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ABSTRACT

Polynomial representations, such as Bezier curves, B-splines or NURBS, form the basis of numerous
surface modelling packages.  Although they possess properties that result in fast, efficient software, they
have some limitations in terms of the shapes that can be modelled and the nature of the controls they offer
the user. This paper presents a new, point-based approach to modelling that is guaranteed to produce high
quality surfaces whilst providing a simpler, more intuitive user interface.  These qualities make the method
ideal for such applications as graphical design or animation where there is a need to produce pleasing
images with minimum time and effort.
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1   INTRODUCTION

The use of polynomials to represent shape has
played a long and successful part in the development
of surface modelling.  The combination of stable,
efficient algorithms and highly developed software
has ensured that polynomial-based methods have
become the norm.  It is therefore tempting to forget
that this approach has a number of limitations that
can seriously inconvenience the user.

The fundamental problem is that polynomial
representations can only provide optimal results
when the object to be modelled is polynomial in
shape or nearly so.  If other shapes are attempted, it
may be difficult to prevent the formation of ripples
or to obtain smooth blends between the patches that
define the surface model, see [Ball95], [Ball96],
[Davis63].  The user’s task is complicated by the
non-geometric nature of the controls provided: that
is, control polygons comprising points lying off the
surface or sets of weights.  The need to decompose a
complex object into a mesh of simpler patches, and
to do so efficiently, also places demands on the
user’s  knowledge and experience.

In this paper, we describe a fundamentally new
approach to surface modelling that is designed to
avoid these pitfalls.  Instead of using polynomials to
represent shape, we return to the object’s geometry
and fit a surface through a user-selected grid of points

that lie on it.   The fitting procedure guarantees the
quality of the surface and permits localised shape
refinement by adjustment of the grid.  The method
does not require partition of the grid and so the twin
problems of surface sub-division and patch blending
do not arise.  These features provide the user with a
simple and effective interface.

The point-based method provides the freedom to
model ad hoc shapes.  The surface fitting procedure
is based on segments with a linear variation of
curvature and uses algorithms that ensure positional
and tangential continuity.  Taken together, these
properties guarantee a fairness of form and fit,
irrespective of the underlying shape.

2  MODELLING SURFACES

2.1   General Overview

This section introduces the structure of the point-
based modelling technique and outlines its
mathematical basis.  Details of the mathematics and
algorithms are deferred to later sections.

The method addresses the problem originally
considered by Ferguson [Fergu93] who also sought
to fit a surface through a grid of points.  The
fundamental assumptions under-pinning the present
method is that the grid is sufficiently dense to



characterise the required shape and that a piecewise
curvature continuous surface can approximate the
shape to within the given tolerance.

The method rests upon the Generalised Cornu Spiral
(GCS), a planar segment with a rational linear
curvature variation, as a means of interpolating
between pairs of points. The curve fitting algorithm
exactly matches positions and tangents of both end
points, these data being estimated by circular
interpolation of neighbouring grid points.  The GCS
algorithm is used to fit curves in the planes that pass
through both end points and contain each of the
tangents.  A stable, well-defined procedure is used to
construct a three-dimensional space curve from the
two projections. It is then a simple matter to
interpolate for positions, tangents and curvatures
within the curve.

By sweeping the interpolation procedure across the
rows and columns, it is possible to increase the
density of the grid by inserting new points.  This
enables geometrical data to be calculated at any
location within the surface so that high quality
graphics can be produced.

A significant benefit of the new approach is that the
GCS-based interpolation procedure guarantees the
generation of high quality curves and surfaces
without the need for user intervention.  It is well
known that the curvature profile of a planar curve
determines its shape to within a solid body
movement.  See [Nutbo88] for example.  It follows
that a well behaved curvature profile will always
result in a smooth curve that is free from ripples or
other undesired phenomena.

Since curvature is a second derivative quantity, the
method also ensures tangential continuity between
neighbouring segments, even if curvature
discontinuities are present at the join.

We observe that cubic splines exhibit the inverse of
these properties: although curvature continuity is
assured between segments, there is no curvature
control within them and so user manipulation may
be required if pleasing curves are to be obtained.  Ali
et al [Ali99] provide further discussion of this point.

2.2   Input Data

It is assumed that the grid of points is sufficiently
dense to characterise the desired shape. This does not
imply that a high density ‘data cloud’, characteristic
of many reverse engineering systems, [Hosch96], is
required to drive the method.  Case studies on a wide
variety of shapes, ranging from motor panels to a
shoe, have shown that the data requirement and
accuracy of the present procedure is closely
comparable with that of Bezier curves or NURBS.

In order to ensure high accuracy, it is assumed that
points are sampled using a spacing that is regular

and geometric in nature.  Surfaces that contain
significant features are modelled most accurately
when the grid runs parallel or perpendicular to those
features.  This is consistent with normal practice
when defining or digitising sculptured shapes and is
therefore not considered to be a significant limitation
of the method.  As a matter of convenience, the
following discussion is focused on a grid with
rectangular topology but this is not a fundamental
restriction.

2.3   Estimating Tangents and Curvatures

Tangents and curvatures at grid points may be
estimated using a technique based on circular
interpolation.  Consider a string of five consecutive
points pi-2, ..., pi+2 that lie within the grid.  If the
curvature vectors at pi of the interpolating circles
through {pi-1, pi, pi+1} and {pi-2, pi, pi+2} are

denoted by ki
1 and  ki

2  respectively, then the
Richardson extrapolation procedure [Boehm93], may
be used to obtain an improved estimate for ki  :

ki = (si-2+si-1)(si+si+1)ki
1 - si-1siki

2

(si-2+si-1)(si+si+1) - si-1si

where  si denotes the arc length between grid points
pi-1 and pi.  It can be shown [Tooke97a] that ki is a
second order approximation to the principal curvature
vector when the data is approximately regularly
spaced.  The approximation may still be used even if
the data is irregularly spaced because the procedure is
well-defined and continuous for any combination of
arc lengths.  It is also invariant with respect to
constant scaling and reversal of point ordering.

The arc lengths used in the previous equation may
also be estimated using circular interpolation.  Two
estimates of si, the length between pi and pi+1,
may be obtained by fitting circles through the four
points {pi-1, pi, pi+1, pi+2}, the final estimate
being taken as their arithmetic mean to remove any
bias.

Similar procedures may be used to provide second
order estimates of the unit tangent at each grid point.
Details, together with error estimates and sample
calculations may be found in the paper by Tookey
and Ball [Tooke97a].

2.4  Interpolation of Planar Curves

As outlined in section 2.1, the key element of the
point-based modelling system is a three-dimensional
space curve that spans a pair of grid points.  This
curve is constructed from two planar projections, one
in each of the planes that pass through both end
points and contain one the unit tangents.  The
algorithm to compute these curves is outlined
below.



Ali [Ali94] defines a Generalised Cornu Spiral
(GCS) to be a planar curve along which the
curvature, κ, varies as a rational linear function of
the arc length, s :

κ(s)  =  
κ1  - κ0 +  r κ1  s  +  κ0S

rs  +  S
(1)

where subscripts 0 and 1 denote the curve's end
points and S is the total arc length.  The initial
estimates of the end point curvatures and r, a shape
factor, are adjusted under iteration to ensure that the
curve exactly fits the tangents at the end points.  If ϕ
is the total winding angle between the end points,
then Ali shows that r may be computed from:

ϕ = S

r2
1+r  κ0-κ1  log 1+r  + r (1+r)κ1-κ0 (2)

The position of end point 1 of the GCS may be
computed using a numerical procedure to evaluate
the Fresnel integrals [Nutbo88] :

x1 = x0 + cos κ(t) dt
0

s

0

S

 ds (3a)

y1 = y0 + sin κ(t) dt
0

s

0

S

 ds (3b)

Using an initial estimate of the total arc length, S',
equations (2) and (3) may be placed under an iteration
scheme that adjusts the end point curvatures, κ0 and
κ1, until a curve that subtends the correct chord
angle is obtained, see [Ali99].  The method of false
positions is suitably stable and efficient for this
purpose, see [Boehm93].

Although the resulting curve matches tangents
correctly, it must be scaled if the computed position
of end point 1 is to coincide with the given position.
If primed variables denote values produced by the
iteration scheme and un-primed variables denote the
required values, then it can be shown, [Ali94], that
the appropriate scalings are:

S  =  ρ S'       k0  =  κ'0/ρ       k1  =  κ'1/ρ

where the scale factor, ρ, is given by:

ρ  =  x1
2 + y1

2

x1
' 2 + y1

' 2

Once these values have been determined, positions,
tangents and curvatures may be calculated at any
point within the segment.
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Construction of Space Curve from Projections
Figure 1

2.5   Construction of Space Curves

Fig. 1 illustrates the method used to construct a
space curve from its planar projections.  Plane P0
passes through both end points and contains the unit
tangent at end point 0.  The curvature and unit
tangent at end point 1 may be projected onto P0,
thus providing all the data needed to define the GCS
that lies in it.  Similar computations may be

performed for the GCS lying in plane P1, the latter
being aligned with the unit tangent at end point 1.

The curve construction procedure has been shown to
be well-defined and stable.  Again, expressions are
available to compute positions, tangents and
curvatures at any location within the curve, the
relevant formulae being given in Ali's thesis [Ali94]
or Tookey’s paper [Tooke97b].



2.6  Interpolation within Surfaces

The space curve interpolation procedure may be used
to compute geometrical data at any location within
the surface defined by the grid.  See Fig. 2 where it
has been applied to each row of points to compute
the ‘half points’ that lie mid-way along each
segment.  These are marked by circles.  The
procedure may then repeated, but this time sweeping
along columns of points, including the newly
calculated ones, to complete the grid of half points.
The points produced during the second sweep are
marked by squares.

To eliminate any bias, the sweeping procedure is
applied twice: once in “first row then column” order
and then in the reverse order.   The arithmetic mean
of the two sets of estimates is then used to enlarge
the grid.

Increasing the Density of the Grid
Figure 2

This process may be applied recursively to generate
the limit set of the object to within a specified
tolerance.  Experiment has shown the point insertion
process to be stable and well behaved.  Case studies,
involving comparisons with polynomial-based
methods, have shown that the process to be of
similar accuracy as conventional CAD systems.

3 AUTOMATIC SURFACE REFINEMENT

Simple, intuitive controls for the refinement of the
surface model are a key feature of the point-based
method.   Shape may be adjusted by moving,
inserting or deleting points, safe in the knowledge
that the fitting procedure will produce a smooth
surface that matches positions and tangents exactly
and does not contain extraneous ripples between grid
points.

This idea has been carried a step forward to produce
automatic procedures that simulate the sanding and
filling operations used by craftsmen when producing
a finely finished artefact.  Diagnostic tools have been
developed for the assessment of surface quality,

including contour plots of arc length, tangent and
curvature.  For example, see [Cripp98].  These make
it possible to identify regions where the surface
contains flaws due to errors in the input data.  The
interpolation technique may then be used to adjust
the positions of such points so that they lie in a
surface that is compatible with the rest of the data.
Again, the curvature control imposed by the GCS
ensures that the amended surface will be of high
quality.

4   CASE STUDY

Figures 3 and 4 illustrate the application of the
point-based method to modelling a shoe.  The data
was kindly supplied by C & J Clark International,
an industrial collaborator.

Data Used to Define the Shoe
Figure 3

Fig. 3 shows the input data, which was generated by
the company’s non-rational bisextic Bezier-based
modelling package, and Fig. 4 shows a rendered
image generated from it.

Rendered Image of the Shoe
Figure 4



Fig. 4 was produced by a double application of the
surface interpolation technique, so as to increase the
density of the grid by a factor of four.  The new
points were triangulated and then positions and
tangents were fed into OpenGL to obtain the final
image.

This and other case studies have shown that the
present method regularly produces surfaces that are
within 0.01mm of those produced by Bezier or
NURBS-based software.   It is interesting to note
that larger discrepancies arose only in those regions
where users had difficulty modelling shape using
polynomial-based software.

5   CONCLUSIONS

We have presented a point-based approach to the
modelling of free-form surfaces.  The approach has
significant benefits in terms of:  i) its ability to
model polynomial and non-polynomial shapes;  ii)
its simple but powerful user interface and;  iii) the
provision of facilities that automatically ‘tidy up’
noisy input data.  The method is based on segments
with a linear variation of curvature and this ensures
the quality of the resulting surface.  Case studies
have shown that the data requirement and accuracy
are comparable with current CAD technology.
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