Real-Time Generation of Continuous Levels of Detail for Height Fields

Stefan Rottger (snroettg@immad9.uni-erlangen.de)
Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel

Graphische Datenverarbeitung (IMMD9)
Universitat Erlangen-Niirnberg

ABSTRACT

Height fields play an important role in the fast growing domain of Geographic Information Systems
(GIS). For exploring different kinds of geographic-based data sets on screen it is necessary to display
height fields at interactive frame rates. Because of the inherent geometric complexity, this goal is
often unachievable even with new generations of powerful graphics computers, unless the original
height field data is approximated in order to reduce the number of geometric primitives that need
to be rendered without compromising visual quality.

So far most algorithms have focused on global reduction or multi-resolution techniques, which
reduce resolution on the basis of surface roughness. A recent new approach called Continuous
Levels of Detail [LKR'96] introduced a hierarchical quadtree technique. In order to reduce the
projected pixel error, the height field is dynamically triangulated in a bottom up fashion according
to the distance to the point of view. Since resolution is allowed to change smoothly, the result is
a much better image quality.

However, this algorithm still has a major disadvantage. With the viewpoint moving, the triangu-
lation is continuously changing, resulting in a phenomenon called vertex popping. As the observer
approaches an area with detail information, this detail will suddenly appear at a certain distance.
To eliminate these artifacts we introduce a new, rapid geomorphing algorithm, which operates top

down on a quadtree data structure.

1 Introduction

A fast growing domain in computer graphics are
the so called Geographic Information Systems
(GIS). They allow to explore large geographic data
sets interactively on screen, which involves dis-
playing height fields in real-time. Typical height
fields consist of a large number of polygons, so that
even most high performance graphics computers
have great difficulties to display even moderately
sized height fields at interactive frame rates. The
common solution is to reduce the complexity of
the scene while maintaining a high image quality.

Most existing algorithms work on general surfaces
by building a lower resolution mesh [GGS95] or
a Triangulated Irregular Network (TIN) [TB94].
A height field is triangulated by taking its rough-
ness into account, building on the fact that flat
areas and smooth regions can be approximated by
fewer triangles than rough regions. On the other
hand, height fields have special properties, that
one should take advantage of for reducing the ge-
ometric complexity even further. When displaying
a height field, there will almost always be both re-
gions that are quite close to the point of view and
those that are far away. As with surface rough-
ness, close regions must be approximated more
accurately than regions that are far away. Fur-

thermore, as the viewpoint is moving, the trian-
gulation no longer remains static. The term Level
of Detail stands for all algorithms that exploit this

property.

A well known technique in that domain are the
so called Progressive Meshes [Hop96]. With re-
cent additions [Hop97], this techniques can also
be applied to view dependent triangulations, but
requires large data structures.

There are also various real-time simulation sys-
tems, which divide height fields into smaller
blocks, and generate several multi-resolution tri-
angulations for each of those [SN95, KLR196].
Switching between these different levels of detail
is done depending on system stress and distance
to the point of view.

Several problems need to be solved with this tech-
nique: First of all, cracks must be avoided between
adjacent edges of blocks at differing resolution. In
addition, popping must be handled when replac-
ing a block with one from another level of detail.
The visual appearance of the popping effect can be
eliminated by geomorphing between both levels of
detail. However, this multi-resolution strategy is
not, optimal, since it is assumed that the distance
to the point of view is constant throughout each
block.

An algorithm specifically designed for height fields
was presented at Siggraph 96 [LKR*96]. It uses
a dynamically changing quadtree and a bottom
up strategy to determine whether a node has to
be subdivided or should be merged with adja-
cent nodes. For that purpose it calculates an up-
per bound on the projected pixel error, which is
taken to be an on screen error measure for im-
age quality. The main disadvantage of this bot-
tom up strategy is that the pixel error function
has to be evaluated for all points of the height
field. That would be very costly, unless an er-
ror interval is computed, which avoids subdivision
and merging for a large number of vertices. If
modifications of the triangulation are necessary,
all affected nodes are visited. In that case all ad-
jacent nodes also have to be updated in a bottom
up fashion. This results in a view-dependent tri-
angulation that allows for smooth transitions be-
tween different points of view. Although it would
theoretically be possible to include geomorphing
in this algorithm, this is not implemented in the
current version, so that popping still occurs.

We now present an algorithm that uses a top-down
strategy to create a triangulation and exploits ge-
omorphing at virtually no additional cost. Vertex
removal is performed depending on its distance to
the point of view as well as local surface roughness,
which is pre-calculated. Using a top-down ap-
proach we only need to visit a fraction of the whole
data set in each frame, which allows for high frame
rates even with large height fields. On the down
side, more involved criteria such as silhouette tests
cannot be included into this method, since they re-
quire the analysis of the whole data set for each
view point. In practice, however, this is not too
restrictive, because over-emphasizing silhouettes
causes lighting artifacts for non-silhouette poly-
gons.

The quadtree structure of our method allows for
very efficient clipping. Furthermore, memory us-
age is limited to the space required for the height
field data, the texture map plus one additional
byte per data point. In the following we incre-
mentally develop our top-down method, which in-
cludes geomorphing in a natural fashion.

2 The Algorithm

The underlying data structure of the algorithm is
basically a quadtree. For the discussion in this
paper, we assume that the height field are of size
2" +1 x 2"+ 1. A sample triangulation generated
by our algorithm is shown in Figure 1.

The quadtree is represented by a boolean matrix

with each block’s center entry set, if the corre-
sponding node is further refined. The quadtree

Wi
VS

J
7N

Figure 1: A sample triangulation of a 9 x 9 height
field. The arrows indicate parent-child relations
in the quadtree.

matrix of the example mesh in Figure 1 is shown
below:

D D N N) D D) D
I I I =R
B I IR I SR SCEPECEPRCRIS
VO VO VD VO Y
N I T e R
N e R = =
VIR ECIRSVEE RN ERC IR

N O N D VNV VN Y
N O N O N 0 N

Matrix entries labeled with a question mark do
not have to be set during the calculation of the
triangulation, since these values are not accessed
by the top-down algorithm for the given triangu-
lation. Because the number of nodes that have
to be visited for each frame only depends on the
rendering quality, but not on the height field size,
the required memory bandwidth is limited by the
desired image quality.

2.1 Rendering the Height Field

The triangulated height field is drawn by recur-
sively traversing the quadtree where the corre-
sponding matrix entries are set. Whenever a
quadtree leaf is reached, a full or partial triangle
fan [Boa92, NDW93] is drawn. Triangle fans are
well suited for drawing triangulations with vary-
ing resolutions: In order to avoid gaps at places
where adjacent blocks have different resolution, a
conforming mesh is generated simply by skipping
the center vertex at these edges (see Figure 2).
This method works as long as the levels of adja-
cent sub-nodes differ by no more than 1. At the
end of the next section, we will see how this re-
quirement can be maintained during rendering by
preprocessing the height field and storing surface
roughness information.

During the generation of the triangle fans we need
to determine whether adjacent nodes are subdi-
vided to the same level, or not. If the neighboring
node is not subdivided to the same level, we can
skip the center vertex on the shared edge. This
case can be detected by checking the matrix en-
try corresponding to the neighboring node, which
then has to be zero (Note, that accessing matrix
entries, that have not been set, is excluded, since
level differences are supposed to be less than or
equal to one).

X
X

Figure 2: Recursively generated triangle fans for
the triangulation shown in Figure 1. The crosses
indicate skipped vertices.

2.2 Generating the Triangulation

Before a scene can be rendered as described in the
last section, the triangulation has to be built by
recursively descending the quadtree. At each sub-
node a boolean subdivision criterion is evaluated
and its result is stored in the quadtree matrix. If
the condition is true and the finest level of detail
has not yet been reached, we descend further down
the tree by visiting all four sub-nodes.

Several aspects need to be taken into account for
the criterion: First of all, the resolution should
decrease as the distance from the viewer increases.
This condition can be guaranteed by ensuring that

l

-<C 1
s < (1)
for some constant C', where [is the distance to the
eye point, and d is the edge length of the block
(see Figures 3 and 4). C' is a configurable quality
parameter.

The constant C' controls the minimum global res-
olution. As C increases, the total number of ver-
tices per frame grows quadratically. Note that the
condition is evaluated only once for a complete tri-
angle fan, which consists of up to 10 vertices. In
order to allow for efficient computations, distance
measurement is performed using the L'-norm.

i
/
v

NG

Figure 3: Global resolution criterion: distance
versus size of quadtree cells.

Figure 4: Triangulation of flat geometry based on
the global resolution criterion. Centers of triangle
fans have been colored white and edges black.

With the second criterion we want to increase the
resolution for regions of high surface roughness.
In fact, we want to minimize the projected pixel
error, which is a good measure for image quality.
When dropping one level of the hierarchy, new er-
ror is introduced at exactly five points: at the cen-
ter of the quadtree node and the four midpoints
of its edges. An upper bound to the approxima-
tion error in 3-space can be given by taking the
maximum of the absolute values of the elevation
differences dh; (see also Figure 5). The elevation
differences are computed along the edges of the
node, as well as along its diagonals, which makes
a total of six values per node. The error in 3-space
introduced by dropping one level in the quadtree
can now be computed by pre-calculating the max-
imum of the absolute values of these elevation dif-
ferences, or alternatively by pre-calculating sur-
face roughness values, which we call d2:

d2 = 1 max |dh;| (2)
d i=1..6

The d2-values of a node times the edge length d

of the node correspond to the approximation error

in 3-space. Thus, the d2-value times d is an upper

bound for the error introduced by dropping one

level of detail.

Figure 5: Measuring surface roughness

A revised version of the subdivision criterion (1)
which includes the d2-values for handling surface
roughness can now be given in terms of a decision
variable f:

l
~ d-C-max(c-d2,1)

subdivide if f <1

f 3)

The constant C' again determines the minimum
global resolution, whereas the newly introduced
constant, ¢ specifies the desired global resolution.
The latter constant directly influences the number
of polygons to be rendered per frame. Thus, by
adjusting c to the current system load, a constant
frame rate can be maintained.

The major issue that remains open is how to guar-
antee that the level difference of adjacent blocks is
less than or equal to one. Since the surface rough-
ness of adjacent blocks may differ significantly,
this is necessary to build a conforming mesh with-
out holes. In the following we describe how this
can be achieved.

First suppose that Condition (3) is true for a given
block (f2 < 1), that is, the block has to be sub-
divided. In this case, all adjacent blocks of twice
the edge length have to be subdivided, too. Thus,
the following condition must hold for the decision
variable fi of an adjacent block in order to limit
the level differences:

I Iy
< 4
d-d2; = 4.d2 @

h<fae

For a point of view falling inside the rectangu-

lar region (indicated in Figure 6) Equation (3) is
always satisfied, since % is always less than the
minimum resolution C'. Outside this region the
value of the fraction 5712 is bounded by 1 (for an
infinitely distant point of view) and the constant

K with:

1
- <—<K 2
2<212< (C >2) (5)
Ly c
K‘E_Q(C—l)
L
1
d
d
I
N

c-d

Figure 6: Constraints on d2-values of adjacent
blocks in order to satisfy Condition (4).

d2,
d22

dition (4) is true, since ;le satisfies Condition (5).
However, since the d2-values, which correspond to
surface roughness, can grow arbitrarily large, Con-
dition (4) is not automatically fulfilled. Thus, if
g—;; < K, then we have to modify the d2-values in
the following fashion: Starting with the smallest
existing block, we calculate the local d2-values of
all blocks and propagate them up the tree. The
d2-value of each block is the maximum of the lo-
cal value and K times the previously calculated
values of adjacent blocks at the next lower level.
For our example, the d2-values propagated from
the bottom to the top of the quadtree are shown
in Figure 7.

AN
7RSI RS
<\

In other words, if is greater than K, then Con-

O

SYARIRNY
AN 7
//\%Azif/*\x4>€

AN A N
}i \Zi .

Figure 7: d2-values are propagated from bottom
up (indicated by arrows).

O

So far, we have only considered the 2D case, but
with some care we can adopt it for 3D. In this case,

the elevation of the view point needs to be taken
into account relative to the center of quadtree
cells. However, since height fields usually have
small elevation compared to their size, this dis-
tance can be approximated by the difference be-
tween the elevation of the view point and the av-
erage elevation of the quadtree nodes.

An example of the influence of the propagation
of d2-values throughout the height field, and its
impact on the triangulation is given in Figure 8.
Here a few small peaks are placed on an otherwise
flat surface.

Figure 8: Propagating d2-values causes finer tri-
angulation near local peaks in a flat surface.

2.3 Geomorphing

So far, we have shown how to triangulate and ren-
der a height field, but with a changing point of
view popping still occurs. Remember the decision
variable f from Equation (3): A close examina-
tion reveals that, if f falls into the range [$,1),
the quadtree is not further refined, and a single
triangle fan is generated for the complete node.
Values of less than % indicate that the node has
at least one child, while for values larger than 1,

the node has no child at all.

Since morphing only happens in the leaf nodes of
the current triangulation, we can use b = 2 (1 — f)
clamped to the range [0,1] as a blending factor
to morph between two levels of detail (see Fig-
ure 5). Depending on how deep adjacent quadtree
nodes are subdivided, there are up to five vertices
where morphing might have to be performed for
each quadtree node (see Figures 2 and 6). The
elevation at these points is interpolated linearly
with factor b between the elevation of the lower
level (which is the average of the two correspond-
ing corner points) and the elevation of the higher
level. The latter is taken directly from height field
data.

Some caution is required for avoiding cracks and
generating a conforming mesh. Blending factors
of adjacent blocks differ slightly due to a variation
of the distances to the point of view. Thus, the
interpolated elevation at the midpoint of a shared

edge is different for adjacent blocks, causing cracks
to appear.

In order to avoid this, we store blending factors
in the matrix, rather than boolean values. The
blending value for a shared edge is obtained by
taking the minimum of the blending values of the
two involved blocks. A value of zero indicates no
subdivision, while other values directly represent
the blending factors. We avoid storing floating
point values by using one byte per entry. As a re-
sult, we have 255 morphing steps, which is precise
enough in practice.

2.4 Clipping

A common improvement to reduce the number
of polygons to be rendered is clipping against
the viewing frustum. As we are already using a
quadtree, we can also use it for clipping. Provided,
the level of detail is not too high, a rectangular
bounding box is computed for each node, which is
used for clipping against the viewing frustum. In
this way, most invisible vertices can be discarded
at little cost at an early stage of the algorithm.
Clipping can be applied both to the mesh genera-
tion and rendering phase. For mesh generation we
consider bounding boxes to be three times as large,
because the blending factors of some blocks can
contribute to mesh generation without the blocks
being visible themselves.

3 Results

All screen shots shown here have been taken from
the application running on a SGI Maximum Im-
pact workstation with a 250 MHz R4400 proces-
sor, 2 raster manager boards, and texture memory
extension (TRAM option card), while maintaining
a constant frame rate of 25 Hertz.

Images 9 and 10 show the height field and texture
map used in the following examples. The data de-
scribes a region south of Haines Crossing in Yukon
Territory, Canada.

In the Images 11 and 12 the point of view used for
generating the triangulation has been located on
the landscape’s surface in the center of the image.
The levels of detail clearly depend on both dis-
tance to the point of view and on surface rough-
ness. The quality control C' was set to a value
of 8, which also proved to be a good choice for
other data sets. The value of ¢ was dynamically
chosen as to maintain a fixed frame rate of 25
Hertz, which resulted in approximately 1600 tri-
angle fans, or a total of roughly 15000 vertices per
frame. This corresponds to a two orders of magni-
tude reduction of the original 1025 x 1025 height
field.

Figure 12: Superimposed triangulation.

Figure 13: Difference image of full and reduced
resolution.

Figure 14: Example showing a typical triangula-
tion generated by our algorithm.

Figure 15: Example showing a typical top view
triangulation.

Figure 16: A typical valley view.

Image 13 shows the difference image between a
real-time screen shot (Image 20) and rendering the
complete height field (Image 21). The image qual-
ity is worst at the silhouettes. The human eye,
however, is more sensitive to sudden changes of
geometry, which have been significantly reduced
by the geomorphing algorithm.

Images 14, 15 and 16 show some sample triangu-
lations generated by our algorithm.

Images 17, 18, and 19 illustrate how triangulation
accuracy changes with varying frame rate.

HA
N 3
TIE]
T
_rL-
o
|
EEeel
=
|~ A)
KEE St T
L] H [~
Ei 5]
] 7 i)

Figure 17: Triangulation for maintaining a frame
rate of 25 Hertz.

4
" L
/ 5
AL 5
]
LTk
; ce=d e 5
immn s NN
pfzine ey i
L , o1
I by
& :
e :
. 7
o i
[17 af ot
& § o
£ :

Figure 18: Triangulation for maintaining a frame
rate of 38 Hertz.

- [T\
\7_; '\\
CT o
S,:_; o
lg s
a §Z7
Emicd -
._Z_' BT
f f
]]
L
>
s
K
Z{ Bt kS LT LA - e
[7
e a) i-z
AR e VAR
% o BN B S e

Figure 19: Triangulation for maintaining a frame
rate of 76 Hertz.

Figure 20: Triangulation for maintaining a frame
rate of 25 Hertz.

Figure 21: Same view as Figure 20 but with full
resolution.

The memory consumption of the final algorithm
is fairly low. Besides height field and texture map
data only the d2-values and blending factors have
to be stored. If d2-values are compressed to byte
format, which can be done in a linear or nonlinear
way, there is place enough in the quadtree matrix
to store those values as well. In the end, we get
away with only a single additional byte per grid
point.

We are currently working on an efficient paging
mechanism, that allows to render height fields that
do not entirely fit into RAM.

4 Acknowledgments

We would like to thank Peter Lindstrom from
Georgia Tech for valuable hints and discussions.

References
[Boa92] OpenGL Architecture Review Board.
OpenGL Reference Manual. Addison-
Wesley, 1992.

[GGS95] M. H. Gross, R. Gatti, and O. Staadt.

Fast multiresolution surface meshing.

[Hop96]

[Hop97]

[KLR*96]

[LKR*96]

[NDW93]

[SN95]

[TBY4]

In G. Nielson and D. Silver, ed-
itors, Proceedings Visualization ’95,
pages 135-142. IEEE Computer Soci-
ety Press, 1995.

Hugues Hoppe. Progressive meshes.
In Computer Graphics (Proceedings of
Siggraph ’96), pages 99-108, 1996.

Hugues Hoppe. View-dependent re-
finement of progressive meshes. In
Computer Graphics (Proceedings of
Siggraph ’97), pages 189-198, 1997.

David Koller, Peter Lindstrom,
William Ribarsky, Larry F. Hodges,
Nick Faust, and Gregory Turner. Vir-
tual GIS: A real-time 3D geographic
information system. In G. Nielson
and D. Silver, editors, Proceedings
Visualization ’95, pages 94-100. IEEE
Computer Society Press, 1996.

Peter Lindstrom, David Koller,
William Ribarsky, Larry F. Hodges,
Nick Faust, and Gregory Turner.
Real-time, continuous level of detail
rendering of height fields. In Computer
Graphics (Proceedings Siggraph ’96),
pages 109-118, 1996.

Jackie Neider, Tom Davis, and Mason
Woo. OpenGL Programming Guide.
Addison-Wesley, 1993.

M. Suter and D. Niiesch. Auto-
mated generation of visual simulation
databases using remote sensing and
GIS. In G. Nielson and D. Silver,
editors, Proceedings Visualization 95,
pages 135-142. IEEE Computer Soci-
ety Press, 1995.

David C. Taylor and William A. Bar-
rett. An algorithm for continuous res-
olution polygonalizations of a discrete
surface. In Proceedings of Graphics In-
terface ’94, pages 33-42, 1994.

