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Abstract

This paper presents a model applicable to large strain analysis of composite materials such as flexible hoses. A

three-dimensional constitutive law, which uses the concept of convected coordinate frame, is developed for ma-

terials presenting non linear elastic and linear orthotropic behaviors in the large deformation field. The proposed

model is implemented in a finite element home code and the formulation of both the hyperelastic and the or-

thotropic constitutive laws is presented. Finally, in order to validate our numerical results, an experimental device

is developed to exhibit the mechanical behavior of straight flexible hoses in the case of elementary tests. The model

is then compared to these experimental results.
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1. Introduction

In service, flexible hoses are generally submitted to low internal pressure, as well as to full

travel and angular movements in all the directions. Therefore, the behavior of such materials

involves a great deal of deformation complex modes and the modeling of this behavior goes

through a knowledge of elementary behaviors. For example, in the case of flexible hoses made

out of fabric-reinforced elastomer it is necessary to take into account both the non-linear quasi-

reversible behavior of the rubber and the elastic orthotropic behavior of the fabric.

Many papers published in the literature have dealt with the global analysis of flexible hoses

and pipes as reviewed in [1] or [2], and most of the numerical analysis of these highly non-linear

slender structures using the finite element method [3, 4, 5, 6, 7, 8]. The finite element method

is perhaps the most widely adopted technique due to its versatility in handling complex flexible

pipe profile and boundary conditions. The traditional framework of large transformations is

usually adopted in the conventional finite element method as it allows for a convenient way to

express the governing equations and the constitutive laws in a simple form. This paper presents

an alternative but more effective flexible hose formulation using 3D finite elements which can

take internal pressure effect, bending-torsion coupling, axial-radial coupling, etc. into account.

A first step of our study consisted in the development and the implementation in a finite

element code of an hyperelastic constitutive law [9, 10, 11] to model the large deformations of

the silicon elastomer matrix. To complete the model, an orthotropic constitutive law was used to

describe the behavior of the reinforcement fabrics [12]. This convected orthotropic constitutive

law is introduced in a finite element code. This code has the particularity of dealing intrinsically
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with large strains by using a system of material coordinates convected by the displacement of

the body. In order to compare our numerical results, an experimental device was developed

to exhibit the mechanical behavior of straight flexible hoses in the case of elementary tests

such as tension, compression, bending or torsion. The originality of this work consists in the

combination of both non linear hyperelastic and linear orthotropic constitutive laws to describe

the behavior of complex material structures such as flexible hoses, and its comparison with

well-established experimental results.

In the first part of this paper, the materials as well as the experimental device are described.

In the second part, the theoretical formulation of the model is reviewed; convected material

coordinates are presented, as well as the formulation of 3D kinematics. Both the hyperelastic

and the orthotropic constitutive laws are presented and their integration into a finite element

approach by the use of the variational formulation is also described. In the last part, the model

is compared to experimental results obtained on straight flexible hoses.

2. Experimental

The flexible hoses are composed of a rubberized polyester fabric embedded between two silicon

elastomer layers, each of the three layers being 2 mm thick (see Fig. 1). All material param-

eters are identified by inverse optimization with the software SiDoLo [13]. The mechanical

properties of the elastomer layers are determined from tensile tests in order to determine the

material parameters of the hyperelastic constitutive law. Those of the rubberized fabric layer

are obtained from tensile tests as well as from shear tests since the chosen constitutive behavior

is orthotropic. Each type of test is performed at least three times to ensure good reproducibility

of the experiments.

Fig. 1. Schematic drawing of the straight flexible hoses

2.1. Silicon elastomer

As the behavior of elastomers is usually considered as isotropic [14], the material parameters

are identified by tensile tests alone. The samples are bone-shaped specimens of 100 mm gauge

length and 2 mm thick. The results obtained on two different samples are presented Fig. 2.

From these curves, the Cauchy stress-Almansi strain curves are calculated using the relation:

2ε = (l2 − l20)/l
2 where l0 and l are the initial and the current gauge length of the extensometer

respectively. The bulk modulus k is obtained by the relation: k = E/3(1 − 2ν), where E =
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3(μr+μ∞) and ν = 0.47 are the Young modulus and the Poisson’s ratio respectively. From these

results, the material parameters which are obtained by identifying the hyperelastic constitutive

law [10, 11] are given in Table 1.

Table 1. Material parameters of the silicon elastomer layers (in MPa)

k Q0 μr μ∞

250 0.94 0.055 0.015

2.2. Rubberized fabric

The rubberized fabric layer is made of a polyester fabric woven at 90◦ and cast into a silicon

elastomer layer. For tensile tests, the sample has the same shape and dimensions as for elas-

tomeric ones. As this layer is modeled using an orthotropic constitutive law, the principal fiber

directions of the fabric are tested, i.e. 0◦ and 90◦ , the tensile test results being presented Fig. 2

which show that the behavior is strongly non-isotropic.

Fig. 2. Tensile tests performed on silicon elastomer samples and on rubberized fabric samples at 0
◦ and

90
◦ orientation with respect to the fiber directions of the fabric. Identification of the elastomer’s behavior

using parameters of Table 1

The shear modulous G12 in the layer plane is determined from shear tests using the experi-

mental device presented in [15]. The Poisson’s ratio ν12 is taken as the common value used for

elastomer materials [14]. Finally, parameters E3, ν13, ν23, G13, G23 of the orthotropic constitu-

tive law are those of the silicon elastomer layer. From these results, the material parameters

which are obtained by identifying the orthotropic constitutive law [12] are given in Table 2.

Table 2. Material parameters of the rubberized fabric layer (E1, E2 and G12 are in MPa)

E1 E2 ν12 G12

30.25 15.32 0.47 12.56
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2.3. Experimental device

An experimental device has been developed for testing straight flexible hoses under elementary

tests such as tension, compression, bending and torsion. Because the strains generated by the

internal pressure in service (P = 0.12 MPa) are rather weak compared to those generated by

full travels and angular movements, the mechanical tests are performed without internal pres-

sure. The device is connected to a tensile machine of maximum load capacity of 100 kN. The

measurement of the force is performed by a load cell of maximum capacity of 5 kN and the mea-

surement of the displacement is directly given by the movable crosshead. The displacement rate

is 5 mm/min.

For tensile and compression tests, the flexible hoses are set on each side in two striated

adapters tightened by a flexible collar. For bending tests, the experimental device, presented

in Fig. 3a, allows one to test two flexible hoses together. A U-shaped plateau is connected to

the movable crosshead of the tensile machine. On the lateral parts of this plateau, two flexible

hoses are tightened using the same adapters that are used for tensile tests. In the central axis,

both flexible hoses are clamped using tensile adapters which are directly connected to the fixed

crosshead of the tensile machine, see Fig. 3a. Then, when moving the plateau with respect to

the central axis, a clamped-clamped bending is obtained on the flexible hoses.

Fig. 3. Experimental device for the test of elementary behavior of straight flexible hoses. a) bending test

and b) torsion test

For torsion tests, the device is similar to the previous one, except for the central axis, see

Fig. 3b. A shaft (rotation axis) is inserted between the lateral parts of the U-shaped plateau

and the central axis is connected to this shaft by two ball bearings. The rotation motion of the

central axis is performed from the linear displacement of the tensile machine by a rod and crank

system. The flexible hoses are also clamped using tensile adapters and a flexible collar.
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3. Constitutive behavior

The mechanical behavior of the elastomer layers is modeled using a hyperelastic constitutive

law which has already shown its ability to accurately describe the behavior of rubber-like ma-

terials. Concerning the rubberized fabric, if large deformations are considered, classical or-

thotropic behavior can no longer be retained because of the loss of material symmetry. In

order to keep a single law, even for large deformations, the concept of convected orthotropy

has been introduced [12]. This general framework has also been used to define other con-

stitutive laws such as elastohysteresis [9] and their application to shape memory alloys and

elastomers [16, 17, 10]. This section presents a review of the model.

3.1. Kinematics

The theoretical formulation of the model is written considering large geometrical transforma-

tions including large deformations. In that context, a general 3D kinematics involving convected

material frames is studied according to Green and Zerna [18]. Let us consider a continuous body

Ω in motion and M a point on this body. The position of M is defined in a fixed cartesian frame
�Ia, a = 1, 2, 3 by its coordinates Xa

(0) at time t = 0 and Xa
(t) at time t > 0. To follow the

point M in its motion, it is marked using curvilinear coordinates θi, i = 1, 2, 3. This marking is

constant throughout the deformation and the simplest one is the coordinates in the fixed frame

at t = 0. In the simulation and for the sake of simplicity, the curvilinear coordinates are equal to

the coordinates on the reference element. A corresponding natural frame (M,�gi) is associated

with point M :

�gi(t) =
∂ �M(t)

∂θi
=

∂Xa
(t)

∂θi
�Ia (1)

The �gi(t) vectors are calculated at time t and they evolve during the deformation. The covariant

components of the metric tensor G = gij(t) �g i
(t) ⊗ �g j

(t) are derived from these vectors: gij(t) =

�gi(t) · �gj(t), where the contravariant or dual vectors �g i
(t) are defined as follows: �g i

(t) · �gj(t) = δi
j .

Finally, the Almansi strain tensor ε, which is expressed in the final configuration, is calculated

from:

ε =
1

2

(

gij(t) − Gij(0)

)

�g i
(t) ⊗ �g j

(t) (2)

For the remaining part of this paper, the subscripts t and 0 are omitted and the convected material

vectors at t = 0 are referred using capital letters.

3.2. Hyperelastic constitutive behavior

For an isotropic body, the hyperelastic stress is determined from the elastic energy density E
(per unit of deformed body), that is for an isothermal reversible transformation, the Helmholtz

free energy. By denoting g = det |gij|, the hyperelastic stress contribution σr can be defined

from the internal energy:

σr : D =
1√
g

∂(
√

g E)

∂t
(3)

where D is the strain rate tensor and t the current time. The elastic energy is supposed to be

a function of the strain state of the material and the strain tensor ε is chosen to represent this

state. This leads to:

σr : D = σijDij =
1√
g

∂(
√

gE)

∂εij

∂εij

∂t
(4)
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The previous expression is valid if the strain rate tensor components are written in the convected

material frame, i.e. D = ∂εij/∂t�g i ⊗ �g j. By identification, the hyperlastic stress contribution

can be deduced from the variations of the elastic energy density:

∂(
√

g E)

∂εij

=
√

g σij (5)

If the body is assumed to be isotropic, the hyperelastic stress is determined from the elastic

energy density E which depends only on three strain invariants. Macroscopically, the choice

of the intensity of the deviatoric strain tensor ĪĪε̄ as a first variable is thus physically meaning-

ful [19]. The set of variables is completed by the ratio of elementary volumes v =
√

g/G,

where G = det |Gij| and by the phase of the deviatoric strain tensor ϕε̄ such as:

cos(3ϕε̄) =
3
√

3

2

ĪĪĪε̄

ĪĪ
3/2
ε̄

(6)

where ĪĪĪε̄ is the third invariant of the deviatoric strain tensor. The following expression has

been chosen because it gives satisfying results for elastomer materials:

E =
kr ln2 v

6
+

Q2
r

2μr

ln

[

cosh

(

2μr

Qr

√

2ĪĪε̄

)]

+ 2μ∞ĪĪε̄ (7)

where kr, Qr, μr and μ∞ are the parameters of this law. kr is proportional to the bulk modulus

while (μr + μ∞) represents the initial slope on a graph of shear stress against shear strain curve

and Qr an elastic threshold. A complete description of this law as well as the definition of the

parameters of the law can be found in [10, 11].

3.3. Orthotropic constitutive behavior

In the case of fabric materials, finite deformations can appear by twisting in the fiber plane with-

out any large deformations in the direction of the fibers. The deformed material is no longer

orthotropic, unless the initial behavior is the same in the main direction of the fibers. In accor-

dance with the classical elasticity theory, these remarks lead to an anisotropic behavior defined

with 21 coefficients. Anyway, it appears that the behavior along the directions corresponding to

the initial main directions convected on the deformed body does not change much. This is the

main idea used here to define the evolution of the initial orthotropy. The model obtained allows

us to keep only the 9 initial parameters from the general orthotropic behavior [12].

Let us consider a field of objectively defined frame which is initially the orthonormal field

associated with the directions of material anisotropy. This field is convected associated with the

dragged-along material coordinates [20]. This material frame of unit vectors �Oi (i = 1, 2, 3)

whose direction coincide with the initial direction of the fabric fibers and represents the or-

thotropic main directions of the body with regard to the fixed reference frame �Ia. The relation

between the initial orthotropic frame and the natural frame �gi(t) can be defined by a rotation of

angle α in the tangent plane to the medium surface of the element. The orthotropic constitutive

behavior is still represented by a non constant 4th-order tensor E such as:

σ = E : ε (8)

where σ is the Cauchy stress tensor. In the initial condition, the coordinates of E in the �Oi

frame can be represented by the classical matrix of orthotropic elasticity, obtained by inverting
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the stiffness matrix S for which terms are generally simpler. In accordance with our previous

assumption, the coordinates of E are assumed constant during deformation and the tensor E is

written in the initial orthotropic frame �Oi:

E = Ei l
jk

�Oi ⊗ �Oj ⊗ �Ok ⊗ �Ol (9)

where i, j, k, l = 1, 2, 3. The constitutive law is then obtained in mixed coordinates (con-

travariant and covariant) in the orthotropic frame since the mixed frame is the only frame where

stresses and strains remain of the same magnitude than �Ia. However, all the terms of the consti-

tutive law should be written in the same frame, such as:

σij = Eijkl εkl (10)

In our case, it is necessary to calculate the covariant coordinates of E in the natural frame.

Moreover, the frame in which this relation is expressed has to be normalized since the �Oi vectors

are deformed similarly to the �Gi vectors. In the original condition, the �Oi vectors are defined

by:

�Oi = A j
i

�Gj

|| �Gj||
and �O j = Bj

i

�G i

|| �G i||
(11)

where (i, j = 1, 3). The convected orthotropy hypothesis leads to coefficients A and B which

remain constant during the deformation, i.e. the orthotropic frame follows the rotation of the

natural frame; this gives in the deformed condition:

�oi = A j
i

�gj

||�gj||
and �o j = Bj

i

�g i

||�g i|| (12)

Let use define the following terms:

Γ β
α =

�oα

||�oα||
· �g β and Λβ

α =
�o β

||�o β|| · �gα (13)

Tensor Ê in the deformed natural frame �g
′

i = �gi/||�gi|| is then expressed as:

Ê = Ei l
jk Γ α

i Λj
β Λk

γ Γ δ
l gββ′

gγγ′

�g
′

α ⊗ �g
′

β′ ⊗ �g
′

γ′ ⊗ �g
′

δ

= Eαβ′γ′δ �g
′

α ⊗ �g
′

β′ ⊗ �g
′

γ′ ⊗ �g
′

δ (14)

where α, β, β ′, γ, γ′, δ = 1, 2, 3. The initial material frame �Gi is known from the finite element

discretization and the initial position of the orthotropic frame �Oi is determined from the initial

orientation of the fibers of the fabric with respect to the material frame. The material parameters

introduced in E are also known and kept constant during the deformation, but both material and

orthotropic frames evolve during the deformation. All other quantities are computed.

3.4. Variational formulation

The weak formulation of the boundary-value problem, defined both by the boundary conditions

and the equilibrium equations derived from the principle of virtual power is written in the final

configuration:
∫

Ω

σij ∗

vi |j dΩ =

∫

Σ

ti
∗

vi dΣ (15)

297



P. Y. Manach / Applied and Computational Mechanics 2 (2008) 291–302

where �t represents the surface external force. The previous relation must be fulfilled for virtual

velocity field
∗

�v resulting from any kinematically admissible displacement field. From the finite

element discretization, and taking into account that the virtual velocity field is arbitrary in the

volume Ω and on the surface Σ, this leads in a standard way to the system of algebraic non-linear

equations:

Rbs (Xar) = 0 ∀b, s (16)

with:

Rbs (Xar) =
ne

∑

n=1

[
∫

Ωn

σij ∂Dij

∂Xbs
dΩn −

∫

Σn

ti
∂Xi

∂Xbs
dΣn

]

(17)

where Xar are nodal positions, ne is the number of elements, and where Ωn and Σn are related

to element n. The previous system is then solved using a Newton-Raphson method. In that

respect, it is necessary to determine the stiffness of the system, i.e. the tangent linear form with

respect to the degrees of freedom. The variations of different geometrical terms with respect to

the degrees of freedom can be obtained in [10] for the hyperelastic constitutive law and in [12]

for the orthotropic constitutive law.

4. Results

This part is devoted to the validation of the model presented in the previous part. The vali-

dation of the orthotropic behavior has already been performed in the small deformation field:

firstly, the different elementary behaviors of orthotropic laminates have been compared to the

theoretical results obtained in the small strain field [12]. Secondly, the bending behavior of

an orthotropic laminate under a sinusoidal loading of Pagano type has been compared to the

Pagano’s solution [21]. Both first points correspond well with theoretical results [12]. In this

paper, the complete model is compared to several experimental cases of straight flexible hoses

submitted to elementary tests. It can be noted that for all simulations, the influence of the mesh

has been previously studied and that the results presented are obtained with a sufficiently fine

mesh to ensure stable solutions.

Fig. 4. Experimental and numerical results obtained on straight flexible hoses under tension tests
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The flexible hoses are composed of three layers of equal thickness 2 mm, i.e. one layer of

rubberized fabric embedded in two layers of silicon elastomer. The initial orientation of the

fabric is 45◦ with respect to the lengthwise direction, see Fig. 1.

The dimensions are 170 mm length, with 100 mm of gauge length and 35 mm on each

lateral side for the clamped part of the flexible collar, an inner diameter of 58 mm and a total

thickness of 6 mm. Two layers of quadratic hexaedron elements represent each layer of the

flexible hose. The mesh is composed of 100 elements in the length, 6 in the thickness and 36

on the circumference. The �z axis is taken lengthwise to the hose while �x and �y are located in

a section, the origin of the frame is taken on the left side of the mesh. Boundary conditions

obviously depend on the type of test but for all cases, the first row of elements on one side is

completely fixed, i.e. u = v = w = 0 because it represents the first clamped part of the hose.

For tension or compression tests, the first row on the other side represents the other clamped part

at the flexible collar, which means that u = v = 0. For tension tests w > 0 and for compression

tests w < 0. For bending tests, the first row on the other side is such that u = w = 0 and v > 0,

i.e. a displacement to a cross direction. Finally, for torsion tests, two lateral parts have been

added to the previous mesh in order to create a torque around the �z axis by applying a pressure

on these lateral parts.

The results presented Fig. 4, Fig. 5, Fig. 6, Fig. 7 feature the curves obtained in the different

cases of tests. For each test, three samples have been tested to ensure the reproductibility of

the results. It can be observed that there is a good accordance between experimental curves

and simulated results even for finite deformations. In all other cases than tension, the results

are performed for strains so that there are no buckling effects. For compression tests, simulated

results obtained using parameters of Table 1 show a discrepancy between experimental and

numerical results (see Fig. 5 (Numerical Simulation 1)).

This is due to the fact that this test is performed using the same material parameters in

tension and in compression while the behavior of the elastomer is not symmetric for these tests.

In order to take non-symmetric behavior in tension and compression into account, a dependence

on ϕε̄ is added through the material parameter Q0(ϕε̄) which replaces the parameter Q0. The

Fig. 5. Experimental and numerical results obtained on straight flexible hoses under compression tests
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Fig. 6. Experimental and numerical results obtained on straight flexible hoses under flexion tests

Fig. 7. Experimental and numerical results obtained on straight flexible hoses under torsion tests

following relation is used:

Q0 =
Q′

0

(1 + γ cos 3ϕε̄)
n (18)

where Q′

0, γ, n are parameters characteristic of the material. It gives a different threshold in

tension (ϕε̄ = 0) and in compression (ϕε̄ = π/3), thus leading to a non-symmetric behavior.

The results obtained using these parameters are presented in Fig. 5 (Numerical Simulation 2).

The agreement between experimental and numerical results is then satisfying for a large range

of deformation. For torsion tests, the results are initially obtained in terms of rod displacement

vs load. In order to transform these curves in rotation angle vs torque, the following relation is

used:
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α =
1

lλ2

(

−r +

√

r2 − lλ2

2
(lλ2 + 4r + lλ2∆l)

)

(19)

where r is the crank’s length, l is the rod’s length, λ = r/l and α is the rotation angle. These

numerical results correspond well with experimental ones. Numerical simulations of more com-

plex shapes of flexible hoses submitted to both internal pressure and full travel movements are

in progress.

5. Conclusions

This paper deals with a study of mechanical behavior of straight flexible hoses submitted to

elementary tests such as tension, compression, bending and torsion. An experimental device

has been developed in order to obtain experimental results in the finite deformation field. A

model has been proposed and implemented in a finite element code to simulate the experimental

results. This model uses convected material frames and the constitutive behavior is described by

both a hyperelastic law for elastomer layers of the hose and an orthotropic law for the rubberized

fabric layer. This model is compared to experimental results obtained on straight flexible hoses

and the results correspond well even for large deformations.
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