteeing the persistence of the names
using a table of correspondence between an entity of
the initial model and one or more entities of the re-
evaluated model. He proposes an interesting struc-
ture for identification of any topological entities
based on face history (creations, splits, merges and
deletions of faces) and a complex name matching
algorithm. Kripac's Topological ID System consists
of 3 parts. First a face graph allowing both a naming
of any faces and a name matching during re-
evaluation. Second a table recording names for the
only entities that are referenced in the parametric

specification (edges and vertices are named in terms
of their adjacent faces). This table also contains
pointers to the geometry (current instance) more
some information for the matching algorithm. Third
the geometry of the designed object. During each re-
evaluation all the faces, as well as every referenced
entity in the parametric specification, are matched
with the new ones.

Split faces are named in terms of all adjacent
faces, but Kripac does not explain how the initial
faces are named. Moreover, during re-evaluation, the
proposed matching algorithm establishes some pri-
ority rules, independent of the designer’s action,
making the result of the re-evaluation unpredictable.
Another limitation is that in its approach, Kripac
preserves a copy of the geometric models at each
step of the construction process. This speeds up the
re-evaluation but it would require a memory space
which is not compatible with the size of the real
models used in CAD. Beside the limitation con-
cerning the persistent naming problem, Kripac's
model does not deal with the semantic representation
problem stated as 3 issue in section 2.

3.2 Chen

Chen proposes a model [Chen95] which is composed
of two representations. For the first one, he uses an
editable representation, called Erep [Hoffm93],
which is an unevaluated, high-level, generative,
textual representation, independent of any underlying
core modeller. It abstracts the design operations,
contains the parametric specification and stores all
entities by name. The second representation, evalu-
ated and modeller dependent, contains the geometry
(the current instance). The link between these two
representations is obtained by a name schema which
establishes the link between the geometric entities of
the geometric model and the generic names
(persistent) of the unevaluated model.

Chen defines a precise structure for naming
invariant entities', particularly, for sweep operations.
Every entity in a sweep is named by reference to the
corresponding source entity of the swept 2D contour
and the constructive gesture. He also proposes an
identification technique for contingent entities” based
on topological adjacencies and feature orientation. In
the Chen approach every contingent entity is named.

'~ An invariant entity is a geometric or topological
entity which can be, completely and unambiguously,
characterised by the structure of a constructive ges-
ture and its input parameters, independently of in-
volved values [Agbod99].

2 _ A contingent entity a geometric or topological
entity that results from an interaction between the
pre-existing geometric model and invariant entities
resulting from a particular constructive gesture
[Agbod99].

Unambiguous names are generated by composition
of topological adjacencies. Unfortunately, Chen has
mainly studied the naming problem at the construc-
tion stage of the parametric model, and has almost
not studied the re-evaluation stage. The matching
mechanism is not fully defined.

4. OVERVIEW OF OUR APPROACH

Our approach is similar to Kripac’s one. The main
differences are that we use a shell graph as basis of
the persistent naming and that we use an hierarchical
aggregation structure to capture, at various levels,
the "design intent". Our approach deals with the
three issues stated in section 2. We propose :

® A naming mechanism that consists of two parts.
First an oriented shell graph (see section 6). Like the
Kripac’s face graph, our shell graph provides for
tracing shell evolution. Following [Agbod99] we
distinguish invariant and contingent shells and we
propose to identify, unambiguously and uniquely,
both the invariant faces and shells (see section 7.1),
then the contingent faces and shells (see section 7.2).
Second, a table where edges, paths and vertices
referenced in the parametric specification are named
in terms of their adjacent faces or shells (1% issue)

® A matching mechanism, outlined in section 7.2,
where nodes of the shell graph are matched from the
initial design shell graph onto the current re-
evaluation shell graph. Other topological entities are
matched by reference to the shell graph.

e A definition, for each kind of feature, of the vari-
ous semantics that might be expressed by a designer.
This is done through a taxonomy (see section 5)
where each kind of feature is associated with a pre-
defined hierarchical aggregation structure (3™ issue).

5. AFEATURE TAXONOMY

In order, to identify invariant shells in any form
feature, we need a feature taxonomy. Indeed, these
invariant shells do not change, whatever be the in-
stanciation or whatever be the re-evaluation of the
feature. They will constitute entry nodes of the shell
graph. Most of current feature taxonomies propose
to interpret form features from a machining point of
view or from a specific application area point of
view. These taxonomies do not focus on structural
invariants and are thus not suited to our problem. We
propose a feature taxonomy based on their invariant
structure. By invariant structure, we mean both the
initial intrinsic topological structure of feature
(before interaction with the object’s geometry) and
the topological structure resulting from the interac-
tion with this existing geometry.

For example, we consider as invariant the fact
that systematically the final face of a through_hole is
deleted when the feature (the through_hole) interact
with the geometry of the object (i.e. when the hole is

made in the object). The invariant structure depends
on how the feature is designed. For example, for
extrusion and revolution features invariants are the
initial shell (ci), the lateral shell (cl) and the final
shell (cf). The lateral shell (depending on the par-
ticular topology of the extruded contour) can be
structured in sub-shells (cl; and cl,) which them-
selves can be structured. For example, in right, left
and bottom shells (cly, cl,, clg) for a cross-
ing_flat_slot. The crossing_flat_slot example repre-
sented below in Figure 3, illustrates well the invari-
ant structure of a feature. Note that some entities (ci,
cly, cf) disappear systematically.

— /)
<,
% g, (%

Figure 3 : Invariant feature structure example :
crossing_flat_slot.

Our feature taxonomy (see Figure 4) is based
on the feature taxonomy proposed by Shah and
Mantyld [Shah95] and the classification proposed in
the STEP standard [Iso94]. We classified these fea-
tures according to their structural invariants which
we have extract for each one of them.

e Primitive features. Such feature are predefined
features. They are characterised by their global shell
and their faces.

e Transition features. Such features are features
joining several shells such as chamfer or rounding.
They are characterised by their global shell.

e Basic volume features. These features result
from an extrusion or a revolution. They are charac-
terised by their initial, lateral and final shells. They
are classified according to the result of their interac-
tion with the geometry. For example a blind_hole,
obtained by extruding a circle, is characterised by

Primitive featt

(global shell + ¢y jinger
numbered faces)

Transition feature .
Rounding

©) Chamfer

Extruded_feature
Revolved_feature_partial
(toroidal,spherical)

Basic volume feature c{gi Boss cégi <z:;
C[Cl

Blind_hole
Closed_pocket

(<)

Internal_slot
Rounded_end

She

cf* | Through_hole
Boss_to
Revolved_feature_total
Basic surface feature (toroidal,spherica)
(loop i, cl, loop f) <c N
A c
c< "Ng :. c< '
<° l Blind_counter_sunk_hole
¢, [
Texture feature . NG 2
Threading
Knurl
ciy*
o &l o
c< o Blind_counter_bore_hole c<
Container feature 02<C 2 T r_oore_| ,
cf |-
¢, = initial shell
¢, = lateral shell
G, = final shell

Figure 4 : Feature taxonomy (according to their invariant structure).

c* = deleted shell due to interaction with the pre-existing geometry

these three shells (ci, cl, c¢f) and by the fact that the
initial shell disappears from the geometry.

e Basic surfaces features. They are all the sur-
faces obtained by sweeping a loop. They are char-
acterised by their initial and final loop and their
lateral shell.

To these four basic classes one may add two
other classes. Container features gathers some
particular feature aggregations : specific aggregates
(blind_counter_sunk_hole, ...), each one associated
with a particular invariant shells structure, repetitive
aggregates (pattern) and unstructured aggregates
(assembly) that consist only of basic faces without
invariant shells structure. Texture features (e.g.
knurl, threading, ...) do not introduce new topologi-
cal entities and are not relevant for our purpose.

The terminology used in this taxonomy, in
particular names of the features, has been borrowed
both from Shah and Mintyld [Shah95] and from the
STEP standard [Is094].

6. SHELL GRAPH

Shells are defined as shell aggregates. On the lowest
level of the hierarchy each shell represents a face.
The shells are :

e Hierarchical. They are structured in shells, sub-
shells, etc., in order to be able to apprehend the ge-
ometry at various levels of granularity, and thus to
express different semantics. This structure is defined
for each class of feature (a global shell and invariant
sub-shells resulting from our feature taxonomy.

e Connected. Each shell is composed of jointed
sub-shells. The objective of the shell graph is to
represent the history (split and deletion, merge is
currently not allowed) of the invariant initial struc-
ture (itself connected). Thus, a new graph node rep-
resents a new connected part which appears during a
split and enables to
identify it and to trace it.
¢ Overlapping. A sub-
shell can be part of sev-
eral shells. The overlap-

Internal_flat_slot
Internal_o_slot

Step . s .

g ping hierarchical struc-
a0 °Sd lgmmmce ture enables, during
=" construction, the crea-

Cmssmg,ﬂaf, s tion of any (connected)

Crossing_o_slot .
shell aggregate. This

presents both a flexible
and an extremely power-
ful designation mecha-
nism. Especially for
referencing aggregates
stemming from the union
of a feature with some
parts of the object (see
section 6.2 for details
and see shell C3 in

Through _counter_sunk_hole

Through _counter_bore_hole

41142
&

Figure 5 for an ex- s 16 14 et 4 Wt e
N . - 47 -
ample). 5 12 1.3 25 232,2\&7 1224 s 4_‘.5[4“44‘2 ‘4.11 ﬁ‘%{f’ o
Q 24123 O 45" exirusion : .
s - 247 & L) ’
117 PP y
6.1 Interest of the
Shell graph /—‘7’\0?”_ ,_f\ — Hierarchical I/’nks\\\y
- == { *— Historical links .-

There are two inter-

a@;“-,!,a

ests in using shells \
and a shell graph: / ,
entity aggregation .-

and entity tracability
(with the aim of
matching). et
* Aggregation
(shell interest). The
goal is, for the de-
signer, to be able to
reference geometry
at various levels of

2922.

e\
T RE
R

extruded_feature, no | first extruded_
interaction with the feature
geometry H

>» Null H H 4.9

interaction with

aggregation_ second extruded_ interaction with the

the geometry : | feature,no | f 1
: H ’ H feature . i H

only deletions | interaction with { geﬂme(vy ideletions and ~ ;
/| the geometry | splits /

granularity. Faces
are low level enti-
ties, having often
few meaning for the
designer. Shells make it possible reference meaning-
ful high level abstraction. For example, in an extru-
sion there is a single lateral shell which is composed
of several lateral faces. The designer may reference
this shell for example for matching a fillet.

e Tracability (shell graph interest). The goal is to
be able to follow the shell evolution in order to be
able, during model design, to identify the involved
shells, then, during re-evaluation, to identify the
effective shells (in the current instance) correspond-
ing to the referenced shell. In addition to the possi-
bility of referencing each shell represented in the
graph, the shell graph last allows another level of
aggregation. The aggregation of all the shells having
had a common ancestor. Thus, for example, the
abstraction of lateral shell 2.1 in Figure 5 will exist
even in case of split of this lateral shell since at each
level of aggregation the history is preserved.

6.2 Graph structure

The graph stores the feature structure (aggregation)
and the shell history (tracability). Each constructive
gesture can be broken up into two steps. The first
step is the specification of the isolated feature. It
corresponds to the invariant structure (defined in our
feature taxonomy). This invariant feature structure is
represented by hierarchical links between shells. It
represents the entry nodes of the shell graph. The
second step is the interaction with the pre-existing
geometry which produces contingent entities. Those
entities result from the changes in the initial hierar-
chical structure and the pre-existing geometry. The
hierarchical structure is always represented by hier-
archical links. The shell evolutions are described by
historical links. Each node of the graph is identified

Figure 5 : Shell graph example.

by two elements. The first one is the construction
step number and the second one is an identifier de-
scribed in section 7.

6.2.1 Hierarchical links

The feature structure (described in section 5) is rep-
resented in the graph by the hierarchical links. Be-
side the representation of the feature’s invariant
structure, this hierarchical links enables to represent
new aggregates that might appear during the design
process. Figure 5 gives an example. An internal_slot
is applied on the final shell (1.f) of an extruded bloc
(extruded_feature). A shell C3 can be generated (for
example on explicit request of the designer which
wishes to handle this aggregate) in order to be able
to name and thus to address the aggregate corre-
sponding to the union of the slot (C2) and the shell
carrying this slot (1.f). C3 thus has two hierarchical
links to 1.f and to C2. Moreover, we can notice that
this example illustrates the case of shell overlapping
presented in section 6 since the shell 1.f belongs now
to two distinct shells C1 and C3.

The hierarchical structure evolves with the
modifications of the shells. Thus, in the graph exam-
ple, illustrated in Figure 5, the remaining lateral shell
(2.12) which is composed of the shells 2.3, 2.4 and
2.5 is cut into two shells 4.13 and 4.14. These last,
are in turn, composed of the result of the split of the
shells 2.3, 2.4 and 2.5, so that, at each step, there
exist a (modified) hierarchical structure.

A property of this graph, which significantly
simplifies its management is that the hierarchical
links need to be described only at the level of the
historical leafs of the graph. To prove this property
we study for two successive steps and for two suc-

cessive hierarchical levels (here lowest level of
shells —faces— and first level of aggregation, but can
be extended to any successive hierarchical levels) all
the possible combinations of entity histories. The
history is reduced to split. Indeed merge is not al-
lowed and entity deletion (in fact, pointers to NULL)
does not change the historical links of the graph.

fAT LT AT
fy 4/t 11/ 1 1 y/’f| 11/1

not split not split split split shell
not split f, ; split split split faces

i

07,08
— hierarchical inks @
==*» deleted hierarchical links

&> historical links

Figure 6 : Hierarchical links evolution.

It is possible to deduce from these four cases that the
knowledge of the hierarchical structure at step i is
sufficient to know the structure at step i -/. Indeed, it
is sufficient to compare the construction step num-
bers (creation order) to know when a shell was cre-
ated. For example, in the second graph of Figure 6,
the face f,; is a sub-shell of ¢, ;. The face f,; which
was created after c¢;; thus results from a shell (f; ;)
which was sub-shell of ¢; ;. This reasoning, applied
to each of the four cases, and extended to any step i
and i -/, makes it possible to generalise the property.
For example, in the (partial) graph represented in the
table below, if the shell B is the Parent in the Hierar-
chy of shell D (PH; (D) = B) at step i, it is possible to
deduce from the creation order of D and B (n°(D)
and n°(B)), which was the Parent in the Hierarchy of
D (or C as the case may be) at step i -/.

Step i Step i -1
PH{(D)=B .. ZZ(dD;f(n;)(fl) then PH;(D)=A ©>®
O R e s |

it Z;ElDr);(n];)(zl) then PH;(C)=B z;

It is possible to find the hierarchical structure of step
i -1, knowing the one of step i. A recurrence allows
to conclude that it is possible to preserve the hierar-
chical links only at the level of the historical leafs.
Note that capability to compute the state of the old
graph, at any step, is essential to make the matching
with the graph resulting from the re-evaluation.

6.2.2 Historical links

For each graph’s node and in particular for each
leafs of the hierarchical structure, we shall trace its

evolution. There are 3 possibilities for this modifi-
cation (merge is not allowed) :

e Deletion. The interaction between the geometry
of feature and the geometry of the object on which it
is applied, deletes a certain number of shells (of the
feature and/or the object). These shells remain pres-
ent in the graph, but without any counter part in the
geometry. The historical links point to NULL.

e Modification. By modification, we mean any
evolution which preserves the shells connections.
We consider that such a modified shell is equal to
the shell before modification. Indeed, if at step i a
shell is perfectly identified, and if at the step i +/
this shell is modified (except split), it remains per-
fectly identified in the graph. Thus, shell modifica-
tions are not represented in the graph

e Split. There is a split when a shell is cut into
several disconnected shells. This split is represented
in the graph by the historical links. Thus, a cut shell
points on the resulting sub-shells and inversely.

Historical links enable to trace the topological
entities evolution (split). The history is preserved at
all levels of granularity (faces, shells, aggregates of
shells, ...). This gives to the model an expression
power higher than the one of Kripac’s model. In-
deed, when a shell is cut into several pieces during a
constructive gesture, it is possible to have access not
only to the shell (represented in the hierarchy) but
also to each shell piece (represented in the history).
Those historical links are mainly used for graph
traversal during name matching.

6.3 Node structure

Each node represents a shell which exists or has
existed in the model. All the shells without outgoing
historical links exist in the geometry. Each node is
composed of :

* A name composed of the construction step num-
ber and another identifier which characterises
uniquely the shells (see section 7 below).

e Pointers to the predecessor and successor nodes
representing the historical links.

e Pointers to the parent and the child nodes repre-
senting the hierarchical links.

e Alist of adjacent faces for split shells.

7. ENTITY NAMING

The entity (vertices, edges, paths and shells) identifi-
cation is done by reference to faces (lowest level
shells, i.e. leafs of the hierarchical structure). It is
thus necessary to be able to name these faces in a
unique and deterministic way. Generally, the identi-
fication of an entity is based on unchanging elements
which characterise it in a unique way. In a paramet-
ric model, what never changes is the construction

process®. Therefore, face naming is done by means
of the construction step number (creation order) and
by means of another identifier which characterises
each face in a unique way. The problem is to define
this identifier which characterises them in a unique
way within each construction step.

For each construction step, we consider that
there are two phases. Firstly, the creation of the
feature where all the feature’s entities, i.e. its invari-
ants, and in particular the lowest level shells must be
named. Secondly, the feature positioning within the
existing geometry. This interaction with the existing
geometry leads to modification and deletion of ex-
isting shells and to creation of new (contingent)
shells. These contingent shells must also be named.
Therefore there are two types of naming to imple-
ment : one for invariant shells and another for con-
tingent shells.

7.1 Invariant shells

For the invariant shells, two cases are to be distin-
guished. First, the lowest level shells that are faces
(leafs of the hierarchical structure), and second
higher level shells.

7.1.1 Lowest level invariant shells

Identification of the lowest level invariant shells
(invariant faces), is done by an integer number
whose calculus is based on topology. This naming is
robust regarding feature re-evaluation. We do not
allow modification of the topology of features. In
particular, for swept and revolved feature, changes
of the 2D contours topology are not allowed. Thus,
this "topological" naming is robust regarding re-
evaluation.

Our topological naming is as follows. We
begin from a starting coedge’ and we make a radial
traversal around the edges, then a normal traversal
following the edges of each face contour. The tra-
versal which is unique (compared to the starting
coedge) and which cover the whole object makes it
possible to assign a number to each face (see Figure
7). The traversal is done as follows.

e Do a normal traversal of the path containing the
coedge of the current face.

e For each coedge do a radial traversal of all adja-
cent faces.

e [f these faces are not numbered, assign a number
and enqueue them.

3 We consider the modification of the construction
process as a model edition and not as a model re-
evaluation.

* The features are defined, in addition to their pa-
rameters, by a starting coedge. For example, in an
extruded block, the first edge of the 2D contour
defines the starting coedge.

e At the end of the path traversal take the first
enqueued face. Repeat the previous traversal,
starting from the coedge shared by this face and
the face with the smallest number.

@ face number
() traversal order
radial traversal

C normal traversal

@ =0

Figure 7 : Topological traversal.

The name of the lowest level invariant shells
is thus composed of the construction step number
and the face number resulting from the traversal.

7.1.2 Upper level invariant shells

Invariant shells, others than the lowest level ones,
are aggregations of lower level shells. The invariant
shells can be named by means of the list of shells
which compose them, and by transitivity, by means
of the list of the lowest level shells which compose
them. These last are perfectly identified and the shell
list is unique ; the shells are thus identified in a
unique way by the list of the lowest level shells.

The name of upper level invariant shells is
thus composed of the construction step number and
the list of the names of the lowest level shells which
compose the shell.

7.2 Contingent shells

The name of the contingent shells is composed of the
construction step number and an iterative number.
This number (arbitrary, but unique for each con-
struction step) will be assigned again after re-
evaluation during the matching (graph matching®).
This number, insufficient to allow matching, is asso-
ciated with the list of the adjacent faces to the shell.
This list enables to distinguish two sub-shells re-
sulting from the same shell. The list is composed of
the lowest level shells (leafs of the hierarchical
structure —faces—) which are adjacent to the split
shell. This information will be used, during re-
evaluation, for contingent shell matching.

Although the complete matching mechanism
goes beyond the scope of this paper, we shall present
its outlines. Its principle consists of :
¢ keeping the initial shell graph. The whole re-
evaluation process is supported by this graph.

> There are two stages during the matching :

(i) the graph matching, i.e. reconstructing the graph
and matching the nodes.

(i1) the entity matching, i.e. determining the new
entities involved in the parametric specification.

¢ Constructing during re-evaluation, a second shell
graph, parallel to the initial shell graph. At each
construction step, all the entries of the second graph
are compared to the nodes (shells) of the initial
graph.

e For each matched shell, the same iterative

number will be assigned.

e For the shells which are not matched, a new

iterative number (which do not exist in the initial

graph) will be assigned
¢ Matching the entities involved in the parametric
specification. For each entity a matching algorithm,
similar to the one proposed by Kripac, comparing
the second graph and the initial graph, is applied.
Each old entity, which do not match exactly a new
one, is replaced by one or several new entities based
on comparison of "ancestors".

8. CONCLUSION

With the development of parametric modelling sys-
tems, the persistent naming problem becomes more
and more important to enable topology change dur-
ing model re-evaluation. Therefore, robust naming
mechanism and matching mechanism have to be
developed. In this paper, we have proposed :

® A naming mechanism (1% issue) where we distin-
guish invariant entities and contingent entities.

e An hierarchical structure which enables to ex-
press different semantics (3 issue). In order to
identify feature invariants, a new taxonomy based on
the intrinsic and semantic structure of each feature
was introduced.

e A shell graph recording this hierarchical structure
and the evolution of the shells. The graph will enable
us to match contingent shells during re-evaluation
(2" issue).

This approach offers three principal advan-
tages. Firstly it enables to unambiguously identify
topological entities of an initial parametric model.
Secondly it enables to match entities between the
initial model and the re-evaluated model, in spite of
the multiple topological variations. Finally, such a
mechanism enables the capture of different seman-
tics that might be expressed by the designer.

The work presented in this paper is still under
development. We are actually implementing our
model in the Cas.Cade development environment,
testing various matching solutions in case of large
topological changes.

ACKNOWLEDGEMENTS
The authors are grateful to Pascal Lienhardt and

Laurent Fuchs for several useful workshops and a
number of insightful discussions.

REFERENCES

[Agbod99] Agbodan,D, Marcheix,D, Pierra,G: A
Data Model Architecture For Parametrics in
Journal for Geometry and Graphics, Vol.3, N°.1,
pp-17-38,1999.

[Capoy96] Capoyleas,V Chen, X Hoffmann,C.M. :
Generic naming in generative, constraint-based
design in Computer Aided-Design, Vol.28 N°1
pp.17-26, 1996.

[Chen95] Chen,X : Representation, Evaluation and
Editing of Feature-Based and Constraint-Based
design, Ph.D. thesis, Department of Computer
Sciences, Purdue University, West Lafayette, In-
diana, 1995.

[Hoffm93] Hoffmann,C.M., Juan,R: EREP: an
editable high-level representation for geometric
design and analysis in Technical Report CER-92-
24, Department of Computer Sciences, Purdue
University, West Lafayette, Indiana, 1993.

[Is094] ISO FDIS 10303-224 :1999 : Industrial
Automation Systems and Integration — Product
Data Representation and Exchange — Part 224 :
Application protocol : Mechanical product defi-
nition for process planing using machining fea-
tures, ISO, Geneva, 1994,

[Kripa95] Kripac,J : A mechanism for persistently
naming topological entities in history-based
parametric solid models (Topological ID System)
in Proceedings of Solid Modeling ’95, Salt Lake
City, Utha USA, pp.21-30, 1995.

[Laakk96] Laakko, T, Méntyld,M : Incremental con-
straint modelling in a feature modelling system »
in Computer Graphics forum, Vol.15, N°3,
EUROGRAPHICS’96, Poitiers, France, pp.366-
376, 1996.

[Pierr94] Pierra,G, Potier,J.C., Girard,P : The EBP
system : Example Based Programming for
parametric design, Workshop on Graphic and
Modelling In Science and Technology, in:
Springer Verlag Series, Coimbra, 27-28 June
1994.

[Pierr96] Pierra,G, Ait-Ameur,Y, Besnard,F, Gi-
rard,P, Potier,J.C.: A general framework for
parametric product model within STEP and Part
Library in European Conference Product Data
Technology, London, 18-19 April 1996.

[Ragho98] Raghotama,S, Shapiro,V: Boundary
Representation Deformation in Parametric Solid
Modeling in ACM Transactions on Graphics,
Vol.17, N°4, pp.259-286, October 1998.

[Schen94] Schenck,D, Wilson,P : Information Mod-
elling The EXPRESS Way, Oxford University
Press, 1994.

[Shah95] Shah,J.J., Mintyld,M : Parametric and
feature-based CAD/CAM : Concepts, Tech-
niques, Applications, John Wiley and Sons Inc.,
July 1995.

[Solan94] Solano,L, Brunet,P: Constructive Con-
straint-based model for parametric CAD systems
in Computer-Aided Design, Vol.26, N°8, pp.614-
621, 1994.

