Software Tools for Contenf Based Hypervideo

Jodao Martins, Nuno Correia, Nuno Guimaraes
{jota, nuno.correia, nuno.guimaraes}@ inesc.pt
INESC, R. Alves Redol 9 - sala 636, 1100 Lisboa, Portugal

ABSTRACT
In most current hypermedia systems, video and audio data are considered still as navigationally opaque
data, without an accessible internal structure, and where no hyperlinking is performed. This article
describes an object model, realized as a library of C++ classes, for the development of annotation and
navigation applications in video spaces. The object model considers not only aspects related to the
structuring of these materials, but ways in which they can be integrated with others (images, text, etc),
enriched with automatically extracted information, as well as presentation and interaction aspects.

Keywords: video hyperlinking, video navigation, movie-only spaces, automatic content extraction.

INTRODUCTICN

Current hypermedia systems allow the integration of
heterogeneous materials like text, images, video and
audio. Only for the first two cases, however, are the
interaction mechanisms and presentation forms well
studied, and is taken into account the material’s
internal structure. The World Wide Web illustrates
this fact well. Video and audio are, on the other hand,
still viewed and manipulated as a whole, as blocks of
opaque data, without an accessible internal structure.
This is due to several problems, not only related with
the larger complexity of these types of information,
but also with process, storage, and access problems,
and largely with its intrinsically dynamic nature.

This work focus the creation of a set of objects
capable of making the internal structure of this
information (with a special emphasis to video
materials) visible, as well as the study of ways to
interact with this data, the presentation’s aesthetics,
and guiding this interaction by the materials’
contents. All this is supported by mechanisms that
give an accessible structure to the video, allowing
references to it as a whole, in temporal terms (an
image or block of images of a sequence) or in spatial
terms (a region in an image or block of images of a
sequence). Moreover, we sought to make it easier to
build a context to the video, enriching it with the
result of automatic content extraction algorithms like

the ones described in [Olive97] and [Marti97]. The
temporal ‘nature of the material is, however, the
essential difference between other types of media and
video or audio, and the most important aspect to
consider.

RELATED WORK

The processing and navigation in video spaces has
already been studied in technical literature, and some
of the related work is described below.

The Amsterdam Hypermedia Model [Hardm94] is a
framework that extends the Dexter model [Halas90],
but adds the notions of time, presentation attributes,
and link context. The introduction of time in what
was a static model allowed the development of the
notions of collection, in which its components are
presented simultaneously, and synchronisation, in
which the order of presentation of several elements is
defined. The presentation attributes define the values
of some global attributes of the system, e.g., the
volume of the audio pieces, that no longer need to be
specified individually for each element. Finally, the
link context solves the problem of deciding what
happens when a link is followed, defining what will
happen to the elements being displayed, and what
elements are presented after following the link.

In another fundamental work [Liest94], the aesthetic
and rhetorical aspects of integrating video in

- 246 -

hypermedia were considered. The articles stresses the
importance of achieving a smooth integration of the
different kinds of materials, and specifically, text and
video, where the first is “actively” read, and the
second “passively” viewed. Some rules were derived
from the basic idea that the techniques used in movies
to achieve continuity are somehow usable in this
environment, which in turn lead to using icons to
signal the presence of links in video, and giving
dynamic characteristics to text, changing it into a
video.

In the ConText system [Daven95], a new way of
displaying information, the Evolving Documentary,
is described, where the objective is to support a
narrative approach to browsing a multimedia
database, with a partnership between the viewer and
the presentation engine. The browser suggests
narratives basically by taking advantage of the
descriptive associations, thus changing an author’s
task to the selection of those materials and the
construction of their descriptions. This system
satisfies users who do not know either what is in the
database, or what they want to see, and to whom a
retrieval-by-query approach is not applicable. During
browsing, the user interaction is not required, as a
dynamically-attributed weight system allows the
browser to determine the order in which the elements
in the database shall be presented.

Navigation in movie-only hypermedia, or
hypermovies, is considered in [Giess95]. The
common navigational concepts of browsing, maps,
history links and tours are explored and enhanced for
this new space, and the importance of traditional film
theory and of reducing user disorientation is once
again stressed. The author uses the basic concept of
track of a movie, where a track provides information
about one of its specific aspects, as a structuring
concept, and links are attached not to movies or
segments of movies, but to segments of tracks.
Several tools where implemented to illustrate the
ideas mentioned. The importance of the path
mechanism in hypermedia, somewhat overlooked in
ihis article, is extensively developed in [Zellw89],
where paths are considered to be first class citizens of
hypertext systems. A path is defined to be the
presentation of successive entries, ordered in a way
that all or most of the navigation decisions are made
by the author in advance. These entries can be simply
nodes in the hypermedia graph, or active nodes,
where active nodes might be used to animate pictures,
perform computations, etc. Three sequencing models
are introduced: the sequential path, the branching
path, and the conditional path, where a condition is
evaluated to decide which way to go, and three types
of playback control : single-stepping, automatic, and
browsing.

Marc Davis, in Media Streams [Davis96], presents an
extensive iconic annotation language, while arguing
that keyword annotations are not enough to maintain
a consistent and scalable representation of the salient
features of video content, and don’t allow the
creation of reusable video archives. He also presents
a minimal set of properties with which the media
should be annotated, and proposes that the
segmentation of movies into smaller units - clips -
[Zhang97] shouldn’t be fixed and hardwired, like in
most current approaches, but rather obtained through
a series of multi-layered annotations with precise time
indexes, allowing for different segmentations of the
material. The concepts are illustrated with several
applications.

The HyperCafe [Sawhn96] is an experimental
hypermedia prototype, developed to illustrate what a
complete hypervideo system can be like, exploring
forms of display the information, how to represent
links opportunities, etc. The user is placed in a virtual
café, composed primarily of video clips of actors
involved in fictional conversations, and is left free to
navigate in that space, following links and visiting
nodes in the narratives. The HyperCafe is not a
development toolkit, but a closed environment to
illustrate a set of concepts.

In the WebStage [Yamag97], a active media
enhanced WWW browser, the television metaphor is
used to display Web pages, in an attempt to
encourage passive (reading, as mentioned in
[Liest94], is an active operation) users to access the
WWW. The main features identified in the TV
metaphor were: a visually and auditory enhanced
appearance; simple operation; continuous output (this
element also having been explored in [Sawhn96]),
and these principles led to a system that converts
conventional HTML pages into multimedia
presentations. The three benefits desired were
reducing the cognitive overload of reading text,
improving the comprehension of abstract information
in a glance, and improving the ability to distinguish
between different types of information.

In the field of automatic content extraction, relevant
work was done in [Zhang94], where television news
reports were parsed with the aid of a @ priori model
of the programs’ structure. The news video was first
partitioned into shots, using cut detection algorithms,
and then the shots were classified into anchorperson
or news shots. These techniques were further refined
and studied in works like [Zhan97] and [Oliv97],
where more processing algorithms for video are
presented, allowing a better detection of cuts (defined
to happen when the difference between consecutive
frames is above a given threshold), the detection of
gradual transitions between shots (fades, dissolves,
and wipes), motion based segmentation, camera

- 247 -

operation (still images, pans, tilts, zooms) and object
motion analysis, key frame extraction (frames that
can be used as representatives of an entire shot),
characterization of the lighting conditions (outdoors
or indoors scene), scene segmentation (decomposing
of an image into its main components), which
includes caption extraction, edge detection, etc.

There is also some work on the field of automatic
audio content analysis audio. [Pfeif96] introduces
several frequency-domain algorithms to aid in the
detection of violence. These are able to recognize
silences, speech, music, noise, and sounds indicative
of violence, like gun shots, explosions, and cries.
[Marti97] does similar work, distinguishing between
music, silences, and speech, but using only time-
domain algorithms.

HYPERVIDEO MODEL

Our model for Hypervideo includes several of the
concepts mentioned above. We want to be able to
represent the media in our programs, preferably
hiding data format details from the user while still
compromising efficiency as little as possible, and
manipulate them uniformly. Using this media
representation, we wish to be able to specify links or
link opportunities from this information to other data
nodes, be it dynamic or static media. This will imply
a reference mechanism, which should be able to
specify both temporal and spatial link opportunities.
Also, we wish to use the WWW as a potential data
source, and as such include some support for this
medium. Simple textual/keyword annotations must
also be supported, in what should be an extensible
structure. The annotations and links from a given
media object are to be considered as the meaning, or
context, of this object, and as such be stored in the
same structure. Also, for each media object there
must be the possibility of having several different
contexts.

As to the viewing, it must be possible to display all
the different kinds of media, and the two kinds of link
mentioned above must be included. These views
should implement video-audio synchronization, and
as such are the most platform-dependent module.
These views will also be able to display the context
-of a media (all its annotations and links), and a path,
a journey through a set of the stored media. The
notion of navigation history is to be implemented as a
particular case of a path, but is structure which is
created based on the user’s actions.

Finally, it should be possible to augment media
context’s by supporting the creation of content-based
annotations, extracted by automatic processing

algorithms, and perform media conversion, the
smooth integration of different kinds of media into
one same navigational and aesthetic environment.

All of these concepts are included and available in
our application-development toolkit.

PROGRAMMING MODEL

Several C++ classes were created with the purpose of
implementing the model described above. The four
basic modules are described below.

Locators

Locators are the simplest and most basic element of
the environment, and are used to address the
materials. There are two main kinds of locators,
Region Locators and Time Locators.

Region locators allow for references to spatial areas
in the materials, be it words or sentences in text,
regions in images/ videos, frames in audio, etc. Time
Locators qualify the Region Locators, and are used
only when representing data with temporal
characteristics, like video and audio. These allow for
references to point time locations or to interval
locations, and are an extension of the MADE
(Multimedia Application Development Environment)
Project synchronization model (see [MADE92] and
[Corre94]).

Annotations

Now that we have the locator objects to make
references, we can add the annotations, which are
used to associate information to the materials. There
are several classes of annotations, but the two most
elementary ones are Label Annotation and Action
Annotation. Objects of the first are used annotate the
material with strings of text, with subclasses of this
being used to refine the associated data. Action
Annotations are used to denote actions that must be
performed when the material is accessed. Two
examples of this are play and preview.

Annotations can be grouped in the Context class,
which is also associated with a Media Object. The
Context of a Media Object gives the meaning of that
Media Object, and for the same Media Object there
can be several Contexts, built according to the
individual goals of different applications or uses,
corresponding to different meanings or points of
view. This class effectively simultaneously
implements the concepts of timeline, path, and
hypermedia graph through a node. The context
contains, additionally, the specification of what

-248 -

should be done when the display of the media object
ends: loop back to beginning, jump to another media
object/context, or just stop.

Media Objects

The Media Object classes are used to model the
materials to manipulate. Again, two elementary
subdivisions were made, into Simple Media Objects
and Stream Media Objects. We consider Stream
Media Objects to consist of sequences of Simple
Media Objects. In this view, an image in a stream of
video is a simple object, as is a word in a text, a pixel
in an image, or a frame in an audio stream. The full
hierarchy for the Media Objects in depicted in the
following diagram (Fig. 1).

The hierarchy is divided in two layers. The top layer
classes are platform independent, and completely
generic. The bottom layer classes, however, deal with
specific formats, and as such are platform dependent.
These classes provide an easily extendible interface
for the I/O operations, and “convert” these formats
into the object model.

The Stream and Simple Media Objects sub-
hierarchies are interconnected by another set of
classes, the Iterators. Each of this classes is
associated with one class in the Stream hierarchy, and
gives the application access to the individual
elements they contain.

MediaObject

Figure 1 - Simplified class inheritance
diagram of the Media Object hierarchy. The
classes above the dotted line are platform
independent, the classes below the line are
format dependent.

The last of the class in this section is the Media
Factory. The Media Factory objects create Media
Objects from Uniform Resource Locators, or URLs
[W3C], after identifying its type. The use of URLs to
identify objects allows a simple integration with
Internet-based applications, and are presently a de-
facto standard. The Media Factory provided is
capable of dealing with all the formats and classes
initially implemented, and is easily extended to deal
with extra formats.

Views

The Views are the most complex of all the classes
implemented, and are mostly platform dependent.
The main hierarchy is shown in Fig. 2 and described
below. Generally, views display information,
represented in the application as Media Objects, and
each view understands a specific type of media
information. Based on this assumption, we created an
hierarchy of views that closely mirrors that of Media
Objects.

The top-most class is the abstract class View. This
class provides the general characteristics to be
implemented and existent in all the subclasses, and
contains auxiliary methods susceptible of being
useful in the subclasses. Below this are four classes,
used to display the major four kinds of materials
considered in this work: text, audio, video, and
image. Each of these classes has subclasses that
implement specific ways of viewing the information.
For example, an image can be displayed in colour or
black and white, a video segment can be shown in the
“movie paradigm”, where images are displayed
superimposed and in rapid succession, or we can see
a movie of contours, or, more generally, a movie
with the results of applying some algorithm to the
images before displaying. All the views must
implement several common navigational-related
methods: play, stop, pause, and resume.

The bottom-level classes of the hierarchy are the
Preview classes. In this classes, the play method
starts the display of a “short” version of the Media
Object, a kind of abstract. In a video, this might
correspond to a small sequence of reduced frames
shown repeatedly [Brgn91], or the first few words of
a text document.

-249 -

Figure 2 - The View class inheritance
hierarchy, simplified. The names of the classes
were shortened for clarity. For example, the
full name of the Preview class under Scroll is
actually ScrollTextPreview, etc.

The View classes are, generally, assigned the
function of displaying the information represented by
the media object they contain. An extra element is,
however, relevant in these classes. In our object
model, we defined one of the views that can coexist
in an application as the Master view, the other being
slave views. This object is then responsible for the
coordination of the whole synchronisation and
navigational processes. It is this view that responds to
user interaction with the application, reads the
timeline represented by the Context, assigning and/or
creating other views (or previews) Lo windows in the
display area, and keeping the navigation history. The
master-slave concept is here used not only in its low-
level meaning, where it is used to synchronize, e.g.,
audio and video (the audio being the master stream),
but also in a high-level, or semantic, meaning, where
a master view displays the most relevant information,
the slaves corresponding to “accessory” information.

These classes must have additional data, namely an
object of the Geometry Manager class, used to
manage the screen locations of the information being
displayed, and the already mentioned Context. To
finish, these objects are also responsible for the last
of the important element in the system, described
below.

Paths / History

A path is, as mentioned in [Zellw89], the ordered
traversal of links. Our model implements the
sequential and branching paths by extending the
concept of Context. Whereas the Context defines a
full navigation graph passing through a specific
Media Object, the path defines a subset of this graph,
with less (if any) link opportunities, and a predefined
content, using parameterized play annotations to
represent the entries in the path.

The user’s interaction with the system, together with
the initial Context or Media Object which was
assigned to the view, defines a navigation history.
This simple record of the user’s actions, performed
on request by the view, is easily converted to
sequential paths, and can be later replayed. This
makes an author of every user.

The concept of path allows the implementation of yet
other relevant concept in systems of this kind: the
Guided Tour (further developed in [Halas87] and
[Hammo88]), a kind of virtual journey through a
subset of all the information stored in a database or
multimedia system, where all the nodes to visit were
defined in advance by the author.

SAMPLE APPLICATION

A sample application was implemented to allow users
to navigate in video spaces. This application, as well
as the programming model described above, were
implemented using Microsoft Visual C++ 4.2, under
Microsoft Windows 95. The general look of the
application is shown in Fig.3.

The application allows navigation in a hypermedia
space where video is the most important media, but
audio, text, and still images are also possible nodes.
The contexts for these spaces were built using
algorithms implemented either under Windows 95 or
Sun Sparc Unix environments, using the Context’s
1/0 platform- independent interface, and some hand-
made textual annotations were also added. All these
materials are stored in a local filesystem.

I layer p

Figure 3 - The Video Navigator.

The player’s window is divided into several regions.
(This region distribution is not fixed, as a geometry is
not imposed on the applications). The main region is
currently showing a video about the Beatles, assigned
to a MovieView object, with a rectangle labeled “1”

-250 -

over one of its members. On the sides there are eight
regions, all of them empty except for the one on the
top left, region one, which is showing a preview of
another movie (a door opening and closing), and
represents a link opportunity corresponding to the
region drawn over the image. The eight side regions
are Preview regions (corresponding to Preview
objects, in the case of region one, a MoviePreview).
The application dynamically creates or assigns an
appropriate Preview object to each of the regions.
Clicking this window, or the rectangle in the main
area, follows the link.

In the bottom there is a larger area, which is destined
to display textual annotations (a TextView object).
Finally, there are two sliders, one of them indicating
the progression on the current main movie, and the
one on the bottom indicating the progression on the
context. Both of these can be manipulated to advance
or rewind the movie or context, respectively.

The navigational controls are in the top right, and
include open, play, exit, record path, go back, and
pause. Below these there’s still a progress indicator,
and a text label indicating the time progress of the
movie. The options button leads to an extra window
that allows the user to access a series of application
options, and the author mode of the application - the
annotator -. The open button allows the user to select
an AVI file, a Context, or a Path.

This application allowed us to study the feasibility of
the implementations, and do some preliminary
considerations about the interface’s user friendliness.
The player has been evaluated by several users, and
although considered easy to use, some complained
about the high level of mental concentration required
in deciding about whether or not a link should be
followed. This finding lead us to impose a minimum
time length for the links over video.

CONCLUSIONS AND FUTURE WORK

This paper describes the main components of our
programming model for hypervideo, and shows how
it can be used to build hypervideo annotation and
navigation applications. A video navigator
application, coded to demonstrate the concepts, is
also briefly described. This application was tested
with videos that are presently annotated only with the
results of video processing algorithms, which extract
information about cuts, gradual transitions, camera
movements, scene’s main components, and captions
[Olive97], and also some simple audio processing
techniques, which extract information about silences
and performs very accurate speech-music
discrimination [Marti97]. Although there is a lot of

work done in the field of audio processing and
specially speech recognition, these imply complex
and heavy computations, and are out of our research
scope, which focus mainly in video.

Real hypervideo systems are, in our view, still in
early stages of development, and require a high
cognitive effort on the users, as well as high-
bandwidths for transmission and storage. For these
reasons, the authors consider that further work must
be done before this kind of applications reaches the
easy-of-use and integration level of the World-Wide
Web, limiting it to professional production
environments and/or expert users.

We are currently working on finishing the annotator
module of the player, and designing a structure
visualization application. The former will allow for
easy human-based annotation of the materials and
will integrate the automatic augmenting of
annotations with the results of extra video processing
algorithms. The later will permit the user/author to
have a general view of the hypermedia network, and
use it as a navigational aid. A query mechanism is
also under consideration. Preliminary work has also -
been done on porting the player to the Java
programming language, allowing for its
demonstration on the WWW.

REFERENCES

[Brgnd91] Brgndmo, H, Davenport, G: Creating and
Viewing the Elastic Charles - a Hypermedia Journal,
in McAleese, R and Green, C (eds.) Hypertext: State
of the Art, Oxford:Intellect, pp. 43-51, 1991.

[Corre94] Correia, N, Guimardes, N: Time and
Synchronization Objects in Multimedia Application
Construction. In Proceedings of the Fourth
Eurographics Workshop on Object-Oriented
Graphics, Sintra, Portugal, 1994.

[Daven95] Davenport, G, Murtaugh, M: ConText :
Towards the Evolving Documentary. In Proceedings
of ACM Multimedia, pp. 381-389, 1995.

[Davis96] Davis, M: Media Streams: An Iconic
Visual Language for Video Representation.
Originally published in Readings in Human-
Computer Interaction: Toward the Year 2000,
available online at
http://web.interval.com/papers/mediastreams/.

[Geiss96] Geissler, J: Surfing the movie space:
advanced navigation in movie only hypermedia. In
Proceedings of ACM Multimedia’95, San Franscisco,
USA, 1996.

-251-

fHalas87] Halasz, F, Moran, T, Trigg, R, NoteCards
n a nutshell, in Proceedings of the ACM CHI+GI'87
Human Factors in Computing Systems and Graphics
Interface Conf., pp 45-52, Canada, April 1987.

[Halas90] Halasz, F, Schwartz, M: The Dexter
Hypertext Reference Model. In Proceedings of the
Hypertext Standardisation Workshop. National
Institute of Standards and Technology, USA, January
1990.

(Hammo88] Hammond, N, Allinson, L: Travels
around a learning support environment: rambling,
orienteering or touring? In Proceedings of the ACM
CHI’88 Conference, Washington DC, pp. 269-273,
April 1987.

[Hardm94] Hardman, L, Bulterman, D: The
Amsterdam Hypermedia Model Adding time and
context to the Dexter Model. Communications of the
ACM, 37(2):50-62, February 94.

[Liest94] Liestgl, G : Aesthetic and Rhetorical
Aspects of Linking Video in Hypermedia. In
Proceedings of ECHT’94, pp.217-223, September
1994.

[MADE92] MADE (EEC funded Esprit Project).
MADE 1 (EP 6307): Technical Annex, March 1992,

[Marti97] Martins, J, Gouldo, M, Oliveira, I: An
Experiment in Television , In Proceedings of
RECPAD’97, The 9" portuguese conference on
Pattern Recognition, pp. 209-212, Coimbra,
Portugal, 1997.

[Olive97] Oliveira, I, Correia, N, Guimardes, N:
Image Processing Techniques for Video Content
Extraction. In Proceedings of the Fourth Delos
Workshop, San Mineato, August 1997.

[Pfeif96] Pfeiffer, S, Fisher, S, Effelsberg, W:
Automatic Audio Content Analysis, University of
mannheim, Department of Computer Science,
Technical Report TR-96-008, 1996. Available online
at http:/fwww.informatik.uni-
mannheim.de/~lienhart/papers/tr-96-008.ps.gz .

[Sawhn96] Sawhney, N, Balcom, D, Smith, I
Hypercafe: Narrative and aestethic properties of
hypervideo. In Proceedings of Hypermedia 96,
1996.

[W3C] Extensive information about the WWW and
URLs is available online on the Internet at
http:.//www.w3.org/, the WWW Consortium pages.

[Yamag97] Yamaguchi, T, Hosomo, I, Miyashita, T:
WebStage: An Active Media Enhanced World Wide
Web Browser. In Proceedings of the ACM CHI'97,
available online at
http:/fwww.acm.org/sigchi/chi97/proceedings/paper/t
y.htm .

[Zhang94] Zhang, H, Yihong, G, Smoliar, S, Yong,
T.C.: Automatic Parsing of News Video, in
Proceedings of the IEEE ICMCS’94 Conference,
Boston, USA, 1995.

[Zhang97] Zhang, H: Video Content Analysis and
Retrieval, in Handbook on Pattern Recognition and
Computer Vision, World Scientific Publishing
Company, 1997.

[Zellw89] Zellweger, P: Scripted Documents: A
Hypermedia Path Mechanism. In Proceedings of
ACM Hypertext '89, November 1989.

-252 -

