
Extending the VGRAPH Algorithm for Robot Path Planning

Alade Tokuta
Department of Mathematics & Computer Science

North Carolina Central University
Durham, NC 27707

tokuta@sci.nccu.edu

ABSTRACT

This paper presents an O(nlogm) method to incorporate start and goal points of a
robot into the roadmap of a two-dimensional workspace to form a VGRAPH. A VGRAPH
Point Incorporation Algorithm(VPIA) incorporates a point in free-space into a
roadmap. This VPIA divides the free space around an obstacle vertex into an
ordered set of areas. A search is used to determine the containment of the point.
Containment implies visibility of the point from the vertex. A point is
incorporated by determining its visibility from all obstacle vertices. The VPIA is
inherently parallel and the implementation can reduce this complexity from
O(nlogm) to O(logm). Most existing techniques for incorporating points into a
roadmap perform in O(n2). The roadmap's data structure is modified to support the
VPIA. The VPIA, employing the VGRAPH approach should enhance the worst case
runtime of find-path algorithms closer to real-time for 2-D workspaces cluttered
with obstacles. Sample VGRAPH diagram generated by an implementation of the VPIA
is shown in Appendix A.

Keywords: visibility graph, path planning, VGRAPH

1.0 INTRODUCTION AND BACKGROUND

Providing a robot with the ability to
move safely from one point to another
in a workspace with obstacles is called
the find-path problem. The requirement
of the find-path problem is defined as
that of finding the shortest path for a
robot, in moving from a given start
point to a given goal point, while
avoiding collisions with obstacles.

1.1 The VGRAPH Approach

Various techniques are used in building
a search space graph for a robot's
workspace. This paper focuses on the
vertex-graph(VGRAPH) technique
[Lozan79, Morav81, Thomp77]. In the
VGRAPH method the obstacles are
expanded by the size of the robot and
the robot is reduced to a
point[Morav81]. Lozano-Perez [Lozan83]
presented a technique for Cspace
obstacles which is used to form the
VGRAPH on which the search for an
optimal path is performed. This paper
assumes a workspace with polygonal
Cspace obstacles and a point robot.

The VGRAPH, G(N,E), is a graph with a
set of nodes N, and a set of edges E.
Each obstacle vertex v in the

workspace is represented by a node, Nv,
in N. The start and goal points ps and
pg are also represented by the nodes,
Ns and Ng. Each edge in E links a pair
of nodes in N whenever the vertices or
points represented by the node pair are
visible to each other or whenever they
are the end vertices of an obstacle
edge. The VGRAPH represents a discrete
subset of collision-free paths from ps
to pg. Each path is made up of a
sequence of line segments. The VGRAPH
contains the shortest path from ps to
pg in its discrete subset
[KantZ86,Wangd74]. To find an optimal
path from ps to pg (assumed one not
visible to the other), the VGRAPH is
searched using a graph-search algorithm
such as the A*[HartN68].

1.2 Building the VGRAPH Using a Roadmap

We are concerned with navigating robots
between varying start and goal points
among static obstacles. In this
environment, a VGRAPH may be regarded
as having two parts: a permanent part
formed from the obstacle vertices, and
a dynamic part formed from the start
and goal points. The permanent part
consists only of the set of obstacle
vertex nodes {Nv} and the edges {E’} on
which they are incident. It is fixed

for a static workspace and is referred
to as the roadmap for the workspace. We
assume the roadmap contains space for
both Ns and Ng in its data structure,
but the edges at Ns and Ng are omitted.
The dynamic part of the VGRAPH changes
whenever ps or pg changes and a new
VGRAPH of the environment must be
constructed when ps or pg is altered.

Because the roadmap is fixed, the
VGRAPH is built in two phases. The
first phase is a pre-processing phase
which builds the roadmap. This phase is
executed once and is not repeated in
subsequent solutions of the find-path
problem when start and goal positions
vary. This first phase has been shown
to be executable in O(n2) time
[Guiba85, Welzl85], where n is the
total number of obstacle vertices. The
second phase of the VGRAPH building
process integrates Ns and Ng into the
roadmap. This is the phase that must be
repeated, and is a runtime operation
which should be ideally achieved in
real-time. When all links at Ns and Ng
are specified, the roadmap is called
the VGRAPH. The second phase of the
roadmap building process plays a key
role in the real-time performance of
the navigating robot. It contributes
part of the robot's reaction time.

1.3 Runtime of the Find-path Algorithm

Some methods for integrating Ns and Ng
into the roadmap run in O(n2) time
complexity. One disadvantage of the
VGRAPH method, noted [Singh87], is that
every time source and destination
points are changed, the visibility
graph has to be recomputed. This
requires O(n2). However, the plane-
sweep algorithm [Fujim91, Prepa85] of
O(nlogn) can be used to incorporate Ns
and Ng into the roadmap. However, its
order of complexity cannot be easily
enhanced, while the time complexity of
the VPIA can be enhanced from O(nlogm)
to O(logm) by parallel processing.

The incorporation of start and goal
point is not the only runtime operation
in solving the find-path problem. The
graph-search operation is equally
critical in impacting real-time

performance. The A* algorithm is
optimal and performs in O(n2). Thus,
the overall runtime complexity of the
find-path solution remains in O(n2),
although use of the O(nlogm) VGRAPH
Point Incorporation Algorithm,
described, enhances the worst case
runtime of find-path algorithms, that
employ the VGRAPH approach, for 2-D
workspaces cluttered with obstacles.
The worst case run-time complexity of
the find-path algorithm will remain
unchanged, but its worst case run-time
is reduced.

2.0 VISIBILITY TO AN OBSTACLE VERTEX

The robot's workspace assumed to be a
two-dimensional region with non-
intersecting stationary convex
polygonal obstacles. The Workspace
Vertex Set {Vw} consist of the union of
the Obstacle Vertex Set {Vo} and
includes the vertices of the workspace
boundary. The size of Vo (|Vo|) is n.
Similarly, the Obstacle Edge Set {Eo}
is the set of obstacle edges, and the
Workspace Edge Set {Ew} is the union of
Eo and the boundary edges of the
workspace. We denote an obstacle as Pi
if the point i lies on its boundary. We
asuume the workspace contains m
configuration space obstacles and the
robot, is a point robot [Lozan83]. The
free-space visible to each vertex in Vo
can be specified as follows: we denote
by Vwv ⊂ Vw those vertices visible to v.
For each vertex z (z ≠ v) in Vwv, a
directed line segment vz is drawn from
v to z. Figure 1 is a set of line
segments emanating from v and
satisfying the following three
conditions:

1) Each line segment is directed
towards a vertex in Vwv.

2) None of the line segments divides
any of the obstacles.

3) Each line segment is the longest
possible.

Any coincident line segments must be
replaced by a single equivalent line
segment from v. Each line segment
radiating from v is termed a
visibility line of v. Each pair of
adjacent visibility lines is
associated with a triangular area with

apex at v, between them. The base of
the triangle is the first edge segment
visible when looking outward from v
between the pair of adjacent
visibility lines of the triangle. Each
unoccupied triangular area is called a
visibility triangle (v_∆v) of v.

 Figure 1: Example of a Robot's workplace. Visibility lines for an obstacle
 vertex v.

v

Pv

VLr VL1

v-1

v+1

b2b1

b4 b3

The union of all these visibility
triangles represents the total free-
space area within which any point is
visible to v. By definition, a
visibility triangle cannot enclose
part of an obstacle. v_∆v may
degenerate to a point or a line
segment. This visibility triangle is
called a Degenerate Visibility
Triangle (d_∆v) and occurs when
obstacles touch or when a workspace
boundary vertex is in contact with a
vertex v of obstacle Pv It also occurs
as in figure 2 when the vertex of one
obstacle is in contact with another
obstacle or workspace boundary. That
is, for some v ε Pv the visibility
lines defined by VLk and VLk+1 are
collinear with some e ε B and it
constitutes the base of the
corresponding visibility triangle of v
which has all its edges collinear.

3.0 A DATA STRUCTURE FOR THE VPIA

No visibility line should leave v at a
blind angle, and all the visibility
lines are ordered. If a ine segment
leaves v at an angle such that it cuts
Pv, then that angle is called a blind
angle of v. All vertices in the blind
angle direction are obstructed from the
view of v by Pv. We denote the first
visibility line of a vertex v which
runs along the edge of the obstacle Pv
in the direction v->v-1, as VL1. This
corresponds to the visibility line in
the counterclockwise direction
(negative half edge) when looking out

across Pv, from v at a blind angle. The
second, along an edge of Pv, in the
direction v ->v+1 (figure 1), is
denoted VLr (r is the total number of
visibility lines of v) and is the
visibility line to the clockwise side
looking out from v at a blind angle.
The visibility lines are numbered from
VL1 to VLr. Each subsequent visibility
line VLi is measured as a displacement
from VLi-1 .

3.1 The Visibility Triangle Array (VARRAY)

A Visibility Triangle Array (VARRAY) of
r cells stores the angular metric of
the visibility lines in their order of
non-decreasing values. Each cell
becomes a structure which also consists
of additional data fields described
next.

We denote as VTk some visibility
triangle of v between VLk and VLk+1.
Every VTk has a visibility line VLk on
its clockwise side. We associate each
cell VARRAY[k] to its corresponding
visibility triangle VTk. Note that VLr
is followed by the blind angles of v.

To complete definition of VTk, and to
facilitate rapid use of VARRAY in its
determination of the visibility of
points in free space from v (figure 3),
the final element of a record becomes
the problem of determining whether a
given point, p, is within VTk. Let Uk
be the inward pointing unit normal to
the base of VTk, then p visible to v
iff:

Uk . ap ≥ 0

When VTk is degenerate, 'a' is
coincident with v and Uk is set to
point in a direction perpendicular to
VLk (Figure 2) for consistency. Once
θ(vp) (the angle at which vp leaves v,
has been determined to be between
θ(VLk) and θ(VLk+1), only Uk and 'a' are
needed to determine the visibility of p
from v. Each structure VARRAY[k]
comprise of three fields: {θ(VLk),
value of 'a', and value of Uk}. The
data structure of VARRAY described
determines the visibility of a point in
free space from one obstacle vertex v.

Similar VARRAY structure for every v in
Vo, determines the visibility of a
point p from each vertex in Vo. Because
|Vo| = n, n VARRAYs are needed to store
all the v_∆V’s. The final data
structure is of the form: DSTR:
Array[1..n] of VARRAY.

Pv
B

a

v

VLk+1

VLk
VL1

VLr

Uk

Figure 2: A degenerate visibility triangle VTk
 showing the BaseIntersect 'a' and base of
 degenerate visibility triangle

The variable, DSTR, thus contains a
VARRAY for each obstacles vertex and
defines all the visibility triangles
for all v ∈ Vo.

4.0 SPACE COMPLEXITY OF THE VPIA DATA
STRUCTURE

A Visibility Triangle record in VARRAY
has O(1) space complexity. VARRAY has
space complexity of O(n). Since the
DSTR must store O(n) VARRAYs, DSTR has
space complexity of O(n2). This order
of space complexity is the same as that
of the roadmap. We show later that
although the VGRAPH Point Incorporation
Algorithm adds O(n2) space complexity
to the find-path problem, its use of
the already existing O(n2) roadmap data
structure proves to be very convenient.

5.0 THE VGRAPH POINT INCORPORATION
ALGORITHM

Using DSTR, an algorithm is specified
to determine the visibility of any
point p in free-space from the vertices
in Vo. The VPIA comprise of three steps
which are applied to each vertex v in
Vo.

1) Determine which of the
visibility triangles of v are
candidates for containing the
point p.

2) Determine if p is contained in
any of the candidate triangles
found in step 1.

3) If the point p is contained in
a visibility triangle, add the
edge NvNp to the roadmap.

These steps executed for all obstacle
vertices, incorporates the point p into
the roadmap by linking a node Np of p
to those nodes representing an obstacle
vertex from which p is visible. We now
outline these three steps in more
detail:
STEP 1: Finding Candidate Visibility
Triangles
In figure 3 are shown visibility
triangles VTk of an obstacle vertex v.
For a point p, a line segment is drawn
from v to p. It emanates from v at an
angle θ(vp) such that:

Figure 3: Point containment by visibility triangle. Typical
 visibility triangle VTk bounded by its two visibility
 lines VLk and VLk+1. A point p in the θ[vp] direction can
 be in VTk or outside VTk (p'). a is the intersection of
 VLk and the base of VTk.

θθθθ[vp]

θθθθ[VLk+1]

Pv

a

p
p'

VLk+1

VLk

VL1

VLr

VLr-1

v
Uk

Blind
Angles

VTk

θθθθ[VLk]

a) θ(VLk) ≤ θ(vp) ≤ θ(VLk+1) (1 ≤
k ≤ r-1)

b) θ(vp) > θ(VLr)
With (a), VTk becomes a candidate
visibility triangle; (b) implies θ(vp)
is a blind angle. θ(vp)is an adjusted
angle (adjusted whenever |θ(vp)|<
|θ(VL1)| to keep θ(vp) consistent with
the angles assigned to the visibility
lines of v. VTk becomes a candidate for
θ(VLk) ≤ θ(vp) ≤ θ(VLk+1); a binary
search of VARRAY for the first k such
that θ(vp) ≤ VARRAY[k].VLkAngle locates
candidate visibility triangles in
VARRAY. If no such k exists, then θ(vp)
is a blind angle and thus no candidate
visibility triangle exists, else VTk-1

is the candidate. Furthermore, if θ(vp)
= VARRAY[k].VLkAngle and k < r, then
VTk serves as a second candidate in
case when p proves to be outside VTk-1.
Finally, if θ(vp) = VARRAY[1].VLkAngle,
then only VT1 will serve as a
candidate, else if θ(vp) =
VARRAY[r].VLkAngle, in which case only
VTr-1 serves as a candidate. In the
worst case, a search takes O(logn)
time.

STEP 2: Containment of p within Visibility
Triangle
Step 1 gives a maximum of two
visibility triangles of v as candidates
to be checked for containment of p. If
the first contains p, then the second
may be ignored. If neither contains p,
then p is not visible to v.

VTk will contain p iff p lies between
or on the base of VTk and v. (Figure
6). It is assumed that p is within VTk
if p lies on the base of VTk. The
following scalar product expression
summarizes the condition for
containment of p by VTk:

VARRAY[k].NormalVector . (p -
VARRAY[k].BaseIntersect) ≥ 0

STEP 3: Linking Node Representing p to the
Roadmap
This last step is trivial, and is not
done if p was determined to be
invisible to v.

With the above steps executed for all v
in Vo, the point p is incorporated into
the roadmap. This is the VGRAPH Point
Incorporation Algorithm. Now, given
that ps and pg are obstructed from each
other's view, then the VPIA is applied
twice; once with ps, then again with
pg. This yields the VGRAPH.

6.0 COMPLEXITY OF THE VPIA

Step 1 is O(logn) time. Steps 2 and 3
are both O(1). Over n, yields the total
time complexity of the VPIA as
O(nlogn). Thus, the order of time
complexity involved with the VPIA in
the solution of the find-path problem
is O(nlogn).

The computation of the visibility of
the point p from a given vertex does
not use or depend upon data generated
in the computation of the visibility of
p from any other vertex. The
computation of the visibility of p from
each of the n vertices in Vo can be
done simultaneously. Thus, unlike the
plane-sweep algorithm, the VPIA can be
executed over n processors in O(logn)
worst case time complexity.

7.0 USING THE ROADMAP DATA STRUCTURE FOR
THE VPIA DATA

7.1 Basic Roadmap and VGRAPH Data Structure
We refer to a VGRAPH or roadmap node as
a vnode. The basic roadmap has n nodes,
the VGRAPH n+2 nodes. Each vnode
potentially has one link to each other
vnode in the VGRAPH. We therefore
regard a vnode as an array of n+1
pointers with up to n-1 pointers used
in the roadmap and the other two
pointers at each vnode are for possible
links to Ns and Ng.

There are two other pieces of data
usually stored at the vnode: the first
is its obstacle vertex, and the second
is an estimate on the lower bounds of
the cost of going from that vnode to
the goal vnode Ng, i.e. h(n) in the
expression:

f(n) = g(n) + h(n)

of the A* algorithm [HartN68]. The
third item is an array of n+1 pointers
to vnodes. These pointers specify the
edges of the VGRAPH at the vnode.

The roadmap is constructed for each
vnode Nv such that pointers are set to
point to all other roadmap nodes whose
workspace vertices are visible from v.
At each roadmap node, all pointers
pointing to other vnodes occupy the
lower set of positions in the array of
vnode_pointers. Other pointers in array
cells that follow are set to nil.

7.2 Modifying the Roadmap Data Structure
There is a one-to-one mapping of the
vnode_pointers at Nv, to the visibility
lines at the vertex v. In all, the
array of vnode_pointers at each vnode
is n+5 pointers long, taking into

account the visibility lines, if any,
to the workspace boundary corners, as
well as the source-destination pair.

The resulting complete match between
vnode_pointers and VARRAY visibility
lines suggests that the data structure
of every vnode_pointer can be modified
to store the information stored by its
corresponding visibility triangle in
VARRAY. The following modification of
the vnode_pointer data type achieves
just that:

vnode_pointer = Record
BaseIntersect: point;
VLkAngle: real;
NormalVector: point;
Npointer: Pointer to vnode;

End;
We note that vnode_pointer is now a
(visibility triangle) structure with a
field called Npointer. Npointer points
to a vnode. Every visibility line at a
vertex v will have a matching Npointer
at Nv. These modifications to the
roadmap data structure discussed do not
affect the O(n2) time complexity
required to build the roadmap. After
constructing the roadmap, the following
data must be generated for each
vnode_pointer record at every vnode Nv
of the roadmap:

a) VLkAngle: At most n-1 pointers of
vnode-pointers at vnode Nv is used
to define edges at vnode Nv in the
initial roadmap. In the worst case,
generating the VLkAngle for a
vnode_pointer record is max{O(1),
O(n)} = O(n) time complexity.

b) BaseIntersect: VLk is at least a
segment emanating from v at VLkAngle
from (a), and directed toward the
boundary. It is determined in O(1)
using vcoord and VLkAngle. The line
segment may then be intersected with
Ew in O(|Ew|) = O(n). When VTk is
not degenerate, some e ∈ Ew may
generate multiple intersections with
line segment at BaseIntersect
(figure 4). For m obstacles, and
because a line segment may intersect
a maximum of four edges of the
obstacle, in the worst case 4m edges
must be sorted in O(mlogm) to
resolve the intersection. In
addition, O(m) scan of intersections

is done to determine the
intersection in the positive half
edge and hence the edge supporting
the base of VTk. The total worst
case time complexity in finding the
BaseIntersect for a vnode_pointer
record is O(n) +O(mlogm).

c) NormalVector : Only O(1) time is
needed to calculate NormalVector
after finding BaseIntersect in (b).

 Figure 4: Multiple edges through BaseIntersect. Edges be, bh,
 ft may intersect the line segment at BaseIntersect
 'b'. The correct base-support for VTk is 'be'. It
 subtends the smallest internal [to VTk] angle to vb.

Pv

c

e

h

t

 f

b

d

v

VLr

VL1

VLk

VLk+1

Line segment colinear with
 VLk

The VLkAngles calculated in (a) take
O(n) time. Generating (a), (b) and (c)
for every vnode_pointer record at all
roadmap nodes followed by the
adjustment of the VLkAngles require
worst time complexity of O(n3 +
n2mlogm).

7.3 Substitution of Roadmap for VPIA Data
Structure

The vnode data structure now contains
the VARRAY data structure except that
the vnode_pointer records at vnode do
not have the same order as the
visibility lines in VARRAY. This is
rectified with use of an O(nlogn)
quicksort (of the array of
vnode_pointer records) on the VLkAngles
of the vnode_pointer records (that
match visibility lines) at each vnode.
This is the final pre-processing step
to convert the roadmap data structure
to that needed by the VPIA. All the
vnode_pointer arrays in the roadmap are
sorted in O(n2logn) time.

Thus, after the basic roadmap has been
generated in O(n2) time, it must be
further pre-processed in O(n3 +
n2mlogm) time to convert it to the data
structure needed by the VPIA. This O(n3

+ n2mlogm) time complexity is

acceptable here, as we are concerned
with an efficient runtime algorithm.
Both processes of building and
modifying the basic roadmap to
correspond to the required VPIA data
structure are pre-processing steps,
done only once for a given workspace.
Once this roadmap has been so formed
and modified, solving the find-path
problem for varying start and goal
points uses the same roadmap and
involves only the VPIA followed by an
appropriate graph-search algorithm at
runtime. The pre-processing steps do
not affect the runtime complexity of
the find-path algorithm.

To reuse Ns and Ng every time ps and/or
pg changes, old VGRAPH links at Ns and
Ng are removed to execute new links.
This is done in O(n) time.

8.0 FROM O(nlogn) TO O(nlogm)

The VPIA algorithm can be modified to
run in O(nlogm). Figure 5 shows
visibility line which does not form a
tangent to the first obstacle which it
touches (after leaving v) is
eliminated.

c

d

v

v-1
v+1

Pv

p

Figure 5: Tangential Visibility Lines at Vertex v

.

A visibility triangles VTk is similarly
defined as before with the base defined
by the two points at which VLk and VLk+1
touch the obstacle (or workspace
boundary edge) visible when looking out
from v between VLk and Vlk+1, e.g.
triangle vcd in Figure 8.

The same VPIA algorithm described
previously is used to incorporate a
given point in free space into the
roadmap. The visibility triangles in
this form are fewer and the data
structure used is efficient. Each
visibility line must be tangent to at

least one obstacle, and there can be no
more than 2m visibility lines at v. The
binary search done by the VPIA on
VARRAY of length 2m. The time
complexity of that binary search is
O(logm). Total worst case time
complexity of the VPIA is now O(nlogm).

9.0 IMPLEMENTATION RESULTS and CONCLUSIONS

This paper addressed the importance of
rapid incorporation of start and goal
points into a roadmap, and why this
operation is crucial in determining the
real-time performance of a navigating
robot which uses the VGRAPH approach to
solve the find-path problem in a static
workspace.

A VGRAPH Point Incorporation Algorithm
(VPIA) which performs in O(nlogm) worst
case complexity was presented and was
applied to integrate start and goal
points in a variety of example
workspaces. Sample results for an
example workspace is shown in the
Appendix. This worst case complexity is
an improvement over the O(n2) worst
case time complexity of most other
algorithms. The VPIA also promises to
perform in O(logm) time on a parallel
machine. This is preferable to the
inherently sequential O(nlogn) plane-
sweep algorithm which may also be used
for determining the visibility of
obstacle vertices from a point in the
workspace.

The O(nlogn) version of the VPIA was
implemented in Turbo Pascal on an IBM
PC. The modifying and pre-processing of
the roadmap (sections 7.2 and 7.3) were
performed simultaneously with the
building of the roadmap itself. This
resulted in a significant reduction in
the pre-processing time.

The lowering in the order of worst case
time complexity for n and m large, in
find-path algorithms using the VPIA
should result in more efficiency and
bring closer to real-time performance
than existing point incorporation
methods that cause the algorithms to
run in their worst case times.

We showed how the VPIA can be
conveniently supported by modifying the
roadmap data structure, so as not to
create the need for maintaining two
separate data structures when using the
VPIA in solving the find-path problem.
This is in spite of the fact that the
VPIA adds O(n2) space complexity to the
solution of the find-path problem. For
2-D find-path problems the VPIA
provides an efficient method for
integrating the start and goal points
of the robot into the roadmap.

10. LIST OF REFERENCES
[Fujim91] Fujimura,K: Motion Planning

in Dynamic Environments, Spring-
Verlag Tokyo 1991.

[Guiba85] Guibas,L and J. Hershberger,
Computing the Visibility Graph
of n Line Segments in O(n2)
time, Th. Comput. Sc.26, pp 13-
20, 1985.

[HartN68] Hart,P.E., N.J.Nilsson, and
B. Raphael, A Formal Basis for
Heuristic Determination of the
Minimum Cost Paths, IEEE
Trans.Sys. Sci. Cyber., vol.
SSC-4, no.2, pp. 100-107 1968.

[Khati86] Khatib,O,Real-time Obstacle
Avoidance for Manipulators and
Mobile Robots,Int'l Journal of
Robotic Research, vol. 5, no.1,
pp 90-98, 1986.

[KantZ86] Kant,K and Steven W. Zucker,
Towards Efficient Trajectory
Planning: The Path-Velocity
Decomposition, Int'l Journal of
Robotics Research, vol.5, no.3,
pp 72-89, 1986.

[Lozan79] Lozano-Perez,T and M.A
Wesley, An Algorithm for
Planning Collision-free Paths
Among Polyhedral Obstacles,
Comm. ACM, vol.22, no.10, pp.
560-570, 1979

[Lozan83] Lozano-Perez,T, Spatial
Planning: A Configuration Space
Approach, IEEE Trans. Comput.,
vol. C-32, no.2, pp 108-120,
1983.

[Morav81] Moravec,H, Rover Visual
Obstacle Avoidance, in Proc.7th
Int'l Joint Conf. Artificial
Intelligence, pp 785-790, 1981.

[Prepa85] Preparata,F.P,and M.Shamos
(1985),Computational Geometry:An
Introduction Springer-Verlag,
New York, 1985.

[Singh87] Singh, J. Sanjiv and
Meghanad D. Wagh, Robot Path
Planning Using Intersecting
Convex Shapes: Analysis and
Simulation, IEEE Journal of
Robotics and Automation, vol.
RA-3, no.2, 1987.

[Thomp77] Thompson,A.M., The
Navigation of the JPL Robot,in
Proc. 5th Int'l Joint Conf.
Artificial Intelligence, pp 749-
757 1977.

[Vital96] Vital,S, An O(nlogn) VGRAPH
Algorithm in Robot Path
Planning, MS Thesis, University
of South Fl., 19996

[Wangd74] Wangdahl,G.E., Pollock,S.M.,
and Woodward, J.B., Mininum
Trajectory Pipe Routing, J. Ship
Res. 18(1),pp. 46-49, 1974).

[Welzl85] Welzl,E, Constructing the
Visibility Graph of n Line
Segments in O(n2) Time, Info.
Processing Lett., vol.20, pp
167

APPENDIX A

A1: Visibility links due to
Incorporation of Start-Goal Pair

A2: VGRAPH of Workspace

	APPENDIX A

