A NEARLY OUTPUT SENSITIVE PARALLEL HIDDEN SURFACE

REMOVAL ALGORITHM IN OBJECT SPACE

Klaus Meyer
Department of Mathematics and Computer Science
University of Paderborn, Germany
e-mail: orpheus@uni-paderborn.de
http://www.uni-paderborn.de/cs/ag-monien.html

ABSTRACT

We present a new method for solving the hidden surface removal (HSR) problem in parallel
on a CREW PRAM using a combination of new observations and known methods for solving
related geometric problems. The new algorithm obtains the bounds of O(log2 n) time and
O(nlogn + I) processors, where n is the amount of given endpoints of the input and I is the
number of intersections in the viewing plane. In contrast to most known algorithms solving the
HSR problem in object space, this method is able to process input scenes where penetrations
of line segments and polygonal areas are allowed. The ability to process such an input has
an enormous advantage for integrating three dimensional curves ¢ C IR?, which have been
approximated by segments. Since a penetration of two polygonal areas will be detected during
run time, this algorithm could also be used for testing given scenes for intersections of polygonal
areas. In this case the algorithm is able to solve the hidden line removal problem in the same
bounds. For practical purposes this algorithm allows also non convex (but simple and planar)
polygons as input. You do not have to have triangulated scenes. According to the constraints
of object space HSR algorithms, we will construct the visibility graph of the given scene as a
planar graph in the viewing plane. Although the number of processors depends on the number
of intersections in the viewing plane, in most given scenes this method will work like an output
sensitive algorithm. Typical examples like “one big rectangle is covering all intersections” will

be detected and these intersections are not computed.

Keywords:

Parallel algorithm, parallel computational geometry, parallel and distributed

graphics, computer graphics, hidden surface removal, hidden line removal.

1 Introduction

The hidden surface removal (HSR) problem and
the hidden line removal (HLR) problem are sub-
stantial problems for visualization of given three
dimensional data. One of the goals of computer
graphics is to compute high quality renderings
of a given scene with a fast algorithm. Since
the early sixties, there have been numerous de-
velopments of serial algorithms for solving the
HSR and HLR problem. Nowadays new paral-
lel computers exist and parallel algorithms be-
come very important not only in theory. The
known efficient parallel methods are still subject
to restrictions on the input like “only functions
z = f(x,y) are allowed” (e.g. [RS88]).

In this paper, we will solve the HSR, problem for
a given set of points, line segments and simple,

planar polygons in IR®. All polygons have to
be pairwise disjoint (except possibly at bound-
aries). If any of two polygons penetrate each
other, we will detect this situation and can solve
the HLR problem instead.

2 Geometric preliminaries

Let @b € RF k € {2,3} be two points. With
ab we denote the straight line segment between
the endpoints @ and b A polygon 1s a sequence
p=(s1,...,s,) of segments s; = ayaz,s2 = azas,
..., Sg = agar- A polygon is said to be planar,
if there exists a plane E(p) with s; C E(p) for
all s; € p, and simple, if any segment s; does not
intersect any other segment of p except its pre-
decessor or successor segment. Let p be a simple
and planar polygon. The enclosed area of p will

be denoted by A(p) and the interior A;(p) of pis
defined as A;(p) = A(p) —d(p) with 6(p) = Y s
(the border of p).

We assume for each given polygon p, that the
interior of p lies to the left relative to the viewer
when traversing the segments of p.

3 The problem

A scene S = (0, ®y, <) consists of a set O =
{O01,...,0,} C IR? of valid objects, the viewer’s
coordinate system ®y, and a total order <, which
allows comparing the visibility of two points. We
call a scene S simple, if all interiors of the poly-
gons are pairwise disjoint (thus a penetration
of a single segment and the enclosed area of a
polygon is allowed). An object O; is valid, if O;
is a point, a line segment, or a polyhedron. A
point ¢ will be associated with the special seg-
ment gq. With the viewer’s coordinate system
we associate the canonical coordinate system of
the IR? and the viewer is looking from (0,0, 00)T.
The viewing plane is defined as the canonical co-
ordinate system of the IR?, which is embedded
in ®y. For a definition of wvisibility, we need a
projection pr : IR* — IR? # — # from three di-
mensional space on the viewing plane. Since a
central projection can be realized as a transfor-
mation in IR®, we will use the normal parallel
projection with pr((z,y,2)7) := (z,y)T. In this
paper, we will use the term O; or O? for a three
dimensional object and O? := pr(0;) for the pro-
jected object.

4 The output and subproblems

As output, we want to construct a planar subdi-
vision of the viewing plane, called the visibility
graph G of the scene S. All faces of this graph
are bounded by simple polygons or a simple in-
finite polygonal path. All visible parts of seg-
ments and points lie on the border of the polyg-
onal regions and the interior of a face F' of the
subdivision contains either a visible part of a
polygon p of the scene or nothing.

Since we only deal with points, segments and
polygons, it is easy to see, that the visibility of
a segment s or polygon p can only change, if
there exists another segment s’ or polygon p/,
which has an intersection in the viewing plane
or in object space or sZ,p® is totally included
by another polygon. Thus every HSR algorithm
working in object space must solve the following
problems:

1. Intersections in the viewing plane: Let LS C

IR? be a set of n line segments in the plane.
Compute all visible intersections between all pairs
of segments. These are at most O(n?) inter-
sections. (Please note that an output sensitive

algorithm should only compute O(k + f(n)) in-
tersections with & as the number of visible in-
tersections and f(n) < O(n?)).

2. Object space intersection: Let S be a given
scene with n polygons and m segments. Com-
pute all visible intersections in IR® between all
pairs of objects. These are at most O(n® +m? +
mn) (see [FKN80]).

3. Inclusion: Let s be a visible part of a segment
of a given scene. Determine, whether there ex-
ists a polygon p of the scene with s? C A4;(p?),
which is visible at the right resp. left hand side
of s (see figure 1 a). In some cases of inclusion,
we must insert dummy edges for constructing
the visibility graph (see figure 1 b).

a) Hole b) —

+ dummy edges

Figure 1: Inclusion: a) A “hole” created by three
polygons, which 1s embedded in an otherwise in-
visible polygon. b) A partition of one polygon,
which includes other polygons.

In this paper, we will solve the HSR, problem for
simple scenes as mentioned. For a simple scene
with n segments, the maximal amount of edges
in the visibility graph ¢ is bounded by O(n?).
Please note for the rest of the paper that O(f(n),
g(n)) in context with problem A means that
there exists a CREW PRAM algorithm solving
problem A within time O(f(n)) using O(g(n))
processors.

5 The basic idea

This section covers a brief idea of the algorithm.
Let S be a given simple scene and LS? all pro-
jected line segments of S. Now draw from each
endpoint of every segment a vertical line and
compute all intersections of all such lines with
all other segments in the viewing plane. Such
a situation is illustrated in figure 6 on the left
hand side for one line L(q). Look at the unique
plane (L) which is perpendicular to the view-
ing plane and contains L. We are now going
back to 3D space. Since we know all intersec-
tions of the line I in the viewing plane with all
segments we can easily compute the 3D vertical
segments s3(p, L) (see figure 2) for each polygon
which has an intersection with L in the viewing
plane.

s(p, L)

Figure 2: The 2D— and 3D—vertical segments of a
polygon p and a vertical line L.

Every 3D vertical segment is lying in the plane
E(L). Now look at the plane as it is shown on
the right hand side of figure 6 (just simply ro-
tate E(L) two times against 90 degree resp. x-
and z-axes). The result is a complete cross sec-
tion of the plane E(L) and all given objects. We
will now use the “Visibility from a Point algo-
rithm” (please refer to [ACG89]) which deter-
mine all parts of the segments in E(L) which
are visible assuming every segment s € E(L) is
opaque. The result gives us access to determine
the front polygon exactly obscuring any given
point ¢ € E(L) in logarithmic time. Further-
more it allows us to determine also the polygons
which lie directly behind the visible segments.

The vertical lines of the endpoints of every seg-
ment subdivide the whole viewing plane in ver-
tical strips (see figure 3). Such a strip contains
a set of segments which are subdivided by the
strip itself. We will use the information of the
VFAP computation of the boundaries (the lines
L) of the strips and some intersection informa-
tion of segments lying in such a strip to get all
necessary information for building the visibility
graph structure.

This basic approach leads immediatly to a ser-
ial complexity of O(n?logn). By using another
data structure which utilizes a parallel approach
of the plane sweep paradigma and with the help
of some observations the HSR problem can be
solved in the stated bounds in parallel.

6 Basic methods

The known parallel methods for solving geomet-
ric problems we will use, are described now. Let
LS C IR? be a set of n segments.

Theorem 1: Segment arrangements

A segment arrangement is defined by all pairwise
intersections of all segments and their endpoints
as well as their vertical shadows. There exists an
O(logn,nlogn+T) CREW PRAM algorithm to
construct the segment arrangement as a planar

graph with I the number of all pairwise inter-
sections.

Proof: see [Goo91].

Theorem 2: Segment intersection test
One can decide in O(logn,n), whether there ex-
ists a pair of intersecting segments.

Proof: see [ACG89].

Theorem 3: Planar point location

Let us assume that LS consists of non intersect-
ing segments except possibly at endpoints. Then
there exists an O(logn,n) CREW-PRAM algo-
rithm for computing a data structure, that, once
computed, is able to answer in O(logn) time by
using exactly one processor for a query point
¢ € IR?, which segments s1, s, € LS lie directly
above resp. below ¢. If a planar subdivision of
the plane is given, the face containing ¢ is ob-
tained in the same bounds.

Proof: see [ACG89].

Theorem 4: Visibility from a point (VFAP)
Let us assume that all segments in LS are are
pairwise disjoint except possibly at endpoints.
Let ¢ € IR? be a point, then the visibility from
a point problem is to determine all parts of the
segments of LS, which are visible from ¢, as-
suming every segment s € LS is opaque. There
is a O(logn,n) parallel method for the CREW
PRAM model to solve this problem.

Proof: see [ACG89].

Theorem 5: Trapezodial decomposition of a sim-
ple polygon

Let p = (v1,...,v,) be a simple polygon in the
plane, where the v;’s denote the vertices of p.
For any vertex v; a trapezodial edge of v; is an
edge, which is directly above or below v; such
that the vertical line segment e from v; to this
edge is contained completely in A(p). A vertex
v; can have up to two trapezodial edges. The
trapezodial decomposition problem is to find all
trapezodial edges for all vertices v; and can be
solved in O(logn,n) with a CREW PRAM.

Proof: see [ACG89].

7 The plane sweep tree (PST)

For solving the HSR problem we will use the well
known parallel data structure of a plane sweep
tree. With the help of this geometric structure,
many other geometric problems have been effi-
ciently solved in parallel (e.g. [AG86],[ACGS89],
[Riib92], [Goo9l]). We give a short review of
some definitions and terms.

Definition: PST (see figure 3)

Let LS = (s1,...,5,) C IR? be a set of line seg-
ments and U = {q1,...,¢mn} be an ordered set of

points on the x—axis. With the universe U we as-
sociate all endpoints of the segments s € LS pro-
jected on the z—axis. A plane sweep tree PST
for LS with universe U is a balanced binary tree
with 2m-+1 leaves. Each node v € PST contains
an intervall information I,, which is defined as
the union of all intervalls of the subtree T'(v)
rooted at v. The leaves of PST contain (from left
to right) the intervalls (—oo, ¢1), [¢1, 1], (91, ¢2),
[42, 42); - - - [4m), @], (@m, +00).

With II, := I, x (—o0, +00) as the vertical strip
defined by the intervall information I,,, we will
assign each node the following two segment sets
Cover(v) and End(v):

Cover(v) :=={s € LS | s spans IL,,
but not I, 4rent(v)-}
End(v) :== {s € LS | s has an endpoint in II,,
but does not span II,.}

We know from other research (e.g. [ACGT88],
[Cha84]), that for s € LS there exist at most 2
nodes u, v on every level of the PST such that
s is contained in Cover(u), Cover(v) or End(u),
End(v). The size of the PST is bounded by
O(nlogm).

V13V1415Y16 V17 V18 V19

q1 q2 43 q4 a5 de

Figure 3: A PST for a given set of line segments
consisting of two polygons and one segment.

The set
Ham(v) :=={s' | s € Cover(v) and s’ = s N1, }

represents all line fragments of the set Cover(v).
Ham is the abbreviation for hammock, since the
structure of Ham(v) looks like a hammock (see
also [Cha84]).

8 New definitions and terms

For a detailed description of the new algorithm
we will also need new terms. Let v be a node
of a PST with the segment sets Cover(v) and
End(v) and the vertical strip II,. In this paper,
vy, vy denotes the left resp. right son of v. With

2

1T, 1T,

Figure 4: A strip II, with s1,s3 € End(v) and
sh € Ham(v).

I} resp. II" we will denote the left resp. right
vertical boundary of the strip II, (see figure 4):
1. Ham!(v) :={j | s € Cover(v) : f=snIL}
and

Ham" (v) :={p| s € Cover(v) : f=sNII,}.

2. For a segment s € S, the sequence Cover(s) =
(v1,...,v;) resp. FEnd(s) consist of all nodes
v; € PST with s € Cover(v;) resp. s € End(v;).
These sequences have at most O(log m) elements
for every s (see e.g. [ACGS89]). If one uses the
O(logm, nlogm) method of [ACGT88] to con-
struct the PST, these sequences can be ordered
relative to #—coordinates during construction.
3. Let ¢ € IR® be a point and P a set consisting
of simple and planar polygons in IR®. In addi-
tion, we assume that somebody looks in the di-
rection of this set. If there exits a polygon p € P
with ¢ € A;(p?), p is called the front polygon of ¢
relative to P, if and only if p is the polygon of P
which is the first polygon from the viewers point
obscuring ¢. p is called back polygon relative to
P if and only if p is the polygon which lies di-
rectly behind ¢ looking from the view point of
the viewer.

4. For a subtree T(v) with root v, the sets
LF(T(v)) and RF(T(v)) consist of all nodes u €
T(v) lying on the left resp. right fringe of T'(v).
Then the border §(T'(v)) of T(v) is the union of
LF(T(v)) and RF(T(v)). The root path denoted
as P(T(v),u) describes the set of all nodes lying
on the shortest path from u to the root v.

Now we are going on to define some terms re-
lated to an endpoint ¢ € U of a given segment:
5. L(g) denotes the vertical line L with ¢ € L.
6. For each ¢ € U F(gq) denotes the unique plane
perpendicular to the viewing plane with L(q) C
E(q).

7. For each ¢ € U there exists exactly one node
v € PST with the property II7 = I, = L(q).
For such a node v we will define the vertical line
g(v) as L(g). For example look at ¢4 in figure 3.
Only vy has the property II} = Hlva = L(q4) and
80 g(v1) := L(q4). See also figure 5.

8. qi(v),¢-(v) € U are defined as the points in

U with L(g(v)) =11}, and L(g,(v)) = II7. For vs
e.g. holds (see figure 3) q;(vs) = q2 and ¢,(vs) =
g since L(qz) = I, and L(gq) =117 .

8.1 Cover sets, polygon sets and 3D seg-
ment sets

The definitions of the following sets are very im-
portant for the whole new algorithm: Let ¢ € U
be an endpoint of a segment and v € PST be
the node with g(v) = L(q). Furthermore, let
(s,p,u, L) describe the situation that the seg-
ment s € LS is an element of Cover(u) and in-
tersects the line L. If s belongs to the border of
the polygon ¢, then p := t otherwise p := NIL.
Now the following sets are defined:

a) C(q) ==
U

U oo T
u € RF(T(v)) (s,p,w, I,)

» Py 7HZ U
(e p L)Y e LR (T (o)

The set C(g) contains all segments of the scene,
which have a “cover intersection” with the ver-
tical line g(v) (see figure 5).

b) P(q):={p| (s,p,u, L) € C(q) and p # NIL}
This is the set of all polygons which have a cover
intersection with g(v) = L(q).

c) Qlg) =

{s3(p, L) | (s,p,u, L) € Cq) and p# NIL} U
{a €R? | (s,p,u, L) € C(q) : p= NIL
and a? = L N s?}

The set QQ(g) consists of 3D—vertical segments of
polygons which have a cover intersection in the
viewing plane with the line g(v) = L(g¢) and all
points a® of single segments s of the input scene
S, which intersect L(¢) in the viewing plane in
the point ¢?. Please note that all elements of
Q(q¢) lie in the plane E(q).

Up
RE(T(v))LF(T (vr)

q

Figure 5: The set C/(g) is the union of all cover
information in the left resp. right fringe of the
right resp. left son of the node v with g(v) = L(q).

Now we are finished with the definitions, so we
can continue with the new observations which
are essential for the new algorithm.

9 Observations

The new algorithm is based on a few observa-
tions, which are related to the structure of a

plane sweep tree and the new terms and sets.
Let S be a simple scene and PST the plane sweep
tree for all n line segments contained in S? with
universum U of size m.

Observation 1: For any polygonp = (s1,...,s)
of the scene S, we can compute all 2D— and 3D—
vertical segments s%(p, 1), s%(p,117), s3(p,II})
and s3(p,1I7) for all nodes v € Cover(p) with
Cover(p) defined as Cover(p) := Uzi Cover(s;).
In particular, this can be done with a trapezo-
dial decomposition (see [ACG89]) of the polygon
p in O(logllogm,l). If the node sets Cover(s)
are ordered relative to z—coordinates, one can
use a similar technique to merge sort for each
segment. Since |Cover(s)| = O(logm) this will
reduce the time to O(logm) for every segment
s;. So we need for the construction of all 3D-
vertical segments s3(p,I1,) and s3(p,II7) in total
only O(logm) time using k processors assum-
ing that there are k segments of polygons in the
scene S.

Observation 2: There exists a O(logn, nlogm)
CREW PRAM algorithm constructing C'(¢), P(g)
and Q(q) for all ¢ in parallel.

Proof: First note that |C(¢)] = O(n) since at
most all segments of the scene may have an in-
tersection with the vertical line L(q) in the view-
ing plane. Furthermore the number of cover in-
tersections is bounded by O(nlogm) at all there-
fore 3y 1C(g)| = O(nlogm).

The construction of C'(¢) can be done in O(logm,
nlogm) by collecting all cover sets Cover(v),v €
PST in one array A, sorting A relative to their
left resp. right boundary ¢;(v), ¢-(v). Then use
a prefix computation and put all segments with
the same left resp. right boundary into arrays A4,
associated with each ¢. This can be done with
the parallel merge sort of Cole (see [Col88]) in
O(log(nlogm), nlogm) = O(logn, nlogm). The
construction of P(g) can be done similarly by
sorting the tupels (s,p, u, L) € C(q) relative to p
and deleting all tupels with p = N 1L via a prefix
computation for all ¢ € U in parallel. Using
observation 1 the construction of the sets Q(q)
for all ¢ € U is possible in O(logn, nlogm) using
the same strategy as for building C'(¢) to store all
computed 3D-vertical segments s3(p, L(q)), p €
P(q) in Q(g). The points of Q(q) are computed
directly for each s with (s,p,u,L) € C(¢) and
p=NIL.

Observation 3: Let ¢® € Q(g), so ¢® is a sin-
gle point or is contained by a 3D-vertical seg-
ment. With the help of the VFAP method run-
ning in the plane F(q) with the input of all 3D—
vertical segments s®(p, L(q)) € Q(g) we are able
to decide, whether there exists a front polygon
p € P(q) for the point ¢3. This is possible due

to the contraint that all polygonal areas have
to be pairwise disjoint. So all 3D—vertical seg-
ments in)(¢) may not intersect except possibly
at endpoints.

Observation 4: (s. figure 6) There exists nodes
v € PST, for which the sets Q(¢:(v)) and Q(g,(v))
are complete cross-sections of all surfaces A(S)
of the scene S with the two planes E(g¢;(v)) and
E(¢r(v)). These are exactly the nodes v € PST
where Cover(v) # 0 holds the first time on every
possible path from the root of the PST to any
leaf of the PST.

Proof: obvious.

d

swiwy

Figure 6: A scene S with an open torus, a sphere
and a rectangle R obscuring the sphere and parts
of the torus. On the right hand side you see the
set Q(gr(v)) for a node v as stated in observation

4.

Observation 5: This observation will give a
hint for computing front and back polygons rel-
ative to the whole given scene for points ¢ €
Q(v)) or ¢ € Qg (v)): -

Let ¢ € U and s® = 53(p, L(g)) = ab be a 3D-
vertical segment of the line L(gq) and a polygon
p of the input scene. Furthermore let sy, s5 de-
note the two segments on the border of p which
contain the endpoints a, b of s*(p, L(¢)) and v €
PST the node with the property g(v) = L(g).
In addition let ¢ € Q(q) with ¢ Ns? # @, so
the point ¢® is lying behind, on or in front of
s3. Then either holds s € Q(g) or for each seg-
ment sy, sz exists a node uy, us € P(PST, v) with
s1 € Cover(uy) and s2 € Cover(us).

If the area of a polygon p obscures a point ¢ €
Q(q) then either holds s3(p, L(q)) C Q(q) or the
cover intersections of this area are stored in cover
sets of nodes lying on the path from v to the root
of the PST (v included).

Proof: omitted.

Observation 6: We will now show, how the
problem of inclusion can be solved for a segment
fragment s € Ham(v).

Let p be a polygon of the scene S and s € Ham(v)
a segment fragment with s C A;(p?), thus s N
§(p?) = 0 (s is totally included by p). Then ei-
ther holds s3(p, 1)) C Q(q/(v)) and s*(p,1I7) C

Q(g¢-(v)) or for all segments ¢ of p with ¢* N
II, # 0 exists a node u € P(PST,v) — v with
t € Cover(u).

If we are searching such a polygon, we must look
i the set of polygons, which have cover nodes
in RF(T(v)) and LF(T(v)), thus p € P(q/(v)) N
P(gr(v)), or try to find it above v (v excluded).

Proof: omitted.

Observation 7: Let Ham(v) be a hammock of
the node v € PST. 1If all intersections of the
segment fragments in Ham(v) with all segments
of the input scene are known and for each point
c € Ham'(v),c € Ham"(v) the possible front—
and back polygon relative to the input scene has
been computed then the visibility relation for
each segment fragment is computable in a total
independent way, that means in parallel.

Proof: see section 11

10 An overview of the algorithm

The algorithm is running in two phases. Let S
be a scene consisting of points, segments and
polygons. Let LS® be all line segments con-
tained in S and n := |LS3|.

First phase: In the first step, we build the
PST of LS? with universum U, m := |U] and
compute all sets Cover(v), End(v) for each node
v € PST using the O(logm,nlogm) method of
[ACGT88]. We assume for all segments s €
LS? that the node sets Cover(s) and End(s) are
given ordered relative to z—coordinates. This
can be easily achieved by using the same method
as for building the PST. For each polygon p
we will need a trapezodial decompostion T'D(p).
This can be done in O(logn,n). Next we deter-
mine in O(logn, nlogm) for each ¢ € U the sets
C(q), P(g), and Q(q). We now test in parallel for
all sets Q(q), if any pair of the s*(p, L(q)) € Q(q)
segments intersects (we make a difference be-
tween valid intersections at the endpoints of two
segments and other intersections) in the plane
E(q) in O(logn, nlogm) using theorem 2. If there
exists such an intersection, we have found a pen-
etration of two polygons in object space. Let
us assume, there is no penetration. Then we
solve the VFAP problem with input Q(¢) in the
plane E(q) by using the given method of theo-
rem 4 for each set Q(q),¢ € U in parallel. That
means the y— resp. z—coordinate of each end-
point from a segment s3(p, L(q)) € Q(¢q) and
each other point a € Q(q) will be used as the z—
resp. y—coordinate in IR*, where the observer is
at negative infinity below all segments. This can
still be done in O(logn,nlogm) . We transform
the result back to Q(¢) and now know for each
(end)point a € Q(q) whether there exists a front
polygon p € P(q) relative to P(q) which is ob-
scuring a. Furthermore, we now know whether

there exists another object obscuring a like a sin-
gle segment or a single point of the input, which
has an intersection with L(¢) and belongs to the
set Q(q).

Now we are finished with the first phase, which
can be done in O(logn, nlogm).

The main phase: We are now ready to process
the PST level by level from the root to the leafs
in O(logm) steps. In each level L; we will exe-
cute the following steps in parallel for each node
v € L;:

1. First we determine all intersections between
the segment fragments in Ham(v) and all seg-
ments of LS? using the method of Goodrich (s.
[Goo91]). Note that all segments s,s € End(v)
know exactly, whether they intersect a segment
fragment in Ham(v).

2. In each hammock ham(v),v € L; now all vis-
ible parts of the segment fragments and their
possibly existing back polygones relative to the
input scene will be computed. In the next sec-
tion we will show, how to compute all visible
parts of the segment fragments in Ham(v). In
addition we will solve the problem of inclusion
determining for each visible segment part s’ the
possibly existing polygons of the scene with a
visible portion to the left and right side of s, if
they exist.

3. Next we construct for all visible parts of
segments computed so far a planar subdivision
G like the solution of the segment arrangement
problem including vertical shadows. Note that
all determined visible parts of segments do not
intersect.

4. According to observation 5, we will update
the front— or back polygons for all points in C(q)
in parallel foreachqge {re U |Jve L; : g(v) =
L(r) } by searching the given planar subdivision.
Thus the information of Ham" (u) and Ham!' (u')
for each uw € RF(T'(v)) and each v’ € LF(T(v,))
will be correct relative to the whole given scene,
not only to Q(g¢,(u)) resp. Q(q(u')).

If the algorithm stops, the constructed planar
subdivision is the visibility graph. The inserted
dummy edges of inclusions are given by the ver-
tical shadows which have been inserted during
step 3.

11 Computing all visible segment parts
and their back polygons in Ham(v)

Let us assume that the algorithm has finished
phase 1 and is now running in Level L;,0 < <
O(logm). Let v € L; be a node with Cover(v) #
§ and > = ab C s>,s € S be a segment frag-
ment of Ham(v). Then we got from the previ-
ously executed steps the following information:

We already know all intersections with all pro-
jected segments of the scene because of the use of
the intersection algorithm of Goodrich. We also
know the front polygons relative to the whole
input set for both points a® and 2, if they ex-
ist. The front polygons relative to P(¢) with
L(¢) = g(v) will be computed in the first phase.
Observation 5 tells us that other candidates for
front polygons have been processed already in
prior levels and will be detected during the up-
date step 4 in the main phase of the algorithm
for the next level. This is easy to prove via in-
duction for each level by using observation 4, ob-
servation b, and the update step 4 in the main
phase of the algorithm. Please note that during
the update process also candidates for possible
back polygons of the points 3, 6> will be found,
whose segments are stored in cover sets above v.

Part A: Computation of all visible parts of
a segment fragment

Let 72 = ab be a segment fragment of Ham(v).
If there is no intersection of r? with any other
segment s of the scene, then the visibility of r
depends only on the front polygons of the both
endpoints a,b. If there exists any front poly-
gon for a or b, the complete segment fragment
is invisible. So let ((t1,s1),...,(ti,5)),7 > 1 be
the sequence of the intersection parameters of
r with segments 5? at the points ¢;. The use
of Goodrich’s algorithm for finding intersections
assures that this sequence is orderd relative to
the parameter values. If there is any polygon
p? adjacent to a segment s;, then r? will either
enter or leave the area of p? or will have an in-
tersection with a corner of d(p*). We can decide
this by using a simple cross product test, since
all segments of p? are ordered. The interior lies
always to the left relative to the viewer travers-
ing the border segments of p?. Furthermore we
can compute a penetration point of #2 and p3.

A penetration point ¢ is valid, iff ¢3 € #3. If

r3 is part of a segment of an input polygon p/,
a forbidden penetration of two input polygons
is detected. A penetration of a single segment
with a polygonal area is allowed.

Let P(r) be the set of all intersected polygons
by r, united with the two possibly existing front
polygons of the endpoints a,b of r. After the
computation of all possible penetration points
of 3 with A(p),p € P(r) we simply add this pa-
rameter values to the given sequence of the in-
tersection parameters of r and sort this sequence
again according to the parameter values. This
can be done in O(logi, i), since there exist at
most O(i) penetration points.

Since we know exactly which part of #? lies in
an area of a polygon p? we now go back to 3D
space using the same VFAP method as before.

Let L(r?) be the line which contains r? and F(r?)
the perpendicular plane containing L(r?). With
the help of the intersection information compute
the 3D segment s%(p, L(r?)) relative to line L(r?)
for each polygon p € P(r) restriced to the lenght
of r (see figure 7).

The result of this method is a set M. In addi-
tion, we have to add to the set M all intersec-
tions of single segments s; N E(r) C IR?, which
are members of the intersection sequence of r
and the segment fragment r3 itself.

All elements of M are lying in the plane E(r)
(see figure 7). For this input one can use the
VFAP method to compute all visible parts of
r? (with some caution in respect to the allowed
input set of the VFAP algorithm) in O(log?,?),
since |M| = O(3).

Figure 7: Left: the 3D segments s(Py, L(r)) and
s(P2, L(r)). Right: The set M in the plane E(r)
which contains L(r?) and is perpendicular to the
viewing plane. ; is a penetration point.

Thus the visible parts of a segment fragment
r € Ham(v) are computable in O(log?,¢) where
i is the amount of intersections of the segment
fragment r with all other segments in the given
scene S.

Part B: Computation of back polygons for
visible parts of a segment fragment

With the computation of the back polygons for
visible parts of a segment fragment the problems
of inclusion and holes can be solved (see figure
1). Let s be a visible part of the segment frag-
ment r € Ham(v). Let us assume that there
exists a back polygon p € S for s. Then at most
the following cases are given:

1. A(p?) has intersections with r? in II,.

2. r? has the property r? C A;(p?), thus »? N
§(p?) = 0.

Case 1 can be solved similarly to Part A. Just
take a look at the set P(r) and the set M. It is
rather simple to delete all elements of M, which
are in front of the segment fragment r, with the
help of simple cross product tests and then re-
move the segment fragment r itself from M to
obtain the set M’.

In figure 7 the set M’ would consist of the ele-
ments sq(p2, L(r?)), s2(p2, L(r?)) and s3, where
s3 is the part of the segment s(p1, L(r?)) which
lies behind r (above in E(r)). Now use the
VFAP method for the input M’ and make a bi-
nary search for each intersection parameter of r3
(in E(r) ') by using the answer of the VFAP
method. Then you get all back polygon infor-
mation for each intersection of r? with other seg-
ments and thus for the visible part s. This can
be done in O(logi, i) as well.

Case 2, however, is more intricate (see figure 8).

v

Figure 8: The shaded area is part of a possible
back polygon for s, which is not determinable by
intersections.

A parallel solution to this problem is given by
building a datastructure D for the whole ham-
mock with the help of observation 6. Then this
datastructure can be asked from each intersec-
tion of all segment fragments in Ham(v) inde-
pendently for a back polygon of the kind case 2
in logarithmic time. Observation 6 tells us that
such a back polygon lies either completely above
v or is contained in the set P(g;(v)) N P(g-(v)).
The possible back polygons p for a visible part
s of a segment fragment, which are stored com-
pletely above v, will be found during the up-
date step but only for the endpoints a2, 43 of
r. If r? leaves or enters such a polygon p? it
has an intersection with the border of p?. This
case is already solved in case 1. If not, such
a p is a candidate for the correct back poly-
gon. For the determination of all other candi-
dates with »? C A;(p?) we firstly have to build
P(v) :== P(q:(v))NP(gr(v)). This can be done by
sorting in O(logn,n), since |P(g:(v))| = O(n) =
|P(g-(v))| and thus |P(v)| = O(n). For a poly-
gon p € P(v) always holds s*(p, 1)) C Q(q(v))
and s3(p,117) C Q(g¢-(v)). Take a look at the set
Qi(v) := {s*(p, 1Y) | p € P(v)}. This set con-
sists of all 3D—vertical segments of the polygons
p € P(v) with the line IT). Since all polygons
have to be pairwise disjoint, this set contains
only segments which possibly intersect at most
at endpoints. Furthermore, all of these segments

are lying in the same plane E(g;(v)). For this set
we now build a datastructure D(v) in the plane
E(q(v)) which is able to answer the following
question in logarithmic time: Let ¢ € E(q;(v)) be
a point of the plane E(q;(v)). Which segments
of @Q;(v) are lying directly above and below the
point ¢ 7 This datastructure D(v) can be built
in O(logn,n) by using theorem 3.

With the help of the datastructure D(v) all other
candidates for back polygons can be determined
entirely independent using the following algo-
rithm: Let (¢;, s;) be an intersection point in the
viewing plane of ? = ab with a segment 53 which
is adjacent to a polygon p. Now project the end-
point a® of r onto the plane F(p), which contains
the polygon p. So we got a point (a,p) € IR?
with the property (a,p) € E(q(v)). Now con-
struct the set 4, :=a® U

{(a,p) | 6(p?) Nr? # 0 or »> penetrates A(p) }

The set A, has the property |A,| = O(¢). For
every point (a,p) we are now able to compute
the segment below((a, p), D(v)) with the help of
D(v). This segment does not exist or is the 3D—
vertical segment of a polygon p’ € P(v). Thus
we have constructed a polygon set P'(v,r) C
P(v) for each segment fragment r € Ham(v)
with the following property: r? N A(p?) # 0 for
all p € P'(v,r), because a? N s%(p,IT,) # 0. Now
mark all polygons p € P’(v,r) which have an
intersection on the viewing plane with the frag-
ment r (we know all these intersections !) and
delete them with the help of sorting from P’(v, r)
to build the set P”(v,r). The set P"”(v,r) has
now the property r? — a,b C (4;(p?)) for all
p € P”(v,r). The endpoints of » may have an
intersection with the border of such a p?, but
this is not a contradiction for a candidate of a
back polygon. The only thing we have to do
is to sort the constructed set P"(v,r) relative
to depth. The closest polygon to the viewer is
the candidate for a correct back polygon for all
visible parts of r.

Finding such a candidate for a back polygon for
all visible parts of a segment fragment r» can be
done for each segment fragment r € Ham(v) in
O(logi,,i,) with a preprocessing of O(logn,n)
for the hammock Ham(v) and ¢, as the number
of intersections in the viewing plane of r with all
other segments of the scene and all penetration
points.

All candidates of back polygones (back poly-
gones from the update, from the intersections,
and the polygon from P”(v,r)) are now tested
against depth for each intersection point and if
necessary, assigned to the visible parts of r as
their back polygon relative to the whole input
scene.

Summary: In this part of the paper we have
shown how to compute in parallel all visible parts
of a segment fragment r € Ham(v) and their
possibly existing back polygons. Finishing this
section we want to give the time and processor
complexity for processing a whole level of the
PST in parallel.

This leads to the following theorem:

Theorem 6 Let L; be the ith Level of the PST
being processed. Then all visible parts of every
segment fragment » € Ham(v) for all v € L; with
Cover(v) # @ and their back polygons can be
determined in O(logn, nlogm+I) with I as the
number of all intersections and penetrations of
the fragments with other segments and polygons
of the input scene.

Proof: Except from the construction of P(v)
and D(v) all operations will be performed on
sets proportional to the amount of intersections
a segment fragment can have, which is at most
O(n). Thus the time for all operations is clearly
bounded by O(logn) for building P(v) and D(v)
and all the operations for computing the visible
parts of each segment fragment. The number
of processors used is bounded by the number
of intersections / and the maximum number of
elements for the construction of P(v) and D(v)
for each v € L;. Since the number of elements
of D(v) is bounded by the amount of elements
in P(v) = P(q:(v)) N P(g,(v)) at most

> P(@()] + [Plar(v)] < 25 Y |P(g)] = O(nlogm)

vEL; q€U

processors will be needed for the construction of
P(v) and D(v) for the whole level L;.

12 Complexity of the algorithm

Theorem 7 Complexity of the HSR problem in
object space

Let S be a simple scene consisting of n segments
(a single point ¢ will be counted as a special seg-
ment ¢c) in total. Let I be the amount of all
intersections between segments in the viewing
plane and all penetrations between single seg-
ments and polygonal areas. Then there exists
a O(log” n,nlogn +I) CREW PRAM algorithm
which solves the HSR problem in object space by
constructing the visibility graph in the viewing
plane.

Proof:

The overall complexity of phase 1 has been proven
already during the description as O(log n, n log m).
Please note that the the universum U contains
at most O(n) points and I is bounded by O(n?).
Now let us take a closer look at the steps 1 to
4 of the main phase. Since we are using the
method of Goodrich, see [Goo91], the number of
computations of intersections for the whole PST

are bounded by O(logn, nlogn+1I), thus also for
each level L; in step 1. Theorem 6 reports the
same amount for computing all visible parts of
segment fragments and their back polygons for
a whole level (step 2). The construction of the
planar subdivision G in step 3 is bounded by
the number k of all visible parts, which have
been already processed. Thus this can be done
using theorem 3 in O(logk, k). Always holds
k < (I 4+ n), because there will not ever be more
visible parts of segment fragments as the sum
of intersections and segments. So this step is
bounded by O(log(n+1),n+ 1) = O(logn, n+I)
for each level. For the last step at most all
O(nlogm) elements of the sets C(q) have to be
updated. All queries can be done in parallel in
time O(log(n + I)) = O(logn) with O(nlogm)
processors.

Thus the complexity O(logn,nlogn + I) of the
steps 1 and 2 is dominating all other complex-
ities. Since the main phase will run at most
O(logm) times, the overall complexity of the al-
gorithm is given by:

O(lognlogm,nlogm + I) = O(log”* n, nlogn + I)

13 Avoiding intersections

Since the algorithm still computes all intersec-
tions, we will show now, how to avoid unneces-
sary computations of intersections between seg-
ments. Let v be a node in level L; and s =
ab € Ham(v) be a segment fragment. Then we
mark s as unvisible, if @ and b have the same
front polygon p with p ¢ P(v) and there is no
intersection with any segment of §(p). The inter-
sections of (visible) polygons covered by nodes
u above v and s are known, because s € End(t)
holds for all t € P(PST,v) —wv). All CC- and
EC-intersections (s. [Goo91]) of such a segment
s do not have to be computed. This helps to give
the algorithm an output sensitive touch.

14 Concluding remarks

We presented a new CREW PRAM method solv-
ing the HSR problem for complex scenes. The
best known algorithm (see [MG90]) so far deal-
ing only with pairwise disjoint polygons uses a
running time of O(logn) and O((n + I)logn)
processors and this algorithm is not able to han-
dle penetrations of single line segments with poly-
gonal areas. Here the penetration of single seg-
ments with polygonal areas is allowed. So it
is possible to integrate any curve ¢ C IR? ap-
proximated by segments into the scene with-
out any problems. This is the most efficient
parallel method the author knows about, be-
ing able to manage such an input. If inclusions
are detected, the intersections contained in the

interior of the covering polygon are not com-
puted, thus many unnecessary computations are
avoided. This method will be realized on an
availlable parallel computer.

References

[ACG*88] A. Aggarwal, B. Chazelle, L. Guibas,
C. O’Dﬁnlaing, and C. Yap. Par-

allel computational geometry. Algo-
rithmaca, 3:293-327, 1988.

[ACG89] M. Atallah, R. Cole, and
M. Goodrich. Cascading divide and
conquer: A technique for designing
parallel algorithms. SIAM J. Com-
put, 18(3):499-532, 1989.

M.J. Atallah and M.T. Goodrich.
Efficient plane sweeping in paral-
lel. Technical Report CSD-TR-563,
Purdue University, 1986. s.a. ACM
Symp. on Computational Geometry
1986, pp. 216-225.

[AGS6]

[Cha84] B. Chazelle. Intersecting is easier
than sorting. In Proc 16th Symp. The-

ory of Comp., pages 125134, 1984.

[Col88] R. Cole. Parallel merge sort. STAM

J. Comput., 17:770-785, 1988.

[FKN80] H. Fuchs, Z.M. Kedem, and B.F.
Naylor. On visible surface generation
by a priori tree structures. Computer

Graphics, 14:124-133, 1980.

[Goo91] M.T. Goodrich. Intersecting line seg-
ments in parallel with an output sen-
sitive number of processors. Siam
J. Comput., 20(4):737-755, August
1991.

[MG90] J. Bright ~ M.T. Goodrich,
M.R. Ghouse. Generalized sweep
methods for parallel computational
geometry. In 2nd ACM Symp. on

Parallel Algorithms and Architectures
(SPAA), pages 280-298, 1990.

[Riib92] C. Riib. Line-segment intersection
reporting in parallel. Algorithmica,

8:119-144, 1992.

[RS88] J.H. Reif and S. Sen. An efficient
output-sensitive hidden-surface re-
moval algorithm and its paralleliza-
tion. In Proc. of the fourth annual
Symp. on Computational Geometry,

pages 193-200, 1988.

