# Computer Graphics in Computing Curriculum 2001

Dr. Steve Cunningham
California State University
Stanislaus

**WSCG 2001** 

The overall context for this discussion is the undergraduate computer science curriculum

Any discussion of computer graphics in Computing Curriculum 2001 must be considered in this context

#### A brief review of Curriculum 91

- First of the standardized curricula that contained any computer graphics
- Recommendations had a limited number of knowledge units (KUs) in the general curriculum, but it was not clear how this would be provided
- A traditional course based on graphics algorithms and techniques was given as an optional elective

### Computer graphics has changed since 1991

- Standards such as GKS and PHIGS have been superceded by industry APIs
- Developments in hardware have made it possible to do very fast, high-quality rendering on inexpensive desktops
- There is a great deal more experience with using graphics to accomplish important work

#### **Computing Curriculum 2001**

## Ironman version of curriculum proposal is at

http://www.acm.org/sigcse/cc2001/

#### In Computing Curriculum 2001

- Fewer hours for computer graphics in the core (5) than in Curriculum 91
  - Smaller core generally
  - Other new content is competing for space
- Computer graphics is part of a larger context that includes image processing and computer vision
- Core content is generally in broad, relatively early courses

# The focus in this presentation is a stand-alone introductory course in computer graphics

#### Whom do we serve?

- Future computing professionals
- Future graphics professionals
- Future professionals in other fields (service courses), especially computational science, whose importance is specifically recognized by CC2001

### So for this introductory course we must ask:

- What will contribute best to those who will integrate graphics into future applications?
- What will contribute best to those who will develop graphical systems?
- What will contribute best to those outside computer science who will use computing in their professions?

#### These questions are in a context...

- There is little space in the undergraduate computer science program for multiple introductory courses
- There is little opportunity to introduce significant computer graphics in another part of the program
- We must create a course that will satisfy all three groups as well as possible

#### My conclusions are...

- We should shift the focus of the first course from fundamental algorithms and techniques to API-based graphical problem-solving and communication
- We should include discussions of the issues that underlie modeling and rendering in computer graphics and build the motivation for modeling and rendering as done by the API

#### My conclusions (cont)...

- We should build the course on a sturdy API and give students the opportunity to create some useful visual communication from their work
- We should include content in interaction and animation that is beyond the scope of a traditional course
- We should motivate the student to study further to get the details

### The course we recommend for CC 2001

- Primary focus is on developing concepts and geometric thinking
- Work is expressed by a current API, but in principle is independent of that API
- Emphasis is on effective visual and graphical communication
- Include an application area to give students a set of content to express

#### This course...

- Will be somewhat similar to courses being taught now at several universities
- Is sometimes controversial because it does not include the traditional focus on algorithms and techniques
- Is not yet fully supported by textbooks, although Hill 2<sup>nd</sup> edition could be used

#### This course may be subsetted...

- To be part of an overview course in visual computing that includes computer graphics and computer vision (synthesis and analysis)
- To be part of an introductory course in scientific visualization or computational science

### This course is a foundation for an advanced course

- That takes advantage of the graphics sophistication the students develop in the first course
- That includes the algorithms and techniques that are used in the API
- That develops additional advanced topics as appropriate for the research or focus of the instructor or institution

# A potential example introductory course

- Developing a course now with a set of developing notes and materials at http://www.cs.csustan.edu/~rsc/NSF/that have been presented elsewhere; this work is supported by US NSF grant DUE-9950121
- Comments and suggestions are welcome at rsc@cs.csustan.edu