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Three-phase phononic materials
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Abstract

We consider a strongly heterogeneous material consisting of three phases: an elastic matrix, medium-size inclu-

sions periodically embedded in the elastic matrix; these inclusions are constituted by small rigid inclusions coated

by a very compliant material. The dependence on scale of elasticity coefficients of the deformable medium-size

inclusions is treated in the context of linear elasticity by the homogenization procedure providing a limit model

that inherently describes band gaps in acoustic wave propagation. The band gaps occur for certain intervals of

long wavelengths for which a frequency-dependent “mass density” tensor is negative. We illustrate the theoretical

results with numerical simulations.
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1. Introduction

We present an approach to modelling the phononic materials. These materials are similar to

better known photonic crystals, cf. [4, 8, 13], but the main interest lies in modelling the propa-

gation of elastic waves instead of light waves. Both the phononic and photonic materials exhibit

forbidden frequency ranges of incident waves, for which the sound/light waves cannot propa-

gate: the structure is blocked from free vibrations. In the context of sound wave propagation

the forbidden frequency ranges are called acoustic band gaps. This wave dispersion feature has

a lot of serious practical applications, such as acoustic wave guides, or silencers. Such smart

materials are already being produced and their properties experimentally verified, cf. [11]; this

raises the need for proper modelling tools able to predict their behaviour.

In this article we treat a strongly heterogeneous material consisting of three phases: an

elastic matrix, medium-size inclusions periodically embedded in the elastic matrix; these inclu-

sions are constituted by small rigid inclusions coated by a very compliant material (rubber, or

epoxy resin). Considering the rigid inclusions is a new contribution and generalizes the two-

phase material analyzed in [2, 3, 10]. The elasticity coefficients of the deformable medium-size

inclusions depend on the scale. This is treated in the context of linear elasticity by the homog-

enization procedure providing a limit homogenized model that inherently describes band gaps

in acoustic wave propagation.

The homogenization based prediction of the band gap distribution (i.e. analysis of the effec-

tive mass tensor eigenvalues) is relatively simple and effective in comparison with the “standard

computational approach” based on a finite scale heterogeneous model, which requires to eval-

uate all the Brillouin zone for the dispersion diagram reconstruction; as the consequence, it
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leads to a killing complexity, namely when the inverse problem (optimal design) is considered.

This is the main advantage of the homogenization based two-scale modeling. As an important

restriction, this modeling approach is relevant for the long wave propagation, see [10].

We should point out that while band-gaps never occur in homogeneous or weakly hetero-

geneous materials, the “homogenized” material is rather a mathematical model of seemingly

homogeneous material with “hidden” components — the underlying heterogeneous structure

responsible for the dispersion is inherited by the model in terms of its effective parameters (the

inertia mass and elasticity); this was discussed newly in [9], where a “generalized” Newton’s

second law was presented.

The model proposed in Section 3 is implemented in our open-source software SfePy, [5].

Numerical examples are presented in Section 5; mainly the influence of the rigid inclusion size

on the band gap distribution is shown.

2. Problem setting

We consider a strongly heterogeneous material occupying an open bounded domain Ω ⊂ R
3

consisting of three phases, see Fig. 1. The first phase is an elastic matrix, the second phase corre-

sponds to medium-size inclusions periodically embedded in the elastic matrix. These inclusions

themselves are constituted by small rigid inclusions coated by a very compliant material (rub-

ber). The rigid inclusions represent the third phase. The domain Ω is constituted as a periodic

lattice structure generated by unit periodic reference cell Y =]0, 1[3 scaled by ε. The rigid in-

clusion Y3 ⊂ Y has the boundary Γ3 and is coated by Y2, so that Y2∩Y3 = ∅ and (Y2 ∪ Y3) ⊂ Y ,

Y2 ∩ Y3 = Γ3; the matrix part is Y1 = Y \ (Y2 ∪ Y3), see Fig. 2. We denote Y2+3 = Y \ Y1.

Fig. 1. Strongly heterogeneous material Fig. 2. Periodic reference cell

In Section 2.1 we define the three-phase strongly heterogeneous medium (SHM), then in

Section 2.2 we recall the equations governing stationary waves in SHM developed in [10], and

finally, in Section 3 we describe the resulting homogenized model, also based on results in [10].

2.1. Strongly heterogeneous material

The material properties, being attributed to material constituents of the three phases, vary pe-

riodically with position. Throughout the text all quantities varying with this microstructural

periodicity are denoted with superscript ε. Using the reference cell Y we generate the decom-

position of Ω as follows

Ωε
2 =

⋃

k∈Kε

ε(Y2 + k) , where K
ε = {k ∈ Z| ε(k + Y2) ⊂ Ω} ,

Ωε
3 =

⋃

k∈Kε

ε(Y3 + k) , Ωε
1 = Ω \ (Ωε

2 ∪ Ωε
3) ,

so that Ω = Ωε
1 ∪ Ωε

2 ∪ Ωε
3.
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Properties of a three dimensional body made of the elastic material are described by the

elasticity tensor cε
ijkl, where i, j, k, l = 1, 2, . . . , 3. As usual we assume both major and minor

symmetries of cε
ijkl (cε

ijkl = cε
jikl = cε

klij).

The key assumption of the modelling is that the material density is comparable in subdo-

mains Ωε
2 ∪ Ωε

3 and Ωε
1, while the stiffness coefficients in the medium-size inclusions Ωε

2 are

significantly smaller than in the matrix Ωε
1. The stiffness of the small inclusions Ωε

3 is much

higher than in Ωε
2 so that it can be considered as rigid. In reality, stiffness of a material is

corelated with its mass. Thus, because of small density of the material in Ωε
2, the role of Ωε

3 is

an added mass so that the assumption of comparable densities in Ωε
2 ∪ Ωε

3 and Ωε
1 is fulfilled.

The strong heterogeneity is related to the geometrical scale of the underlying microstructure by

coefficient ε2, as follows:

ρε(x) =

⎧

⎨

⎩

ρ1 in Ωε
1,

ρ2 in Ωε
2,

ρ3 in Ωε
3,

cε
ijkl(x) =

⎧

⎨

⎩

c1
ijkl in Ωε

1,
ε2c2

ijkl in Ωε
2,

(1/ε2)c3
ijkl in Ωε

3,
(1)

where ρ3 	 ρ2. We shall consider positive densities: let 0 < ρ, ρ ∈ R, we assume ρ < ρε(x) <
ρ a.e. in Ω. Further, we assume standard ellipticity and boundedness of the elastic coefficients:

let S+ be the set of all symmetric real second order tensors in R
3, then ∀eij , êij ∈ S+, ∃μ, μ > 0

such that

μ eijeij ≤ cα
ijkleijekl and cα

ijkleij êkl ≤ μ eij êij , α = 1, 2, 3 . (2)

2.2. Modelling the stationary waves

We consider a stationary wave propagation in the SHM, see [10]. For simplicity we restrict

the model to the description of clamped structures loaded by volume forces. Let us assume

harmonic single-frequency volume forces,

F(x, t) = f(x)eiωt , (3)

where f = (fi), i = 1, 2, 3 is the local amplitude and ω is the frequency. We consider a

dispersive displacement field with the local magnitude uε

Uε(x, ω, t) = uε(x, ω)eiωt . (4)

This allows us to study the steady periodic response of the medium, as characterized by the

displacement field uε which satisfies the following boundary value problem:

−ω2ρεuε − divσε = f in Ω,

uε = 0 on ∂Ω,
(5)

where the stress tensor σε = (σε
ij) is expressed in terms of the linearized strain tensor eε = (eε

ij)
by the Hooke’s law σε

ij = cε
ijklekl(u

ε). The problem (5) can be formulated in the weak form as

follows: Find uε ∈ H
1
0(Ω) such that

−ω2

∫

Ω

ρεuε · v +

∫

Ω

cε
ijklekl(u

ε)eij(v) =

∫

Ω

f · v for all v ∈ H
1
0(Ω) , (6)

where H
1
0(Ω) is the standard Sobolev space of vectorial functions with square integrable gener-

alized derivatives and with vanishing trace on ∂Ω, as required by (5)2.
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3. Homogenized model

We wish to associate the SHM model (6) with a homogeneous model relevant to the macro-

scopic scale. For this task methods of homogenization are widely accepted. Due to the strong

heterogeneity in the elastic coefficients the homogenized model exhibits dispersive behaviour;

this phenomenon cannot be observed when standard two-scale homogenization procedure is

applied to a medium with scale-independent material parameters, as pointed out in [1]. In [3]

the unfolding operator method of homogenization [6, 7] was applied with the strong hetero-

geneity assumption (1); it can be shown that uε → u as ε → 0, where u is the “macroscopic”

displacement field describing behaviour of the homogenized medium. Here we just record the

resulting system of coupled equations which describe the structure behaviour at two scales, the

“macroscopic” one and the “microscopic” one, since the theoretical considerations remain the

same as in [10].

First we define the homogenized coefficients involved in the homogenized model of wave

propagation. The “frequency-dependent coefficients” are determined just by material properties

of the inclusion Y2+3 and by the material density ρ1, whereas the elasticity coefficients are

related exclusively to the matrix compartment Y1.

Frequency-dependent homogenized coefficients involved in the macroscopic momentum

equation are expressed in terms of eigenelements of the following spectral problem.

3.1. Spectral problem

Let us define a space of functions that describe rigid body motions (RBM) in Y3 and are zero on

the boundary of Y2+3:

S0(ȳ, Y3, Y2+3) = {v ∈ H
1
0(Y2+3) | ∃(s̄ij , v̄) : vi = v̄i + s̄ij(yj − ȳj) , ∀y ∈ Y3} , (7)

where (s̄ij , v̄) is the spin–translation couple and ȳ is the barycentre of Y3. We shall employ the

following notation:

aYm
(u, v) =

∫

Ym

cm
ijkle

y
kl(u) ey

ij(v),

�Ym
(u, v) =

∫

Ym

ρmu · v,

for m = 2, 3. The spectral problem for eigenelements (λr, ϕr), λr ∈ R, ϕr ∈ S0(ȳ, Y3, Y2+3),
noting that aY3

(ϕr, v) ≡ 0 due to RBM constraint in Y3, is:

aY2
(ϕr, v) = λr [�Y2

(ϕr, v) + �Y3
(ϕr, v)] , ∀v ∈ S0(ȳ, Y3, Y2+3) , (8)

where

�Y2
(ϕr, ϕs) + �Y3

(ϕr, ϕs) = δrs . (9)

It is easy to see that the orthogonality in (9) holds and 0 < λr ∈ R; indeed, aY2
(·, ·) is the

elliptic bilinear form on H
1(Y ). In the sequel we shall need the eigenmomentum mr = (mr

i ),

mr =

∫

Y2

ρ2ϕr +

∫

Y3

ρ3ϕr. (10)
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3.2. Homogenized coefficients

The homogenized coefficients can be computed in much the same way, as it was done for just

two-phase composite, cf. [3, 10], when the role of Y2 is substituted by the union Y2+3. We

recover the following tensors, all depending on ω2:

• mass tensor M∗ = (M∗
ij)

M∗
ij(ω

2) =
1

|Y |

∫

Y

ρδij −
1

|Y |

∑

r≥1

ω2

ω2 − λr
mr

i m
r
j ; (11)

• applied load tensor B∗ = (B∗
ij)

B∗
ij(ω

2) = δij −
1

|Y |

∑

r≥1

ω2

ω2 − λr
mr

i

∫

Y2

ϕr
j . (12)

The elasticity coefficients are related to the perforated matrix domain, thus being indepen-

dent of the inclusions material:

C∗
ijkl =

1

|Y |

∫

Y1

c1
pqrse

y
rs(w

kl + Π
kl)epq(w

ij + Π
ij) , (13)

where Π
kl = (Πkl

i ) = (ylδik) and wkl ∈ H
1
#(Y1) are the corrector functions satisfying

∫

Y1

c1
pqrse

y
rs(w

kl + Π
kl)ey

pq(v) = 0 ∀v ∈ H
1
#(Y1) . (14)

Above H
1
#(Y1) is the restriction of H

1(Y1) to the Y-periodic functions (periodicity w.r.t. the

homologous points on the opposite edges of ∂Y ).

3.3. Macromodel

The global equation — the macromodel — involves the homogenized coefficients. We find

u ∈ H
1
0(Ω) such that

−ω2

∫

Ω

(M∗(ω2) · u) · v +

∫

Ω

C∗
ijklekl(u) eij(v) =

∫

Ω

(B∗(ω2) · f ) · v , ∀v ∈ H
1
0(Ω) . (15)

Heterogeneous structures with finite scale of heterogeneities exhibit the frequency band gaps

for certain frequency bands. As the main advantage of this homogenized model, by analyzing

the dependence ω → M∗(ω) one can determine distribution of the band gaps with significantly

less effort than in case of analyzing them in the standard way, see e.g. [12]. In [10] an exhaustive

description of band gaps computations is given, some of which is summarized in Section 4.

4. Band gaps

In the context of our homogenization-based modelling of phononic materials, the band gaps are

frequency intervals for which the propagation of waves in the structure is disabled or restricted

in the polarization.

The band gaps can be classified w.r.t. the polarization of waves which cannot propagate.

Given a frequency ω, there are three cases to be distinguished according to the signs of eigen-

values γr(ω), r = 1, 2, 3 (in 3D), which determine the “positivity, or negativity” of the mass:
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1. propagation zone — all eigenvalues of M∗
ij(ω) are positive: then homogenized model

(15) admits wave propagation without any restriction of the wave polarization;

2. strong band gap – all eigenvalues of M∗
ij(ω) are negative: then homogenized model (15)

does not admit any wave propagation;

3. weak band gap — tensor M∗
ij(ω) is indefinite, i.e. there is at least one negative and one

positive eigenvalue: then propagation is possible only for waves polarized in a manifold

determined by eigenvectors associated with positive eigenvalues. In this case the notion

of wave propagation has a local character, since the “desired wave polarization” may

depend on the local position in Ω.

We denote the smallest and the highest eigenvalues of M∗
ij(ω) by γ�(ω) and γ�(ω), respec-

tively.

4.1. Computing the band gaps

Distribution of the band gaps is based on analyzing the eigenvalues of tensor M∗(ω) which

is a nonlinear function (11) of ω. Therefore, in general, it can be done numerically using a

finite element (FE) approximation of eigenvalue problem (8), see Section 4.2. Thus we obtain a

finite number nh of the approximated eigenvalues and their associated eigenfunctions (λr, φr),
r = 1, . . . , nh; here nh is the number of free displacement degrees of freedom (dofs) for a given

FE mesh.

From the theoretical analysis of a similar homogenized “phononic” problem, which was

done for rectangular domain Y2 and the Laplace operator it follows that the homogenized coef-

ficient analogous to the mass tensor (11) is expressed in terms of series containing integrals of

the type (10), which vanish “exactly” for some modes. Due to this let us define the eigenmode

cut-off threshold c > 0 and introduce the set of non-zero modes

Ih(c) ≡ {1 ≤ k ≤ nh| |mk
h| > c}, (16)

where mk
h is evaluated according to (10), i.e.

mk
h =

∫

Y2,h

ρ2φr +

∫

Y3,h

ρ3φr . (17)

Then, denoting the averaged density ρ̄, the homogenized mass tensor is computed by

M∗
ij(ω) = δij ρ̄ −

ω2

|Y |

∑

k∈Ih(c)

1

ω2 − λk
mk

i,hm
k
j,h , i, j = 1, 2, 3 . (18)

4.2. Discrete eigenvalue problem: enforcing RBM constraints

The FE-discretized counterpart of (8) is to seek (λr, φr), λr ∈ R, φr ∈ Sh0(ȳ, Y3, Y2+3) and

v
T
Aφr = λr

v
T
Mφr , ∀v ∈ Sh0(ȳ, Y3, Y2+3) , (19)

where r = 1, . . . , nh with nh the number of free displacement dofs and Sh0 is just a finite

element approximation to S0. Below we show how to construct such a solution that obeys the

RBM constraint.
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Let us assume to have the standard matrices Ā, M̄, corresponding to FE-discretized op-

erators aY2
(u, v) and �Y2+3

(u, v), such that the fixed zero displacements on Γ2+3 are already

eliminated. Correspondingly, let us define also v̄, φ̄. To enforce the RBM constraint the fol-

lowing splitting can be used:

v̄ =

[

vf

vr

]

, Ā =

[

Aff Afr

Arf Arr

]

, (20)

where the suffix f relates to the free dofs and r to the RBM-constrained dofs. Analogously we

split also φ̄, M̄. The constrained dofs in a point y can be expressed as

vr(y) =

⎡

⎣

0 y3 −y2 1 0 0
−y3 0 y1 0 1 0
y2 −y1 0 0 0 1

⎤

⎦

[

θ

v0

]

≡ R(y)θ + Iv0 ≡ T(y)s , (21)

where s =
[

θ v0

]T
, R(y)θ is a linearized rotation of y w.r.t. 0 by a spin θ and v0 is a

translation. In 2D, R(y)θ ≡
[

−y2 y1

]T
θ and θ is a scalar. Repeating this for each FE mesh

node, we can write vr = Ts, φr = Tr. The eigenvalue problem (19) can thus be written as

[

v
T
f s

T
T

T
]

[

Aff Afr

Arf Arr

] [

φf

Tr

]

= λr
[

v
T
f s

T
T

T
]

[

Mff Mfr

Mrf Mrr

] [

φf

Tr

]

. (22)

The multiplications by the constraint matrix T can now be carried out to arrive at (19) with

v =

[

vf

s

]

, φ =

[

φf

r

]

, A =

[

Aff AfrT

T
T
Arf T

T
ArrT

]

, M =

[

Mff MfrT

T
T
Mrf T

T
MrrT

]

.

(23)

5. Numerical examples

The numerical examples presented below were computed using our finite element code SfePy,

[5], that is freely available at http://sfepy.org. Changes in the band gap distribution due to

1. varying the cut-off threshold c,

2. symmetry / nonsymmetry of the rigid inclusion Y3 placement in Y2+3, and thus also the

underlying FE mesh,

3. varying the size of the rigid inclusion Y3

are shown. In all the examples the domain Y ∈ R
2 was [−1, 1]2, and Y2+3 was a circle centered

at [0, 0]T with radius 0.8, see Fig. 3. Material properties were defined as follows:

material subdomain Lamé coefficients [1010 Pa] density [104 kg/m3]

aluminium Y1 λ1 = 5.898, μ1 = 2.681 ρ1 = 0.2799
epoxy Y2 λ2 = 0.1798, μ2 = 0.148 ρ2 = 0.1142
lead Y3 λ3 = 4.074, μ3 = 0.5556 ρ3 = 1.1340

The above materials/properties were chosen considering which materials had been typically

used for production of phononic devices. We remark that in our computation the third material

(lead) is considered as rigid.
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The FE-discretized eigenvalue problem (8) was solved in Y2+3 with the clamped boundary

∂Y2+3 (= ∂Ȳ2 ∩ ∂Ȳ3) and with the RBM constraint in Y3, see Section 4.2. The computed

eigenvalues and eigenvectors (λr, φr) were then used to construct the mass tensor M∗(ω) given

by (18) and to evaluate the band gap distribution for a given frequency range according to the

signs of the eigenvalues of M∗(ω), see Section 4. The eigenmomentum cut-off threshold c was

chosen as

c = 0.1 max
k=1...nh

|mk
h| ,

with exception of Section 5.1, where it was the subject of a parametric study. Similarly, the

radius of the rigid inclusion was r(Y3) = 0.45 with exception of Section 5.3.

Note: When plotting the eigenvalues γ�(ω), γ�(ω) we transform them by arctan function

to zoom to the interesting behaviour near zero.

Fig. 3. FE meshes; left: symmetric Y2+3, right: shifted Y3. The eigenvalue problem is computed in the

circular domain Y2+3 only

5.1. Cut-off threshold

For f ∈ [0, 25] kHz we have conducted a parametric study by setting c = 10q maxk=1...nh
|mk

h|
for q = −3 + 0.5j, j = 0, . . . , 6 using the mesh with unsymmetric Y3 placement, see Fig. 3

(right). In this case we had nh = 307 eigenmomenta out of which the following numbers were

under threshold:

j 0 1 2 3 4 5 6

masked 28 104 222 285 301 305 306

The resulting band gaps and γ�(ω), γ�(ω) plots are shown in Fig. 4 for j = 0, 4, 6. It can be

seen that for j = 4, i.e. c = 0.1 maxk=1...nh
|mk

h| the band gaps are almost the same as for j = 0,

but the spurious oscillations in γ�(ω), γ�(ω) are removed. These results support our choice of

c in the other examples.

5.2. Inclusion symmetry

Here we numerically verify the theoretical result derived in [10] saying that the weak band gaps

cannot appear if the inclusion is symmetric. This behaviour can be observed for the three-phase

12
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Fig. 4. Band gap distribution; top left: j = 0, top right: j = 5, bottom left: j = 10, bottom right:

overview for all q = −3 + 0.5j, j = 0, . . . , 6; arctan γ�(ω): dashed lines, arctan γ�(ω): solid lines,

strong band gaps: gray, weak band gaps: light gray, propagation zone: white, resonance frequencies:

solid vertical lines, resonance frequencies masked by c: dotted vertical lines

material too. For f ∈ [0, 15] kHz a sequence of simulations was performed, starting with a

perfectly symmetric shape, see Fig. 3 (left). The rigid inclusion Y3 was then shifted in steps of

0.02 along the x axis up to the final position (shift = 0.2) depicted in Fig. 3 (right).

As predicted, no weak band gaps appear in Fig. 5 (top left), corresponding to the symmetric

shape, as opposed to Fig. 5 (top right), corresponding to the most shifted Y3. All the cases,

including the intermediate Y3 positions, are summarized in Fig. 5 (bottom).

5.3. Size of the rigid inclusion

The sizes of the rigid inclusion r(Y3) were varied for both the symmetric and unsymmetric Y3

placements, see Fig. 6; the results are summarized in Fig. 7 for f ∈ [0, 25] kHz. These results

suggest that increasing the inclusion size causes broadening of the band gap corresponding to

the lowest eigen-frequency computed by (19), and also growth of the separation between the

first and the subsequent band gaps. The latter observation is more pronounced in the symmetric

case.

6. Conclusion

The purpose of the paper was to present some aspects of modelling of the wave propagation

in the strongly heterogeneous elastic medium using the homogenized model that was adapted
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Fig. 5. Band gap distribution on two FE meshes; top left: symmetric, bottom: summary for all Y3

positions, top right: max. shift; arctan γ�(ω): dashed lines, arctan γ�(ω): solid lines, strong band

gaps: gray, weak band gaps: light gray, propagation zone: white, resonance frequencies: solid vertical

lines, resonance frequencies masked by c: dotted vertical lines

Fig. 6. Examples of meshes of Y2 when varying r(Y3). The domains Y1, Y3 are not shown to stress the

fact that no finite element analysis is needed there. From left to right: symmetric, r = 0.1; r = 0.54;

unsymmetric, r = 0.1; r = 0.54
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Fig. 7. Band gap distribution for varying r(Y3); left: symmetric, right: shifted Y3 position; strong band

gaps: gray, weak band gaps: light gray, propagation zone: white, resonance frequencies: solid vertical

lines, resonance frequencies masked by c: dotted vertical lines

from [10] to a three-phase phononic material (elastic matrix, inclusions made of small rigid

bodies coated by a very compliant material). Introducing the rigid inclusions into the model is

the main new result of the paper. It was motivated by the need to satisfy the key assumption

of the modelling: that the material density has to be comparable in both the matrix and the

inclusions, while the stiffness coefficients in the inclusions should be significantly smaller than

in the matrix. The rigid inclusions, thus, represent an added mass in the soft (and light) medium-

size inclusions.

The principal ingredient of the homogenization procedure is the scale dependence of the

elastic coefficients in the mutually disconnected inclusions — this leads to acoustic band gaps

due to the negative effective mass phenomenon appearing in the upscaled model.

The main advantage of the homogenization based two-scale modeling lies in the fact, that

the homogenization based prediction of the band gap distribution for stationary or long guided

waves is relatively simple and effective, cf. [10], in comparison with the “standard computa-

tional approach” based on a finite scale heterogeneous model, which requires to evaluate all

the Brillouin zone for the dispersion diagram reconstruction; as the consequence, it leads to a

killing complexity. Moreover, in [10] a correspondence between our band gap diagrams and the

classical dispersion diagrams was discussed.

We demonstrated in several numerical examples that these band gaps can be effectively

computed. We studied how the prediction of the band gap distribution changes when varying

the rigid inclusion size and other parameters.
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the Czech Government project 1M06031.

References

[1] J. L. Auriault and G. Bonnet. Dynamique des composites elastiques periodiques. Arch. Mech.,

(37):269–284, 1985.
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[4] G. Bouchitté and D. Felbacq. Homogenization near resonances and artificial magnetism from

dielectrics. C. R. Acad. Sci. Paris, Ser. I(339):377–382, 2004.

[5] R. Cimrman et al. SfePy home page. http://sfepy.kme.zcu.cz, http://sfepy.org, 2008.

[6] D. Cioranescu, A. Damlamian, and G. Griso. Periodic unfolding and homogenization. C. R. Acad.

Sci. Paris, I(335):99–104, 2002.

[7] A. Damlamian. An elementary introduction to periodic unfolding. GAKUTO International series

Math. Sci. Appl., 24:119–136, 2005. Multi scale problems and Asymptotic Analysis.

[8] D. Felbacq and G. Bouchitté. Theory of mesoscopic magnetism in photonic crystals. Phys. Rev.

Lett., 94:183–902, 2005.

[9] G. W. Milton and J. R. Willis. On modifications of newton’s second law and linear continuum

elastodynamics. Proc. R. Soc. A, (483):855–880, 2007.

[10] E. Rohan, B. Miara, and F. Seifrt. Numerical simulation of acoustic band gaps in homogenized

elastic composites. accepted to Int. J. Eng. Sci., 2009. doi:10.1016/j.ijengsci.2008.12.003.

[11] Ping Sheng, X. X. Zhang, Z. Liu, and Chan C. T. Locally resonant sonic materials. Physica B:

Condensed Matter, 338(1–4):201–205, 2003.

[12] O. Sigmund and J. S. Jensen. Systematic design of phononic band-gap materials and structures by

topology optimization. Phil. Trans. R. Soc. London, A(361):1 001–1 019, 2003.

[13] E. Yablonovitch. Photonic band-gap crystals. J. Phys. Condens. Mat., 5:2 443–2 460, 1993.

16


