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Abstract

Various 3D-view and 2D-projections of the abstract mathematical objects (strange attractors)
have been discussed. We are studying the nonlinear dynamical systems using WWW technologies
VRML, HTML and HTTP. Such visualization technique gives an essential improvement in the sci-
entific investigation of the nonlinear dynamical systems. The search of the homoclinic points for
dissipative dynamical systems is shown as application of such technique. Current implementation of

such software have been presented at WWW.
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1 Introduction

During last few years the computer modelling meth-
ods have been made more important under in-
vestigation of the nonlinear dynamical systems.
The chief drawbacks of the most all software pro-
grams connected with nonlinear dynamical systems
studing are:

1) static picture of system;
2) complication of control panel;

3) practically. absence of possibility invoke of
the network applications from within the
workspace of the browser.

All of that problems have been cancelled us-
ing VRML-based graphical output of the computer
modelling program.

Article is organized as follows. In Section 2 the
brief description of VRML and investigation pro-
gram of the nonlinear systems have been discussed.
Section 3 is devoted the methods for finding of the
homoclinic points for dissipative systems.

2 VRML and nonlinear dy-
namical systems

The Virtual Reality Modelling Language
(VRML) [http:97a] is a language for describing
multi-participant interactive simulations — vir-
tual words networked via the global Internet and
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hyper-linked with the World Wide Web. It is the
intention of its designers that VRML become the
standard language for interacti#e simulation within
the WWW. : ‘

VRML is designed to meet the following require-
ments:

1) platform independence;
2) extensibility;

3) ability to work well over low-bandwith con-
nections.

This features allow VRML to be a natural can-
didate for output graphical format in the investiga-
tions of the nonlinear dynamical systems.

There are three main fields in the investigation
of the dissipative dynamical systems:

1) usual compendium of knowing strange attrac-
tors;

2) scientific tool for close studying of each know-
ing strange attractors;

3) scientific tool for detalel:l investigation any
three dimension dissipative systems.

Our VRML-based realization of the first
part, which under construction, is placed at
http://desert.ihep.su/~smirnova. This workspace
contains a various kind of knowing strange attrac-
tors as Lorensz, Rikitake, etc.. This part is devoted




mainly demonstration purposes, but has a stan-
dalone scientific interest as a tool for investigation
any dynamical systems by means of user’s input
parameters, such as number of points of trajectory,
step of integration, initial point, color of the output
attractor. The query form of that part is presented
at Figure 1. Figure 2 contains an output VRML
files for Rikitake attractor with 5000 points on tra-
jectory (in the case of Rikitake attractor one can
see long transition region from the initial point up
to strange attractors).

Main advantage of our software consists in a op-
timal organization of the FaceSets in VRML envi-
ronment. The output of the analytical program is
an ordered set of points of the needed trajectory.
Further, by means of Perl-based converter we trans-
fer all points to the single IndexedFaceSet construc-
tion. This long array is organized as one VRML
primitive. Any VRML browser consider such In-
dexedFaceSet instruction as a one long primitive
instruction and any operations with all our trajec-
tory is provided in a very fast manner as operation
with one primitive. Due to that organization we
have a interactive virtual worlds even for a large
number of points (up to 10 points is under opera-
tion in our method) and even on the machine with
low virtual memory.

Another parts are devoted more closely investi-
gation of the knowing attractors (part 2) and any
three dimensional dissipative systems with you own
right side of the system of nonlinear differential
equations.

3 Detection of homoclinic

points

Most of the natural phenomena exhibit chaotic be-
havior. Its presence can be defined as the existence
of intersections of stable and unstable manifolds of
hyperbolic fixed point or as the existence of ho-
moclinic point or a homoclinic trajectories. The
existence of the latter in a dynamical system en-
ables us to discuss some of its properties. The ex-
istence of hyperbolic set follows from the existence
of transversal homoclinic trajectories.

There has not been any rigorous proof, found at
the level of a theorem, for the problem of existence
of homoclinic trajectories in a common dynamical
system. In some cases homoclinic trajectories ap-
pear at small periodic disturbances of autonomous
Hamiltonian systems with one degree of freedom,
having closed separatrix of loop. To determine
the presence of homoclinic trajectories, it’s possible
to use Melnikov’s method [Mel'n63a] (or Palmer’s
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method for n-dimensional cases [Palme84al]). But
only if the dissipation is wear and the equations for
manifolds with zero dissipation are known is this
method applicable.

This criterion does not imply anything about
the appearance of a strange attractor in dissipative
dynamical system showing a stable chaotic behav-
ior in a large area of the phase space. It should
be noted that an attractor is not a manifold. Let
us assume that a dissipative dyhamical systems are
given in which the presence of homoclinic trajec-
tories or homoclinic points should be tested, but
the equations for the manifolds of hyperbolic fixed
point are unknown.

We consider three-dimension dissipative dynam-
ical systems with strange attractor.

Let us assume that for the given nonlinear differ-
ential equations there exists intersection stable and
unstable manifolds for hyperbolic fixed point and
a Poincare map. In this case the unstable mani-
fold returns to the crossing plane. In this case the
Poincare map is not determined in the intersection
of the stable manifold and the crossing plane, and
is not continuous in its neighbourhood.

There are several ways of searching for homo-
clinic points. We consider three of them [Klime96a).
Method 1. One constrict the stable and unstable
manifolds for hyperbolic fixed point and finds the
intersection of these manifolds.

While building the stable manifold for a hy-
perbolic fixed point zo with real eigenvalues, the
latter manifold can be approximated with a plane
stretched over eigenvectors thtr)lnging to negative
eigenvalues. Approximation of curved manifolds
W* and W* with planes in some neighborhood of
the hyperbolic fixed point induces error in the com-
putation of invariant manifolds. The error can be
estimated using quadratic asymptotics of the mani-
folds mentioned [Hassa80a]. Some other difficulties
in constructing the stable manifolds are discussed in
paper [Parke87a]. For example, let us consider the
construction of the intersection of the stable man-
ifold with the crossing plane, and of the Poincare
map, for Lorenz attractor (Figure 3). Because of
the exponential instability of trajectories on strange
attractors, the probability of getting intersection of
the stable manifold with the crossing plane with
Poincare map is a small value [Sparr82a).
Method 2. For building the stable and un-
stable manifolds of hyperbolic fixed point the A-
lemma [Palme84a] can be used. The lemma can be
applied to a local diffeomorphism and even to a C-
mapping in a Banach space in some neighborhood of
the hyperbolic fixed point. It demands that the par-
tial derivatives are uniformly c‘bntinuous, and that
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both the stable and unstable manifolds are of finite
dimensions. So the local stable (unstable) manifold
of the hyperbolic fixed point of the diffeomorphism
should always be considered in a neighborhood of
the fixed point in the stable (unstable) subspace of
linear part of mapping f.

As an example we show the construction of the
stable and unstable manifolds for the Lorenz at-
tractor (Figure 4) by means of the A-lemma. It
was made clear that Cantor structure exists in
neighborhoods of homoclinic points of these attrac-
tors [Klime91b).

Method 3. Now, we find the homoclinic points
in the strange attractor wihtout requiring the cal-
culation of the manifolds of the fixed point and the
construction of the intersection of the stable mani-
fold and crossing plane W of the Poincare map.

Let f(z) be the first point where the unstable
manifold originating at # € W intersects the plane
W. This defines the map f: W\S — W. Here S is
a line of discontinuty, it divides W into two parts,
W, and W;. Then there is a unique limit p; of the
images of the points from Wi, approaching S from
one side, and there is a unique limit pa of the im-
ages of the points from W,, approaching S from the
other side.

Let us consider the process of searching for ho-
moclinic points. To find a homoclinic point we
use the fact that the Poincare map is not deter-
mined in the intersection of manifolds and is not
continous in its neighborhood. First, we test the
Poincare map for discontinuity in the neighborhood
of some point. As soon as the neighborhood is
found, we search for a point from the crossing plane
where the Poincare map is not defined. Let us
denode this point by z on the plane. Then f*(z)
— the images of point z obtained by letting the
mapping f act k times — are situated along some
curves (or curve) on the plane. Let these curves
be called the right (RB) and the left (LB) branches
respectively. Let Pj3 be a segment of curve LB.
We select points py,p2 € Pi2 C LB such that
p1 € LBNW; , p; € LBNW,, and f(pl) € LBNW,,
f(p2) € RBN (W, UW,;). Then we find sequential
points p),p} € PJ, C Pi;'..- C LB such that
f(®)) € LBNW; and f(p2) € RB N (W1 U Wy).
It is clear that if as we have homoclinic points, we
have lim;_,o [ P{; = p* € S, where point p* is a
point for which f(p*) is ill-defined. If such a point
can not be found, there are no strange attractors in
the dynamical system.

Modifications of this method for attractors wich
one branch of the Poincare map is obvious. This
algorithm was used for finding homoclinic points of
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the Lorenz and Rikitake attractors, of the Rosler
attractor and of a simple attractor.The results ob-
tained for the coordinates of the homoclinic points
are shown on Table 1 [Klime96a).
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Figure 1: Installation of parameters for dynamical systems
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Figure 3:

attractor.

Intersection of stable and unstable manifolds of the
origin with the crossing plane and the Poincare map for Lorenz

Figure 4:

Stable and unstable manifolds of the origin

Lorenz attractor.
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