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ABSTRACT

This paper describes a method for generating flower growth animation in which a petal surface
and shape can be changed in real time. Most plant modelling currently animates the plant
development process by assuming a time interval and the corresponding growth direction, and
cannot easily change the time step or deform the shape. In the model presented here we use a
graphical representation for plant growth function, along with a new description of plant growth
rate, to enable the user to obtain flexible parameters for surface control. The model generates
non-deterministic results which give more realistic and varied petals than can be obtained using
pre-defined surfaces or interpolating between given initial and final shapes.
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1 INTRODUCTION

When we build virtual environments, it is rela-
tively easy to generate walls, desks, chairs, ma-
chines and other man-made objects because their
shapes are designed by ourselves. However, it
is quite hard to simulate biological processes be-
cause they grow and move according to highly
complex natural principles, which can be very
difficult to model. Of course, if we restrict our-
selves to deterministic models of growth, we can
find equations which will allow us to generate the
final model of an organism. However, this ap-
proach will fail to provide the natural growth of
organism and miss the infinite perturbation found
in nature. In the work we strive to find a non-
deterministic method that accounts for natural
growth.

Recently, many attempts have been made to sim-
ulate the development of plants, trees and botani-
cal structures. Some interesting results have been
obtained using branching process constructions
[Aono84a], particle systems [Demko85a], ramifi-
cation matrix of trees [Vienn89a] and structure

creation on trees [Holto94a, Weber95a]. A virtual
plant system has been generated by parametric L-
systems, which is a recursive algorithm, and can
model highly complex and irregular structures
[Prusi90a]. Mech built a modelling framework to
simulate and visualize a wide range of interac-
tions at the level of plant architecture [Mech96a].
Fowler uses spiral phyllotaxis to model flowers
[Fowle92a]. However, most of this work has fo-
cused on a target structure and ignored the tran-
sient stages of plant growth and development.
The main problem with these systems is that
they do not support level-of-scale simulation. In
the main, zooming in would expose poor images.
If we assume that the user is in complete con-
trol of level-of-scale operation, then we must con-
sider carefully modelling the surface features of
the plant and all transient stages during the de-
velopment of the plant.

This paper focuses on the simulation of flower
petals through all transient stages from a bud
to the fully developed flower. Thus, we need to
develop methodologies that support the simula-
tion, to ensure that we achieve realistic results



of time transient behaviours. Flowering, or more
precisely, reproductive development, is composed
of many independent but highly coordinated pro-
cesses. Since one cannot precisely determine the
exact point at which a flower base is formed, it is
necessary to wait for the appearance of true flo-
ral structures; this is usually referred to as flower
formation.

1.1 Related Work

Recently, Lintermann and Deussen presented a
modelling method [Linte99a] that allows easy
generation of many-branching objects including
flowers, bushes, trees, and even non-botanical
structures. A set of components describing struc-
tural and geometrical elements of plants, map to
a graph that forms the description of a specific
plant and generates the plant geometry. Users
of their system obtain immediate feedback on
what they have created — geometrical parameters,
tropisms, and free-form deformations can control
the overall shape of a plant. However in their sys-
tem, a natural leaf or petal must be scanned be-
fore creating a single leaf or petal component for
the system. Thus this system does not attempt
to model growth by evolving the natural stages of
plant development, but instead uses stored com-
ponents to simulate the process.

Manipulation of Bézier patches using L-systems
has been described in detail by Hanan in
[Hanan92a]. The developmental bicubic surfaces
are implemented by using an interactive surface
editor to set sixteen control points and defin-
ing the initial and final shapes in the sequence.
It allows the user to manipulate parameters for
petal width, length and bending angles in order
to model members of a family of petals. This
means that the user must manipulate all these
components appropriately to control the bicubic
patches. Once the shapes have been chosen, the
L-system must be designed to interpolate between
the two shapes with a fixed number of steps.
However, the user must have some knowledge of
the structure and the parameters of the petal to
generate the petal shape desired. The structure
of the petal surface must be changed if a different
shape is required. It is not easy to control when a
complicated or asymmetrical petal surface is gen-
erated. In our work, a simple patch surface with
three base factors for the petal length, width and
curvature would allow a non-expert user to con-
trol the shape change with minimum effort.

Growth is a continuous process, but simulation
models operate in discrete time steps, making

it convenient to simulate the discrete addition
of structural units. Consequently, the structural
unit considered by a model, the time taken for
a unit to appear, and the time step used by the
model are usually related. A close approximation
to continuous growth can be achieved by solv-
ing differential equations for very small time steps
[Prusi93b]. The disadvantage of L-systems is that
the time step and the component shape is a part
of the model and cannot be easily changed. Any
change related with these parameters will need a
restart for the recursion. Furthermore, a proper
surface modelling is necessary for the levels of
scale, which will allow zooming in or zooming out
on the surface and changing the viewing position.

Since it is necessary to obtain a growth surface
for representing petals or leaves, it is important
to construct a suitable surface model. Guo de-
scribes a method for reconstructing an unknown
surface [Guo97a] from a set of scattered points.
Welch presents a method [Welch92a] for the in-
teractive modelling of free-form surfaces, where
the user is free to manipulate the control points
to obtain different shapes for the same surface
with constraints. Durikovic presents the shape of
the organ by a number of ellipsoidal clusters cen-
tred at points on the skeleton [Durik98a]. He also
introduces several tables with which to store the
database of statistical geometry of organs, such as
size, growth speed, among others. However, these
surface representations are not suitable for petal
surfaces, which can be constructed and controlled
by some major points for the desired shape.

1.2 Paper Objectives and Overview

The objectives of this paper are to:

e Present a new theory of growth functions,
the purpose of which is to give a good de-
scription of plant development.

e Develop a graphical representation for plant
growth functions.

e Introduce the integral equations for growth
measurement based on the specific time in-
terval.

e Illustrate step by step the petal develop-
ment controls with analysis of the shape
changes.

e Describe the shape control by the genera-
tions of unique petals with bicubic surface
representation.



In this paper, we propose a method for generating
flower growth animation in which petal surface
and shape can be changed simultaneously in real
time. We represent a flower petal as a set of the
control points defining a bicubic patch. In addi-
tion, we expand growth function theory to enable
the growth rate to vary as the petal develops.

2 DESCRIPTION FOR THE MODEL

The animation of plant development remains a
challenging problem in computer graphics. The
entire growth process and mechanism have not
yet been made clear, with many unknown factors
remaining which depend on biological principles
or environmental variance. However, animation
based on the theory of growth functions could
make a significant contribution to the field of sim-
ulating plant growth.

2.1 Surface Representation

To achieve a realistic result for the development of
a bud into a flower, it is inevitable that the petal
model must possess some measure of the complex-
ity of a real petal. This presents problems for the
construction of the 3D model for our simulation.
The model needs to provide satisfactory surface
continuity and smoothness. Building a model of
this complexity using traditional polygonalization
techniques would involve prohibitive storage and
processing overheads, therefore alternatives must
be used.

2.1.1 Bicubic Surface Patches

Prusinkiewicz and Lindenmayer showed how
plant components [Prusi90a], such as stamens,
petals, leaves, seeds, can be built out of bicubic
patches. A patch is defined by three polynomials
with degree three, with respect to parameters s
and t. The following equation defines the = coor-
dinate of a point on the patch:

z(s,t) = a1t + arp8’t? + a135°t + anas® +
a2182t3 + 02282t2 + a2382t + a2482 +
asy St3 + 6132St2 + a333t + a34S8 +

agit® + agpt® + agst + as

Analogous equations define y(s,t) and z(s,t). All
coefficients are determined by interactively de-
signing the desired shape. Complex surfaces are
composed of several patches.

Figure 1: Control points for bicubic Bézier
patch

2.1.2 Bézier Patch

Just as with two dimensional curves, three dimen-
sions patches may use a variety of control strate-
gies, including Bézier, Hermite, and B-Spline
bases. A Bézier patch requires sixteen control
points. The four corner points control the posi-
tion of the patch and lie on its surface. The in-
termediate twelve points control the tangents to
the patch along the edges and at each corner and
may be used by the designer to “pull” the sur-
face of the patch into the shape desired (Figure
1) [Farin88a, Barte87a].

The Bézier form of the bicubic parametric patch
has a very concise matrix formulation specifying
a vector point, P(s,t), on the surface in terms
of the sixteen control points. This relationship
[Fireb93a], is expressed as:

P(s,t) = SBPBTT” (1)

where: S = [ 3 s s 1 ] (s parameter row
vector)
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Figure 2: Petal structure with sixteen con-
trol points

For the regular and symmetrical petal, we can
keep Poo, Po1, Po2, Pos as one control point, thus
making the control easier. To make it simpler,
Ps3g, P31, P35, P33 could be put together as one
point if the top of the petal is a discontinuity
point. As shown in figure 2, four control points
are located at the bottom of the petal while the
base portion of the petal is simple. The other
two groups of four control points usually control
the middle part of the petal. The last four con-
trol points play an important role in shaping the
petal, providing that they are located at the top
of the petal. When we consider the structure
for the petal surface, we need to pay attention
to where the discontinuity points are, in which
the two groups of the four control points can be
joined, forming a corner control point. The part
of the surface formed by the same group of four
control points will generate a smooth and con-
tinuous curve. So the surface structure will be
changed if the discontinuity points are different.

Bicubic Bézier patches have become a popular
tool for surface modelling. The obvious advan-
tages include: Ease of interactivity—the control
point effects are readily observed and understood,
and the control points themselves are easily mod-
ified, either numerically or interactively; Repre-
sentational efficiency—complex surfaces are repre-
sented by a very small set of numbers. So this
approach is applied here as the surface represen-
tation for our flower petal modelling.

2.2 General Growth Function

In previous work [Prusi93b] the growth of bio-
logical organism has been determined by equa-
tion, which a-priori fix the final form of the or-
ganism even before the growth starts. Here, we
reject this approach and instead seek methodolo-
gies that can enable the growth function to take
account of natural perturbation, such as climate
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Figure 3: General growth function

effects, organic effects, and artificial perturbation
caused by human intervention.

Continuous processes such as the elongation of
skeleton segments, growth of cell clusters, and
gradual increase in branching angles over time
can easily be described by growth functions. A
popular example of the growth function is an S-
shaped function, monotonically increasing from
minimum to maximum with growth rates of zero
at both ends of time interval (T'o,T'), as shown in
Figure 3. This function is often applied in higher
plants. The growth is slow initially, accelerating
near the maximum value stage, slowing again and
eventually ceasing.

2.3 Growth Function for Petal Area

However, different growth functions are presented
here for the flower petal surface when we use
the bicubic patch to generate the petal. Usu-
ally, bicubic parametric patch modelling suffers
from lack of a high-level modelling abstraction for
shape control. So the growth function is applied
in the z,y, z directions for each control point.

We can focus the area growth in petal develop-
ment. From the concept of leaf area growth for
one duration [Hunt78a], which takes account both
of the magnitude of leaf area and its persistence in
time, the new growth function is developed which
relates growth rates and time. From the relation-
ship between growth and the time, we can ob-
tain the equation for growth rate. It is presented
in equation (2) for the z axis direction growth.
When we have a function to represent the growth
rate, as in equation (3), we can have the inte-
gral equation to calculate the growth during that
duration, as shown in equation (4).

. dz
! p (2)

l=ft)=axt?+bxt+c (3)
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Figure 4: Growth function for petal area

Z:/tlf(t)dt @)

(t: time; [: length growth rate; Z: the growth in
z axis direction; a, b, c: constants)

In Figure 4, the shaded area represents the total
growth during a specific time interval (tg,t1). It is
obvious that this growth could be negative, which
means the coordinate position decreases for that
time interval, compared with the previous posi-
tion.

The advantages of this new growth function are:

The f(t) function could be changed at any mo-
ment of the development animation, that is, we
can change equation (3) at any time. It means
that the growth rate changing tendency and
growth acceleration for the flower petal can be
different for the same petal in one growth proce-
dure. It provides the possibility to have unusual
petals by breaking the growth tendency.

The growth rate is under control with the ap-
propriate f(t) curve. It means that the shapes
for the flower petal surface are fully controlled
by this function. We can generate different petal
shapes by setting appropriate growth rates with
this function.

Although the time interval is fixed for its recur-
sive process, the specific time interval could be
set with different f(t) equations. It means that
we can do the adjustments for growth rate by
controlling the time interval. The specific growth
procedure can be recalled by retrieving the time
interval when the desired shape is not achieved.

The flexible growth rate curve allows variation for
individual control points. It means that we can
apply a different growth function for one control
point or some of the control points. A unique ir-
regular petal will be generated when only one or
some control points have different growth tenden-
cies.

The essential differences between our growth
function and the general growth function are as
follows: firstly, the general growth function has a
fixed growth tendency while that one presented
here can have various growth tendencies by using
different growth equations. This means that our
growth function is changeable. Secondly, the gen-
eral growth function has no control of the growth
rates during a time interval while ours can show
and change the values of all the growth rates.

2.4 Factors Controlling Growth

With the theory for the growth rate, we need to
consider what parameters are necessary for the
petal shape control. However, in order to let a
non-expert user with a general idea of the petal
shape understand how to control the shape, only
three factors are applied in our work. They will
affect the petal surface obviously and effectively,
that is the length, width and curvature growth
factors. Increasing the parameter for the length
factor will generate a longer petal for the same
time interval.

For a regular and symmetrical petal, we can
evenly locate the sixteen control points. The
growth between two groups of four control points
will be considered as having the same growth rate.
For example, if the top four control points grow 1
unit value for the time interval, the next group of
four control points grows % unit value. The third
group grows % unit value if the bottom group con-
trol points remain on the petal base. Another fac-
tor is applied for this unit value control. Increas-
ing the value means moving the control points
upward to the top of the petal, which provide an-
other approach to change the shape for the same
petal family.

In summary, if a fixed petal structure is provided
for the petal surface, the main three growth fac-
tors play an important role in surface change for
the growth process. These three factors allow the
user to control a bud growing into a flower with
petals of different length, width and curvature af-
ter any time.

2.5 Implementation

We need to set up the growth equation by setting
the values of the constants a, b, c. The growth rate
value in length, width and depth and the growth
factors for all the control points must be input
to calculate the new positions after the specified
time interval. The selections of all the values in



)) /

Figure 5: Petal growth (length rate:0.8;
width rate:0.6; depth rate:0.2)

these two steps depend upon the desired petal
shape. The growth factors for some control points
should be reset if their desired surface growth ten-
dency is changed. Then the new control points
matrix will be generated , and the patch surface
thus formed, will be rendered pixel by pixel with
a forward differencing algorithm.

3 RESULTS AND GENERAL COM-
PARISONS

3.1 Comparison

All the petals in figure 5 and 6 represent the
growth processes. Generally, the petal surfaces
are getting longer, wider, more flat and opening
wider with increasing time. With these figures,
we can see there are three major advantages in
our petal surface model. Firstly, varied surfaces
can be obtained easily by changing the growth
rate value in length, width and depth direction
or changing the growth function. Comparing fig-
ure 5 and 6, the figure 6 has wider petals with a
greater width growth rate. Secondly, the growth
tendency can be broken by changing the growth
rate for any factor at any time. Comparing figure
5 and 6, which both had the same growth rate at
the beginning of their cycles, we see that figure
6 ends up with a different shape as a result of
increasing the width growth rate. Thirdly, asym-
metrical petals can be obtained by changing the
factors for the control points, that is, moving the
relative positions between all the control points.
Comparing figure 9(a) and 9(b), they have differ-
ent petal structures for different shapes though
they share the same growth rate.

3.2 Results from the Control Points

In figure 7 and 8, small spheres represent the con-
trol points for the bicubic patch surface. From
figure 7, we can see that three groups of four con-
trol points are located on the top and the main

1

Figure 6: Petal growth (length rate:0.0;
width rate:1.0; depth rate:0.1)

Figure 7: Petal with sixteen control points

part of the petal to pull it into the desired shape.
The remaining four control points are all in the
bottom of the petal. Figure 8 is the same petal
viewed from the opposite direction showing the
control points lying behind the petal. From these
two figures, it is obvious that the bicubic patch is
effective in shape control for the petals.

Figure 9-12 show how the control points work to
control the shape. From the same bicubic struc-
ture, the petal surfaces vary from the simplest
shape in figure 9(a) to a more complex shape in
figure 11(a). Naturally, a asymmetric shape will
be obtained when the control points are not lo-
cated symmetrically, as shown in figure 11(b).

From the theory of bicubic patches, we know that
a group of four control points will generate a con-
tinuous curve. That is, we need to put the cor-
ner control points at the discontinuity point. As
shown in figure 12, there are two approaches when

Figure 8: Petal with control points (view
from the opposite direction)
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Figure 9: Symmetrical petal: (a)four con-
trol points are on the top together; (b)the
top four control points generate the curve.
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Figure 10: Symmetrical petal: (a)the top
four control points pull down the curve;
(b)the middle two control points on the top
pull further down.

we use one bicubic patch to represent the shape.
The first approach is to place a group of four con-
trol points together on the top as the discontinu-
ity point. It is obvious that this will reduce the
number of control points, which leads to less con-
trol for the other part of the surface. The second
way is using two groups of four control points on
the left and right site of the petal separately and
they are joined on the middle top and bottom of
the petal as corner control points. This has the
advantage of retaining all the control points, al-
though it requires a slightly different growth rule
for the surface.

Furthermore, the easy access for control points
and surface shapes provides the possibility of gen-
erate the petals at any stage, as shown in figure
13 and figure 14, with reflexed down and wrinkled
petals. In summary, it provides a direct method
of surface control. Compared to using predefined
surfaces or generating surfaces from fixed original
and final shapes, this method is more flexible and
creative.

)b

Figure 11: (a):Symmetrical petal (two con-
trol points on the top end pull inward);
(b):asymmetric petal (two control points on
the top exchange).

Figure 12: Symmetrical petal (discontinu-
ity on the top)

4 CONCLUSION

This paper presents a description of various kinds
of surface growth, and illustrates the use and re-
sults of some growth factors in some common
cases. They may be assumed to be fixed rela-
tive to the growth surface or to the body being
generated.

Most research in the field of plant development
has focussed on the whole structure or geome-
try changes on the plant and ignored the surface
changes on the plant organs. This means that
the leaf or petal must be scanned or predefined

Figure 13: Flower petals at a mature stage



Figure 14: Flower petals development after
the mature stage

before the development animation or a triangle is
used to represent them which will obviously give
unrealistic result.

We introduce a smooth surface model with a bicu-
bic patch for the petal. It can simulate the sur-
face development with easy access to individual
control points. At the same time, the biological
factors in length, width and depth represent the
principle growth for the petal.

In addition, a new growth function is presented to
enable the growth rate to change at any develop-
ment stage. The flexible growth rate curve allows
variation in the development tendency at a spe-
cific time interval. It therefore differs from other
animations in which the plant grows according to
a single growth function from the beginning to
final stage.

In summary, we believe that the proposed mod-
elling method and its extensions will prove useful
in many applications of plant modelling, from re-
search in plant development and ecology to the
surface design of plant organs and in the produc-
tion of animated plant models for use in virtual
environments.
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