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ABSTRACT

In computer graphics and engineering many classes of complex objects can be designed with L-systems.
We present a concept for enhancing timed and parametric L-systems with physics. This simplifies
considerably the physically correct design of certain classes of computer animations or technical objects
modelled by production rules. The focus is on structural extensions in timed and parametric L-system
theory necessary for constraint propagation management for the treatment of hierarchical objects and on
physics enhanced grammar-language extensions. The proposed concept is illustrated with a design model
incorporating the statics of arbitrary tree structures.

Keywords: L-systems, rewriting, physics, computer graphics, design, animation, engineering, conceptual
design.

1. INTRODUCTION

In physics- and engineering-based computer graphics
simulation, the solution of large systems of equations
is common practice. Very often the symbolic
solution of large numbers of constraints further
complicates the situation. A careful information
management becomes necessary in order to
guarantee solvability and success. In [YR99] the
authors report that the conceptual design phase is
rather important in the engineering design process,
and despite its importance, this design stage is the
least understood and only few supporting tools exist
[FRS96]. Approaches for supporting the conceptual
Design phase are described in [D94].

The objective of our work is to develop a computer-
based framework that supports selected classes of
design models in order to improve and reduce the
time need in the conceptual engineering design
phase. The basic idea is to use rewriting systems for
defining such design models. Rewriting systems are

synonym for L-systems, L-grammars, or so-called
production systems [PL90]. Rewriting is a technique
for building complex objects by successively
replacing parts of a simple initial object using a set
of rewriting rules or productions.

In computer graphics, an L-system describes a 3D
object by an axiom and a set of production rules,
which can be called a grammar since it describes the
structure of the object. From the axiom and the rules
- the grammar - the computer can derive in
subsequent iterations 3D objects of a given structure
(or grammar). Furthermore, by using the concept of
turtle graphics, the symbolic objects can be
visualised.

Traditionally, L-systems (Lindenmayer-systems)
[PL90, PHM93, PJM94] are used for efficient plant
and fractal modelling. In [NT99] we describe a
behavioural animation system where production
rules are not only used to define growth and
topology of objects, but also behaviour and



animation of objects in real-time. In this paper we
suggest to extend such a behavioural animation
system to a physics-enhanced L-system application.
Our work is inspired from [RN00] where we
described a concept on engineering design
generation with XML-based knowledge-enhanced
parametric grammars.

The main focus of the project is to extend a timed
and parametric L-system application [NT99] in such
a way, that it produces not only the geometry but
also the corresponding system of equations or
constraints that will have to be solved automatically
for a given target application.

Rewriting systems are well suited for embedding
geometry and physics in the same primitives, and
combining them to objects of predefined design
models. In particular, they

-support the construction of a family of
similar objects that assure solvability

-are well suited for the construction of objects
with similar elements such as plants,
bridges, aeroplanes, etc.

-can be used for defining geometry and the
corresponding system of equations

-exhibit a high data amplification factor
because of their rule-based definition of
objects.

2. CONCEPT

In order to enhance timed L-systems with physics,
we propose a general concept for incorporating
design models. The main idea is to associate not only
geometry but also physics to symbols. When the
designer uses them in rules for constructing certain
classes of objects from a given design model, the
application should be able to visualise the object, as
well as to compute the correct physics.

In [RN00] we proposed a generic concept supporting
the conceptual design phase of engineering
application. In a XML based parametric grammar
similar to a parametric L-system [PL90], the user can
first associate equations to symbols and then use
them in rules for defining objects. At iteration and
interpretation of the rules the object was visualised,
and the application generates automatically the set of
equations of the corresponding physical description
of the object. These equations can be solved
automatically by techniques described in [YR99].
Thus, an essential support of a conceptual design
phase for engineering problems is assured. XML was
chosen to get a standardised representation of the L-
system-like parametric grammar. This new standard
simplifies representation, edition, parsing, and

internal representation of the grammars in
applications that use the existing XML supporting
Java packages.

While the described method is best suited for the
purpose of conceptual engineering design with
human interaction, however, it is not suited for real-
time applications based on timed L-systems. In this
work we describe how we can use similar principals
in timed parametric L-systems suitable for real-time
applications. In order to improve speed we tend to
focus on particular design models and to implement
directly the treatment of physics in the application,
instead of maintaining a universal approach suitable
for large classes of engineering. We maintain the
optional output of the set of equations in order to be
compatible with the work of [YR99]. This concept
reduces the generality of the application, but it
makes it suitable for real-time applications and user
friendlier, as most physics can be hidden to
designers.
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Architecture of the timed and parametric L-
system application that is the starting point of
our work

Figure 1

The starting point of our work is the real-time L-
system application described in [NT99]. Fig.1
illustrates its main components. A user designs an
object by the corresponding L-system. The parser
and the compiler convert it into an internal
representation of the axiom and the rules. Then, for
each frame, the iterator iterates the symbolic object,
which corresponds to the axiom at the beginning of a
simulation, according to the rules. After the iteration,
the interpreter interprets this symbolic turtle program
by using procedures of the turtle and the symbol



modules, and produces the current frame of the
virtual scene.

The L-system we use is timed, parametric,
conditional, stochastic, and evolutionary. Timed
symbols of the alphabet of an L-system depend on
time. They have a local age, and they can only be
replaced by a rule, if they have reached their
maximal age. This time dependency is necessary to
model continuous animation. The L-system is also
parametric and conditional. The parameters allow
the parent symbols (left side of production rule) to
pass their parameters to their children (right side of
rule) and to modify them. With each rule we can
associate a condition that triggers the rule if it is true.
In general, conditions depend on the parameters of
the parent symbol and some environment functions.

Symbols can also have “growth” or “evolution”
functions (attributes) that determine the growth or
behaviour of the symbol during their existence. Such
functions can describe the geometric growth of an
object, or the movement of a camera in space, for
instance. Growth or evolution functions can depend
on the local age, the global time, the symbol
parameters, and other functions.

In a real-time L-system based application, at each
frame (time step), the symbolic object is first iterated
and then interpreted. At an iteration step, each
symbol of the symbolic object that has reached its
maximal age and whose rule is triggered by a
Boolean expression (the condition), is replaced by
the right side of the rule. Otherwise, only its local
age is increased by the time step of the animation
loop.

At an interpretation step the symbolic object is
interpreted from left to right. The symbolic object
can be considered as the actual turtle program, which
builds and controls the virtual environment of the
current frame. Each symbol of this “program”
corresponds to a more or less high level procedure
with a given semantics.

Properties of timed and parametric L-systems have
been described here for clarity. In the next sections
we propose new features for enhancing L-systems
with physics. First, we describe a concept for
managing parent-child relationships between
relevant parts of a design model. Such relationships
are needed for mutual interaction of body-parts.
Then, we focus on a concept for introducing
particular design models into L-systems.

Relationship Mangement

In most traditional L-system based animation
systems the formal graphics object is represented by

a linear symbol string (list), which corresponds to the
turtle program that visualises something when
interpreted. In this formal or symbolic object no
parent-child relationships between relevant symbols
are explicitly maintained for further use, such as
constraint propagation. But in tree-like objects, for
example, consisting of rigid rods that are rigidly
linked, and that propagate forces and moments to
their parent elements, parent-child relationships are
needed for computing forces and moments in the
tree.

Therefore we need a mechanism in L-system based
applications enabling us to control parent-child
relationships of certain symbols. One possibility to
solve this problem is to implement graph rewriting,
where rules and formal objects exist as graph
instances. Here we can perform all algorithms and
computations directly on these graph instances where
pointers link parents and children explicitly. But
there exist many symbol-string-like implementations
of L-system-based applications. Therefore, we
propose an extension of the concept to manage
parent-child relations for such types of applications.
We need only three new elements, namely:

- a parent-child relationship table (relTable)
- a function getIdOfLeftneighbour(i)
- a function isChildOf(parent).

The parent-child relationship table relTable is a
global table maintaining its state from frame to frame
during animation. It contains child identifier and
parent identifier fields that express our parent-child
relationships. We also introduce a function
isChildOf(parent) that makes an entry into relTable.
The argument of the function sets the parent
identifier field of relTable, and the child identifier
field is set with the symbol identifier of the symbol
in which the function is called. This function is only
called in parameter expressions of symbols that are
only evaluated once at a derivation step, where also
the corresponding symbol identifier is created.

We still need a second function, which is called only
in parameter expressions, and which serves to get a
symbol identifier. The proposed function
getIdOfLeftneighbour(i) returns the symbol identifier
of the ith left neighbour of the symbol where the
function has been called. This function enables us to
import symbol identifiers into the formal parameter
space of L-systems.

With these three new elements rule designers have
now the possibility to define in a very flexible
manner parent-child relationships of relevant
symbols. An example is shown in section three.



Integration of Design Models

We propose to introduce a design model by
implementing five new elements (see Fig.2), namely

- a design model table (designmodelTable)
- a design model symbol
- a function createDesignmodelElement()
- a design model equation writer
- a design model equation solver.

The design model table defines all the attributes of
the elements of a given design model that are
necessary to describe their physics. The key field of
this table is the symbol identifier.

Iterator Interpreter

Equation solver

Equation writer

relTable designmodelTable

Set of
equations

isChildOf
createDesignmodelElement

input

result

output

input

input input

Architecture of extensions
Figure 2

The alphabet of the L-system application has to be
extended by one ore several design model symbols,
which enable designers to set certain physical
attributes of the corresponding design model. These
user-defined attributes correspond to growth or
evolution functions of the symbols and can depend
on time.

To add a new element to designmodelTable, we use
the function createDesignmodelElement(), which can

be called in parameter expressions of the design
model symbol.

The design model equation writer is used to output
the system of equations describing the physics of the
design model. This procedure needs the relationship
table and the design model table as input. It can be
called at the end of an interpretation step at each
frame.

The design model equation solver computes the
solution of the actual set of equations describing the
state of the on-going animation. As input it uses
relTable and desginModelTable. It updates all
relevant fields of designmodelTable that can be used
by symbols for visualisation in a subsequent
interpretation step.

3. EXAMPLE OF A DESIGN MODEL

This section illustrates the proposed concept of
enhancing timed and parametric L-systems by
realising a particular design model, namely the
statics of arbitrary rigid tree constructs with a fixed
root and free children (see Fig.3). For any tree
structure and applied external, time dependent forces
that are designed with rules, the statics will be
computed automatically by the application.
Moreover, the geometry, the resulting forces and
moments at the joints are displayed at each frame.

root

leaf

Design model of arbitrary 3D tree structures
with a fixed root and free leaves

Figure 3

This simple example is well suited to illustrate our
proposed approach. First, we describe the physical
model of the design model. Then, we focus on the
structure of the particular design model table treeTab



and the algorithms of the equation solver and the
optional equation writer. Finally, we discuss an L-
system representing a binary tree.

Design model of Rigid Trees

An element of our tree structure is a rigid rod with
rigid joints propagating forces and moments to the
root (see Fig.4).

Gi

Pi+1

Fi+1fi
Pi

ri

xi

li

Pi: position vector of the root side part
Pi+1: position vector of the child side
mi: mass density of the element
fi: Force vector caused by the mass of the

element and gravity acting at ri

Fi+1: Force vector propagated by the child
and acting at li

Gi: External force acting on the element at
the position xi

computed attributes: li = Pi+1- Pi,, ri = 0.5* li

A primitive rod element of a tree structure
Figure 4

Eq. 1 shows the force acting on a joint of a rod
element in the tree. It contains the sum of the
contribution of all children, the external force, and
its own contribution caused by gravity and its mass.
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The moment, which acts on the joint and which is
propagated to the parent, is given by Eq. 2.
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Note that Eq. 1 and Eq. 2 contain the contributions
of their children that are again parents of their
children, etc. Therefore, when solving the resulting
system of equations, all interactions are propagated
from the leaves to the root. This means, that this
model is physically correct. The root, for instance,
will see all the contributions of the whole tree
elements.

According to Fig.4, we need the following data fields
for our tree design model table (treeTab):

symbolId: The identifier of the symbol
massDensity: The mass density of the symbol
M[3]: The moment vector
F[3] : The child force vector
G[3] : The external force vector
l[3]: The rod unit vector
len: The rod length
P[3]: The rod position vector
r : The attack point for gravity
x[3] : The attack point for G

As a next step we introduce the design model symbol
called rod. Its evolution functions determine the
attributes – length, radius, mass-density, x, external
force -, that a designer can define. The start position
Pi of a rod is given by the current position of the
turtle. Its direction is determined by the turtle’s
heading vector. When interpreted, first the evolution
functions are evaluated in order to update the
corresponding attributes in the design model table
treeTab. Then, the rod, the external force, and the
computed moment and joint force are drawn.

The equation solver has to compute the forces and
moments according to Eq. 1 and Eq. 2. Every parent
can have multiple children. Therefore, the forces and
moments for the rod elements can be calculated in
reverse sense by starting from leaves and going back
to the root. A possible solution is to mark first all
lines in the relationship table with the topological
distance of the children from the root. Then, in a
second step we can calculate all the forces and
moments starting from the highest distances down to
the root. The code of Fig.5 accomplishes this task. It
is executed after a complete iteration and
interpretation step.

resetDistanceMarks(relTable, 0)
maxLength = markWithDistance(relTable)
for i = maxLength downto 0

for all relTable.childId with
i=relTable.distanceMark

calculate force and moment with all child
contributions

Pseudo code of the equation solver
Figure 5

After an interpretation step we can also write the
system of equations in a text file for further external
processing. Fig.6 illustrates the pseudo code of the
equation writer. Variables are indexed by the
corresponding symbol-identifier. Parts of the
equations that can be evaluated are calculated



directly. The algorithm of Fig. 5 outputs the
equations. These equations can also be solved
automatically by constraint propagation techniques
described in [YR99], which are used in conceptual
design in engineering. For our real-time application,
however, it is more efficient to implement directly
our proposed numerical solution of Fig.5.

for all rod elements el of treeTab do {
/* computation of numerical values */
i = el.symbolId;
gravity =
(0,el.massDensity*el.len*el.radius2*Pi*9.91, 0);
F1 = gravity + el.G;
M1 = el.r × gravity + el.x × el.G;

/* The output strings are generated and initialized */
String F = “F_” + i + “ =  “ + F1;
String M = “M_” + i + “ = “ + M1;
/* The child contributions are added as variables */
for all childs j = childOfParent(relTable, i);

F = F + “F_” + j;
M = M + “+“ + el.r + “ × F_” + j + “ + M_”+ j;

}
print F;
print M;

}

Code of the equation writer that produces a
text file with the set of equations describing
the statics of a tree structure

Figure 6

L-system of a Binary Tree

The L-system of a binary tree without external forces
is given by the pseudo code of Fig.7. The axiom
consists of a germ-like symbol z with three
parameters that correspond to the maximal number
of iterations, the root identifier (-1), and the initial
length (5) of a rod element passed by the unique rule
to its right side symbols. Note, that the parameter x1

is used to propagate the parent-identifier to its
children. The function getIdOfLeftNeighbour(i) puts
the parent-identifier into the parameter space of the
L-system.

Constants
a = 30 /* rotation angle */
b = 0.8 /* rod length reduction factor */
Axiom
z (x0=4, x1=-1, x2=5)

Rule1: z is replaced if (t>maxAge) and (x0>0) by

rod ( x0=isChildOf(x1),
x1=createTreeTableElement(),

x2=x2,
length=x2, radius=1, massDensity=1)

push
rot (angle = a)
z ( x0 = x0-1,

x1=getIdOfLeftNeighbour(3),
x2 = x2*b)

pop

push
rot (angle = -a)
z ( x0 = x0-1,

x1=getIdOfLeftNeighbour(7),
x2 = x2*b)

pop

Pseudo code of the L-system of a binary tree
Figure 7

Let us now apply the iterator on this L-system and
look at the produced symbolic objects. Fig.8 shows
two iterations of the axiom. At iteration the right side
of the unique rule replaces the dummy symbol z of
the current symbolic object. For each right-side
symbol a unique identifier is created that indexes it
in the symbolic object.

Axiom
z1 (x0=5, x1=-1, x2=5)

First iteration
rod2( x0=isChildOf(-1), x1=createTreeTableEl(), x2=5,

length=5, radius=1, massDensity=1)
push3  rot4(angle=30) z5 ( x0=4, x1=2, x2=4) pop6

push7 rot8 (angle=-30) z9 (x0=4, x1=2, x2=4) pop10

Second iteration
rod2( x0=isChildOf(-1), x1=createTreeTableEl(), x2=5,

length=5, radius=1, massDensity=1)
push3  rot4(angle=30)

rod11(x0=isChildOf(-1), x1=createTreeTableEl(), x2=4,
length=5, radius=1, massDensity=1)

push12 rot13(angle=30) z14 ( x0=3, x1=11, x2=3.2) pop15

push16 rot17(angle=-30) z18 (x0=3, x1=11, x2=3.2) pop19

pop6

push7 rot8(angle=-30)
rod20(x0=isChildOf(-1), x1=createTreeTableEl(), x2=4,

length=5, radius=1, massDensity=1)
push21  rot22(angle=30) z23 (x0=3, x1=20, x2=3.2) pop24

push25 rot26 (angle=-30) z27 (x0=3, x1=20, x2=3.2) pop28

pop10

The symbolic objects of two iterations of the axiom

Figure 8



Visualization of the formal object, the forces,
and the moments after four iterations of the
axiom

Figure 9

A non-flat binary tree with visualized forces
and moments

Figure 10

According to the rule and the parameter x0 of the
symbol z the L-system is iterated four times. Fig. 9
illustrates the visualised tree object after four
iterations. The interpreter of the L-system
application (Figure 1) is responsible for the
visualisation of the symbolic object (Figure 8) at a
given animation time. It interprets each symbol
according to its semantics and its parameters. The
rod symbol draws not only a cylinder in the turtle’s

coordinate system, but also the force and moment
vectors at its root-side joint. The symbol can access
the computed resulting force and moment in the
design model table (treeTab) by its unique symbol
identifier. Please note that this design model only
treats the statics of rigid tree structures, and
therefore, the effects of forces and moments cannot
be visualised as deformations or movements. A
design model of the dynamics of tree structures is
much more complex. Its implementation is left to
future work.

The forces and moments caused by gravity are drawn
as vectors starting from the joints of the rod
elements.

A spiral composed of rod elements

Figure 11

The Fig.10 to 12 show other examples of the static
tree design model with one fixed root and free
leaves. Each figure is defined by an appropriate L-
system, containing rod symbols of the static-tree-
design-model. A detailed description of all of these
L-systems is beyond the scope of this paper. The
examples serve only to illustrate the fact that, once a
design model is implemented, it is possible to
investigate, visualise, and analyse a multitude of
instances of a given design model.

In all figures gravity is acting in vertical direction.
Only in Fig.12 there are external forces that are
visualised as thick vectors. They are attacking at
each rod element of the quad tree.

As a last illustration of the descriptive power of L-
systems, Figure 13 shows the L-system of the spiral-
like object of Figure 11 consisting of 29 linked rod
elements. The only rule Rule1 adds at each time unit
a rod element and adjusts the turtle by two rotations
in order to get a spiral-like shape of the final object.



A tree with four branches at each node.
External forces attack at each rod element

Figure 12

Axiom
z (x0=29, x1=-1, x2=5)

Rule1: z is replaced if (t>1) and (x0>0) by

rod ( x0=isChildOf(x1),
x1=createTreeTableElement(),
x2=x2,
length=x2, radius=x2/9, massDensity=3)

rotUp (angle =37)
pitchDown (angle = 28)
z ( x0 = x0-1,

x1=getIdOfLeftNeighbour(3),
x2 = x2 * 0.9)

L-system of the spiral-like object that is
illustrated in Figure 11. This object consists
of 29 linked rod elements. The spiral-like
shape is obtained by the two turtle rotations
rotUp and pitchDown after each rod element.

Figure 13

4. CONCLUSIONS

It is a visionary fact that the tight coupling of
physics- and engineering-based simulation tasks with
computer-graphics visualisation procedures bears a
high potential in the field of advanced conceptual
system design and development. The presented work
aims in this direction. It shows how to extend real-
time L-system based applications in such a way, that
they produce not only geometry but also the
corresponding system of equations that are solved
automatically for a given target application. We

illustrate our proposed concept with a simple design
model dealing with the statics of arbitrary trees.

Future work will focus on the integration of
more design models such as the dynamics of trees,
particle systems, and most especially, design models
containing general parent-child relationships with
cycles as they are found in most technical
constructions.
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