RATIONAL BIANGLE SURFACE PATCHES

Kestutis Karéiauskas, Rimvydas Krasauskas
Department of Mathematics, Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania
kestutis.karciauskas@maf.vu.lt

ABSTRACT

The concept of the rational biangle surface patch of the degree 2n is introduced. The construction is
mostly close to (n,n) tensor product surface case because it has (n + 1)2 control points and the implicit
degree 2n? in general. The biangle has many similar properties: a convex hull property; boundary Bézier
curves can be easy calculated; a subdivision and degree elevation algorithms are available. The quadratic
biangle (when n = 1) is a patch on an oval quadric surface with four control points. In particular, one
can realize any biangle with two cyclic arcs on the sphere.
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1. INTRODUCTION

The most popular parametric surfaces in computer
aided geometric design are two kinds of rational sur-
faces: tensor product surfaces and Bézier triangles.
Though in theory every rational surface can be ob-
tained using this technique, the actual realization of-
ten is complicated.

For example consider quadric surfaces. A tensor pro-
duct surface of degree (1,1) with four noncomplanar
control points gives us exactly a double ruled quadric.
On the other hand till now there was no such simple
realizations of oval quadrics including a sphere. Spe-
cial Bézier triangles of degree 2 (resp. tensor prod-
uct surfaces of degree (2,2) ) were used in the latter
case [Dietz93]. In general they represent Steiner sur-
faces of implicit degree 4 [Seder85] (resp. degree 8
[Manch92]).

In this paper we fill this gap by introducing a four
control point scheme for an oval quadrics (eliipsoid,
elliptic paraboloid and two sheet hyperboloid). The
scheme produces the patch rationally parameterized
by some biangle region between two circular arcs in
the plane of complex numbers C. Hence the bound-
ary of the patch is formed by two Bézier curves (in
fact, conics). We demonstrate main properties of this
quadratic biangle and naturally generalize it to even
degrees.

In Section 2 the definition of the quadratic biangle
and its main properties are formulated. Section 3 ex-
plains how the idea of the biangle naturally follows
from two sources: the “generalized stereographic pro-
jection” [Dietz93] and natural extensions of Bézier
surfaces to projective domains [DeRos91]. Here we
motivate the definition of the biangle and proof its
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properties formulated in Section 2. We extend the
definition of the biangle patch with similar proper-
ties to higher degrees in Section 4. Some applications
for a sphere are discussed in Section 5.

Remark. Throughout the paper the following nota-
tions will be used: Rez, Imz, and Z denote a real, an
imaginary part, and a complex conjugate of a com-
plex number z, respectively. Also we underline ho-
mogeneous coordinates, i.e., P = (w,wP) € R'isa
homogeneous point corresponding to a point P € R3
with a weight w.

2. QUADRATIC BIANGLE
2.1 Definition

Fig. 1. The quadratic biangle patch.

Let D be a region in the plane of complex numbers
C bounded by two circular arcs with the angle a be-
tween them (see Fig. 1)

D={z€C:lz—d <P, |z =2 <},
R S Y
T2 2772
The quadratic biangle with the control net P;; € R?,
weights w;;, i,j = 0,1, and the angle a is defined as



a mapping K : D = R? given by a formula

Yico Lj—o wij Pij fij (2)

. K(z) = ,
22 ) Yizo =0 Wij fij (2)

where

foo(2) = 1= 22, fo(z) =ef* - |z — &%,
fo(2) = lef? — |2 — cf*, fu1(2) = |2

(2.3)

The patch of the rational biangle is an image K(D).

Fig. 2. The effect of changing a.

The angle a is useful for shape modeling: changing
a we get all oval quadrics containing two given con-
ics (Fig. 2). Nevertheless, for simplicity we fix the
angle a = 7/2 (so ¢ = (1 +1)/2) in all our consid-
erations bellow (except Section 5). One can general-
ize all formulas for an arbitrary 0 < o < 7 almost
straightforward.

2.2 Properties

The proofs of the following properties are postponed
to Section 3.4.

(i) Convex hull property. The patch is contained in a
tetrahedron with four vertices P;; if all w;; > 0.

(ii) Boundary. The patch has a boundary composed
from two conic arcs which have corresponding three
control points FPpg, Po1, P11 and Py, Pig, Pi1 but
with a little bit different weights @;;

Wij, ifi-:j

(24) i%z{ww¢21H¢f

(iii) Subdivision. The biangle K can be subdivided
into one smaller biangle K’ with control points

Pij= (B + V2P, + P;i)/(2+V2),

4,7 =0,1, (i+1means0ifi=1)

and two quadratic Bézier triangles T° and T with

control points T¢;, and Tin (i+j+k=2)

Igzo = Py, Igoz = ﬂ)o’ I.goo = f'.uv
Ign = (Boo + £01/‘/§)/21 1(1)01 = BIIO/\/E’
T2 = (Pgo + Pio/V2)/2.

The formulas for _T_}jk are similar. The corresponding
subdivision of the domain D is illustrated in Fig. 3.

Fig. 3. Four steps of the domain subdivision.

Here left and right curved triangles are mapped to
the quadratic Bézier triangles T, T and the region
between them is mapped to the biangle K”.

(iv) Reparameterization. Let the control points PBi;
be fixed. The biangle patch (i.e., the image K (D))
does not changes if the weights are changed according
to Wy; = X7 w;;, for arbitrary A > 0.

(v) Implicit equation. The equation of the patch in
barycentric coordinates associated with four control
points is:

2
WooW11

1 1
2. ——\2 —— A2, - =0.
( 5) w(2)1 AOI + w%O AO] /\OOAI]_ 0

The affine type of this quadric depends on the sign of
I =wi, +w}; — 2weow;:

(a) it is an ellipsoid if I < 0,

(b) it is an elliptic paraboloid if I = 0,

(c) it is two sheet hyperboloid if I > 0.

3. MOTIVATION

3.1 Complex projective line

The reader is referred to [Berge77] for fundamentals
of projective geometry. A short introduction can be
found in [Patte85).

Let us remind the construction of generalized stere-
ographic projection from [Dietz93]. Let S be the
sphere given by equation z3 = 22 + 22 + 22 in the
real projective space RP3. The generalized stereo-
graphic projection 6: RP® - § ¢ RP? is obtained
from the following mapping

Po P+ 0} + 1 + p}
. | ;m 2pop1 — 2paps
3.1 é: — ,
(3-1) D2 2p1ps + 2pop2
P3 P+ p3 — P} — p?

using its homogeneity

5~(/\P0,/\P17 ’\p21 )\p3) = '\23(1701P1,P27P3), A€R.
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Let 4-dimensional real space R* (the domain of 8) be
identified with 2-dimensional complex space C? by
introducing new variables zp = p2 +ip1 and 21 = po+
ips. Then we can rewrite (3.1) in terms of complex
variables

IzoII2 -(i- |21 I;
~ (2 2Im(202;
(32) ¥: (zl) — 2Re(2021)

|20f? = 121]?
Note that 17; is complez homogeneous, since
P(A20, A1) = |A|21Z(zo,z1), for every X € C.

Hence the formula (3.2) induces the mapping defined
on a complex projective line : CP! - S c RP3.
In fact the mapping % is an isomorphism in the sense
of real algebraic geometry. It is also closely related to
the classical “Hopf fibration” construction [Berge77].

3.2 Polynomials on CP'

Now we turn to an idea of natural extensions of Bézier
surfaces to projective domains. In [DeRos91] it was
proved that a tensor product (resp. triangular) sur-
face as a mapping defined on an affine quadrangle
(resp. triangle) can be homogenized and extended to
a product of two projective lines RP! x RP! (resp.
projective plain RP?).

These two cases have one general scheme: there is
some projective domain and some suitable class of
polynomial mappings.

Consider the first case in more details. The ten-
sor product surface of degree (n,n) is represented by
polynomials which are homogeneous of degree n sepa-
rately on the first pair and the second pair of variables
and can be written in the following matrix form

(33) B(UO, ul) -P- B('Uo,’Ul)T,

where B" = (Bg,...,Br) is a row of homogeneous

Bernstein polynomials BP(ug,u1) = (F)ug *ul and
P = (P;;) is a square matrix with entries from R*.

In particular when n = 1 we have

P P v
200 <01 0
(o u1) (Bm ..1211) ('Ul)'

On the other hand the formula of the generalized
stereographic projection in our complex interpreta-
tion (3.2) can be expressed in the analogous form

(3.4) (z0 21) (%00 %01) (7’0).

10 X1 21

Indeed just put

9_00 = (110101 l)T) QOI = (0, —i, 1, l)T’
Qlo = (O’i’l’O)T’ _Q_n = (1,0, 0,‘-1)T.
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Note that our matrix (Qij) is Hermitian symmetric
not accidentally. This is a condition for the polyno-
mial to have real values.

The obvious generalization of for arbitrary n is de-
fined by the the formula similar to (3.3)

(35) B(zo,zl) . Q'B(io,il)’r,

where Q = (Q_ij) is a Hermitian symmetric matrix
with entries from C*. Hence we have obtained a class

of polynomial mappings defined on a complex projec-
tive line CP?.

3.3 Justification of the biangle

We are going to employ the result of [DeRos91] to-
wards the inverse direction. Consider the class of
polynomial mappings (3.5). Our program is to re-
strict the domain CP! of these mappings to a suit-
able affine domain and obtain a surface construction
A la Bernstein—Bézier .

There are two main attributes of such constructions:
some affine domain and some distinguished polyno-
mial basis defined on it which satisfies two conditions:

(a) the sum of basic polynomials is equal to 1;
(b) basic polynomials are non-negative in the domain.

Consider the case n = 1 at first. Then our class of
functions coincide with symmetric Hermitian forms
on two variables

1

1
(3.6) 3> wjzzi, @ =3 €C.

i=0 j=0

Fix an affine complex line 29 + 2; = 1 in CP!. Now
at a glance {2;Z; : 1,7 = 0,1} is a good candidate for
the base, since

1=z + z1|2 = 2920 + 2021 + 21Zp + 2121.

Note that 2921, 2120 in fact do not belong to our class
(3.4). Hence we choose the other basis f;;(zo, 21)

foo = z0Zo, for = CzoZ1 + c21Z0,

(3.7 o _
) fro = cz0Z1 + Ca 2o, 11 = 2121

From the condition (a) follows ¢+ ¢ =1 and ¢ =

(1+ia)/2 with some a € R. The formula (3.4) defines

some mapping K: C2 - R*. It has the following form

in the new basis

1 1
(38)  K(z,z1) =YY Py;fij(20,2).

=0 j=0

Now the justification of the biangle definition (Sec. 2)
easy follows. Indeed, fix an affine part of the complex
projective line CP! defined by zp +2; = 1 and in-
troduce coordinates 2 = z;. Then zp =1 — z and we



can write our basis (3.7) and the mapping (3.8) in an
affine form (2.3) and (2.2), respectively. The condi-
tion (b) is equivalent to inequalities f;;(z) > 0 which
define exactly the region D in C (see (2.1)). It is clear
from Fig. 1 that D is a biangle region bounded by two
circles with centers ¢ and ¢ Hence, a = cot(a/2).

3.4 Proof of the properties from Section 2.2

(i) The convex hull property directly follows from in-
equalities f;; > 0, for all i, = 0,1,z € D.

(i) Here it is convenient to use a homogeneous variant
of the biangle

11

39  K(w,21) =YY Pifij(20,2),
=0 j=0

where P;; = (wij, w;j P;;). Consider a line segment

in C? between two points (1,0) and (0,d) (with a

real parameter t), i.e., zo = 1 — ¢, 21 = dt. After

substituting these expressions into (3.9) we have

K(1—t,ut) = Poo(1 — t)> + (cd + &d) Py (1 — )t
+ (ed + &d)Pyo(1 — t)t + |dI* Py, t*.

If we choose d = i&/|c| then it is a boundary Bézier
curve with control points Poo_, Pyo, Pi; and weights
woo, kwio, w11, where k = (cd + &d)/2 = 1/V2.

(iii) We define the smaller biangle K' as a composition
of K and an appropriate parameter domain transfor-
mation which moves D to D' (see Fig. 3). In fact this
is the unique linear-fractional transformation which
takes points 0, 1/2, 1 to points 1/2 + i(vV2 - 1)/2,
1/2,1/2 —-i(v2 - 1)/2.

(iv) Here we use the unique linear-fractional transfor-

mation which takes points 0, 1/2, 1 to points 0, A/(1+
A), 1 (cf. [Patte85]).

4. BIANGLE OF DEGREE 2n
4.1 Basic polynomials

Here we are going to generalize the definition of the
biangle to higher even degrees 2n. In fact we already
have the general formula (3.5) with complex control
points. So we need to choose such a basis fJ}, i,j =
0,...,n, for that class of polynomials of degree 2n
that

(4.1) izn:f{;(z)=1, fi(z) 20, ifzeD.

i=0 j=0

The idea is to use homogeneous polynomials with pos-
itive coefficients k7 of the basis foo, fo1, fi0, 11

n_ {k%(foo)’_‘“f““fmﬂ(.f_w)‘, _i+ji<n,
ij — k?j(fu)z+1—n(f01)n—a(flo)n_g, it+j>n
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The coefficients &}, ,§ =0,...,n, are defined recur-
rently. For n = 1let k}y = k3o = ko = ko = 1.
When n > 1 define

kD = k5 RS R

+ (k) +KEL)/2, i+ <n,

n _ n-1 n—1 n—1 n—1
k= ki R+ R R e
i+j>n.

i+j=n,

n __ n
kj; = kn_jn—is

Here we suppose k% =0 if i or j ¢ {0,...,n}. Note
that f}; = fi; when n = 1. In fact these recurrent
expressions are calculated by expanding the left side
of an identity

n-1n-1

(42)  (foo + for +f10+f11)zz 3—1 =1
i=0 j=0

and substituting foofu1 = (f& + f2)/2

Finally it follows from the whole construction of the
basic polynomials f7, that conditions (4.1) are satis-
fied.

Remark. As a reflection of 1-dimensional complex na-
ture of the biangle construction we have the following

relation 0
n
> k= (8 )

H+j=s

4.2 Definition

Let the region D C C in the plane of complex num-
bers is defined by (2.1).

The rational biangle of degree 2n with the control
net P;; € R3, 4,5 =0,...,n, and weights w;j, i,j =
0,...,n,isamapping K: D — R? given by a formula
(see Fig. 4)

(43) K(2)= Lizo 2j=o Wii Fii £5(2)

Yico Z;Lo wi; {13 (2) '

Fig. 4. The biangle patch of the degree 4.



4.2 Properties of the biangle of degree 2n

(i) Convez hull property. The patch is contained in a
convex hull of the control points F;;, 4,5 =0,...,n,
if all weights w;; are positive.

(ii) Boundary. The patch has a boundary composed
from two rational Bézier curves of degree 2n with
control points coinciding with boundary points of the
control net

P007P017"'7P0ﬂ’P1ﬂ)P2ﬂ"“1Pﬂﬂ and
POO,PIO,---’Pno’Pnl,Pn%---,Pnn

but with a little bit different weights ;;

- (V2)In=In—-i=ill,,
Wij = n Wi
i)

(iii) Subdivision. The biangle of degree 2n can be
subdivided into one smaller biangle and two Bézier
triangles of the same degree 2n using the subdivision
of the domain D (see Fig. 3) as in the quadratic case.
Here we skip explicit formulas.

(iv) Reparameterization. The the patch will be the
same if the weights are changed according to w;; =
Xitdy;; for arbitrary A > 0.

(v) Implicit degree. Here we prove that implicit de-
gree does not exceed 2n%. At first note that the para-
meterization of the biangle (4.3) is of type (3.5) (just
it is written in a different basis). Then we can treat
complex variables z; = z; +iy; € C as pairs of real
variables (z;,y;) € R?, j = 0,1. After the following
complex substitution

1 i .
zj = 5(u5 +v;), 95 = 5(u5—v;), F=0,1,

we get an expression of type (3.3). Therefore, the
biangle of degree 2n is equivalent to some complex
tensor product surface of bidegree (n,n) and has the
same implicit degree 2n? if control points are in gen-
eral position [Manch92]. The implicit degree may be
less than 2n? if the patch is degree elevated or there
are additional base points. For instance, there are
some quartic biangles on a spindle and 2-horn cy-
clides (this follows from special parameterizations of
spindle torus [Kras97]) which have implicit degree 4.

5. SPHERICAL PATCHES

Necessary and sufficient conditions for a quadratic
biangle patch with an arbitrary angle 0 < o < 7/2 to
be a sphere are: /Py PooPig = a (i.e., & is a “true”
angle), |P00P,'j| = IPIIPijl and

w,-j _ CcoS8 Z.PuPogPij
v/ Woo11 cos(a/2) ’

where (i, j) = (0,1), (1,0).

We will sketch the proof of the sufficiency as follows.
Substitute a real argument ¢ = 2z in the basic func-
tions f;; and get foo = (1 —¢)?, for = fio = (1 - t)t,
fi1 = t2. This means that a “middle conic” corre-
sponding to real values of z has control points Py =
Poo, P1 = (wo1Po1 + wi0Pro)/(woe1 + wio), Po = Py
and weights wo = woo, w1 = (wo1 +w10)/2, w2 = wy;.
Then it is eagy to check that it is a circular arc. Hence
we get three circles on the quadric going through two
points. Therefore it is a sphere.

Consider the octant of a sphere. It can be realized
as the special quartic Bézier triangle [Farin88] (see
Fig. 5).

Fig. 5. The quartic Bézier triangle.

Using our approach we combine the octant from two
pieces: the quadratic Bézier triangle and the biangle
with a = /4 (Fig. 6).

Fig. 6. The quadratic triangle and the biangle.

Notice that we use 7 control points in the new con-
struction instead of 15 in the old one.
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6. CONCLUSIONS

We have introduced the new kind of rational surface
constructions—the biangle patch of degree 2n. It is
very similar to a well-known tensor product scheme
of bidegree (n,n). We focused on the quadratic case
when the biangle represents oval quadric surfaces.

However, it can be expected that higher degree cases
are also interesting. For example, the biangle can
be naturally extended to a projective domain cp!
which has a spherical topology. Hence, it is a differ-
ent topology type in comparison with tensor product
surfaces (resp. Bézier triangles) having a torus topol-
ogy domain RP! x RP* (resp. non-oriented domain
RP?) [DeRos91].

Also it would be interesting to investigate whether
our construction is useful for filling holes. At least
in the quadratic case we control a shape of the patch
with control points and weights more efficiently than
using implicit equations (cf. [Holst87]).

A variety of convex closed surfaces can be constructed
joining together only biangle patches. A simple exam-
ple is shown in Fig. 7, where four quadratic biangles
are used.

Fig. 7. The composition of 4 biangle patches.
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