FUNDAMENTAL ALGORITHMS FOR
PROJECTIVE VOXELIZATION

Reginald C. Jegathese
CAD Group, National Informatics Center
CGO Complex, New Delhi - 110 003, INDIA
crj@ciml.dethi.nic.in

Eustace Painkras
Department of Electrical Engineering

State University of New York at Stony Brook
Stony Brook, NY - 11794, USA
epainkra@sparky.ic.sunysb.edu

Edmond C. Prakash
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign
Urbana, IL - 61801, USA
eprakash@ncsa.uiuc.edu

Abstract

We develop a voxel-based approach to volume mod-
eling, in which the 3D object is represented as a set
of voxels rather than a collection of surfaces. Inter-
pretation with voxel-based representations is an intu-
itive paradigm, which has been shown to be theoret-
ically sound and possesses enormous computational
advantages over modeling with surface-based repre-
sentations of 3D objects. However, there is no efficient
algorithm for volume modeling of graphics primitives.
In this paper, we attempt to bridge the gap by an effi-
cient projective voxelization technique suitable for all
existing 3D graphics primitives.

Keywords: Volume Graphics, Voxelization,
CAD/CAM

1 INTRODUCTION

A widely accepted framework for modeling in graph-
ics systems is the surface-based approach. The idea is
to represent an object as a set of well defined prim-
itives. These primitives are stored in an object data
base which is combined with a rendering mechanism,
used to visualize the object from its surface represen-
tation. Given the object database, which is assumed

to capture the real object as a collection of primitives,
the question is how close does this represent the real
object? Is this the efficient, fast, and accurate way to
consistently represent the real world object?

Solving this question is a real hard problem due to the
discrete nature of the computational process. Many
other forms of modeling and rendering have been de-
veloped over the past two decade at least partly to
avoid the computational difficulties. These were also
shown hard to compute. In order to mimic the real
world object, increasing the number of primitives for
representation by automatic sub-grid generation and
global rendering techniques such as ray casting and ra-
diosity have been attempted which take not less than
a day on the most sophisticated systems today. This
is likely to worsen as the model complexity grows ex-
ponentially. Not to add the texture modeling schemes
which suffer from fast and large memory bandwidth
requirements for real world textures which require
multiple very large resolution textures.

A significant amount of recent work on modeling is in-
fluenced by convincing arguments of [KCY93] wherein
volume modeling is a distinct mode of modeling and
there is a computational theory that accounts for both
its speed and flexibility. Most of the work in this di-
rection still views modeling as a research topic as de-

- 503 -

scribed in [WK93, WK94]. None of these works, how-
ever, meet the strong day-to-day usage requirements
for efficient implementation and use of volume model-
ing.

Kaufman[Kau87b, Kau87a] presents voxel modeling
algorithms for scan-plane voxelization of primitives.
Abundant memory availability does not improve the
performance due to the scan-line intersection ap-
proach in the design of these algorithms. Unfor-
tunately the intersection computation is an expen-
sive process which needs to be eliminated. Hardware
schemes obviously accelerate performance. But an al-
gorithm by Naeem and Yagel [SY95] which entirely
depends on a particular hardware is not usable on any
other system because of the dependency on a specific
hardware. Implementing the same scheme on software
is not computationally efficient either. Selecting a dif-
ferent model which is most suitable to the real world,
is computationally hard. So we select a new method
which solves all of these problems and therefore sup-
ports the voxelization based volume modeling of the
entire spectrum of 3D graphics primitives which we
show is feasible in our approach.

1.1 Voxel-Based Modeling

In this work we embark on the development of a voxel-
based approach to volume modeling. It is not hard to
motivate a voxel-based approach to modeling from a
visualization point of view and indeed, many of the
proponents of this approach to modeling have been
visualization scientists. In the CAD/CAM commu-
nity this approach can be seen as an example of CSG
Boolean operations on voxels for geometric modeling
and has already been studied in [CMP95]. The aim of
this work is to further this concept for day-to-day use
of volume graphics.

1.2 Recent Research

We now briefly describe the main contributions of the
voxel-based approach developed in this paper. Our
results can be grouped under 3 categories that can be
informally described as follows:

e We show that projective voxelization supports
correct determination of voxels.

o We define the set of primitives for projective vox-
elization and we show that these primitives can
be used for efficient modeling.

e We show that projective voxelization lowers the
dimensionality of the voxel modeling problem and
therefore reduces the computational complexity
of the problem.

We show that in many cases where modeling with the
traditional surface representation is hard, we can per-
form efficient modeling with voxels. This includes op-
erations such as voxelization and CSG.

1.3 Results

In this paper we characterize a set of projective algo-
rithms for computationally fast and efficient functions
for volume modeling. The preliminary results from
this work indicates the feasibility of volume modeling
by projective voxelization of primitives. The perfor-
mance indicates a linear improvement in time with
increasing number of primitives.

2 PRELIMINARIES

Rasterization: The process of determining the pixels
that will provide the best approximation to the desired
"graphics primitive’. The resulting pixels are stored in
the graphics memory known as the frame-buffer.
Graphics Primitive: is a set of functions which
are not limited to 2D and 3D points, lines, polygons,
curves, surfaces and polyhedra.

Voxelization: The process of determining the vox-
els that will provide the best approximation to the
desired ’graphics primitive’. The resulting voxels are
stored in the graphics memory known as the volume-
buffer. Voxelization for volume graphics is analogous
to rasterization for surface graphics.
Volume-buffer: A volume-buffer is a 3D logical
frame-buffer, which can be assumed to have N, frame-
buffers to store all the N, slices of the 3D world in dis-
crete/voxel form. Since all the N, slices are available,
the traditional Z-buffer is made obsolete in volume
graphics.

Addressing the volume-buffer: It is conceptually
easiest to consider a voxel in a volume-buffer to have
three-dimensional coordinates z, y, and z. Digital
memory is however organized as a single linear list
of addresses. Thus it is necessary to convert from the
three-dimensional z, y, z representation to the linear
list. Address is computed using the expression:

Addr = 2 X Tmaz X Ymaz + ¥ X Tmaez + 2

where Tmaz X Ymaz X Zmaz 18 the resolution of the 3D
volume buffer.

3 MOTIVATION

Why is this type of volume modeling important? One
reason is historical, the obvious evolution from pixels
to voxels for graphics modeling. The second reason is

-504 -

functional, special hardware and software with abun-
dant memory which helps realize a volume model that
conveys lot more information than traditional models.
The third reason is economical, where volume graph-
ics is no longer expensive. With a GB of memory on
a workstation becoming a reality, this cost effective-
ness pushes the technology ahead at affordable cost.
Finally, a new synergy among several modalities, in
a seamless manner is achieved with volume modeling.
With the integration of CAD and CAM, medical with
synthetic simulations, etc., volume modeling is now
practical with this emerging modeling scheme.

4 PROJECTIVE THEORY

4.1 Projective Line Voxelization

Definition 1. The voxels of a line segment in three
dimensional Euclidean space E? can be determined by
projecting the line onto that axis, to which it is most
inclined.

Claim 1: The projected length or cartesian compo-
nents of a line segment indicates the orientation of the
line segment with the orthogonal axis.

Proof: Three mutually orthogonal unit vectors de-
noted by i, j and k known as the cartesian unit vec-
tors, are parallel to the positive z, y and 2 directions
respectively. A vector v = ai + bj + ck is then a linear
combination of cartesian component vectors, where a,
b and c are the cartesian components. In 3D graph-
ics, a line segment is represented as an end-point form
(1,91, 21) and (z2,¥y2,22). When represented in vec-
tor form it becomes v = (z2 — z1)i + (y2 — y1)j +
{22 —z1)k. The projected length < dz,dy,dz > on the
orthogonal axis i, j, k are then respectively, |22 — 21},
ly2 — 31| and |22 — 21]. The maximum the projected
length, the maximum is the orientation of a line to
that particular axis. We use this property to deter-
mine the number of voxels for the discrete representa-
tion of a line segment.

Claim 2: For any line in E® all the voxels which lie
along the line can be identified from the maximum
projected length on the major axis.

Proof: We define a voxel-line or a discrete-line as a
set of voxels which approximate a 3D line. Let us
consider a line segment which lies on the X-axis. The
projection of this line on the X-axis determines the
number of voxels for that line segment.

Claim 3: A line in E®, when projected, reduces to a
computational problem in E!.

Proof: A continuous line is represented as y = f(z) in
E? and z=f(z,y) in E®. While projecting this, we fix
the increment to be 1 along the projected axis. This
reduces the complexity of computation from E? to an

one-dimensional problem which is a function of the
projected length. In the case of a line, we index only
on the axis which has the maximum length of projec-
tion. For example, if the line projects on the X-axis,
then z is incremented by 1, the y component of the
voxel is computed as a function of dz, the z compo-
nent of the voxel is also computed as a function of dz.
If there is a variation in scalar/color between the end
points of the line segment, they are also computed as
a function of dz.

Claim 4: The voxels obtained from projective vox-
elization are continuous in voxel space.

Proof: This condition where we increment the maxi-
mum projection by 1 voxel and other projection with
a fraction less than 1, ensures all voxels determined by
the projection approach is continuous. What we mean
by continuous here in discrete voxel is they touch each
other at least at a vertex, edge or face of a voxel.
Construction: Figure 1. shows the different buffers
used in voxelization of a 3D line segment. The line
< T1,Y1,21 > 10 < Ta,Y2, 22 > needs to be discretized
into the component voxels. The first step is to identify
the orientation of the line segment. In this test case
the line projects on the X axis. The next step is to
compute the amount of increment for z,y, z and color.
Since the line projects on X axis, the increment along
the X is 1. The difference in y, z and color are divided
into 5 — x; increments and are added as we march
along X. The increment for the y component when
we move from y; to the next voxel along the line is

Ay = (y2 — 1)/ (x2 — 71)

Az = (290 — 21)/(x2 — 21)
Ac = (colors — color1)/(z2 — 21)

For all the voxels along the x-direction we just in-
crement as follows:

Yi+1 =¥ + Ay
Ziy1 = 2 + Az
coloryy1 = color; + Ac

If the maximum orientation of the line is along Y,
then the projection is done on the Y-axis. And sim-
ilarly for Z. The 1D - buffers in the figure is just to
indicate the components to be estimated for all voxels
in the line. But in actual practice, we store the voxel
values directly into the volume buffer and not in the
1D buffers. However the 1D buffers are used when we
voxelize triangles. The complete algorithm is shown
in Figure 2.

- 505 -

X Y Z C,v
4 Vo=<,1,0>
V1=<92,0> e}
o .-
J oy vl 2
v0 Vi

x[TITTTT]1X x[Z[3]4]5]s]718] %

YCITTTTT] A EVENENEVERENEN

z LTI 1111 z z[oJoJe]o]o]o]0]

cITTTTT] cErr[r]r]7]

Figure 1: 3D Projective Voxelization

vox line3d(x1, y1, =1, x2, y2, 32, colorl, color2)
dx = x2-x1; dy = y2-yl; dz = z2-z1;
adx = abs(dx); ady = abs(dy); adz = abs(dz);
axis="X";
if (ady > adx && ady > adz) axis = 'Y’}
else if (adz > adx && adz > ady) axis = 'Z%;

voxel(x1,y1,z1,colorl);
switch (axis) {
case 'Y’:
compute increment x, z, color;
for (y=1toady) {
increment x, z, color;
voxel(x, y, 2, color);

break;
case 'X":

compute increment y, z, color;
! for (x =1toadx) {
increment y, %, color;
voxel(x,y,z,color);

break;
case 'Z’:
compute increment x, y, color;
for (z=1toadz) {
increment x, y, color;
voxel(x,y,z,color);

break;

Figure 2: 3D Line Voxelization algorithm

4.2 Polygon Voxelization

Definition 2. The voxels of a convex polygon in
E® can be determined by projecting the polygon onto
the orthogonal plane to which the polygon is more
inclined.

Claim 1: The projected length or cartesian compo-
nents of a normal vector of a polygon indicates the
orientation of the polygon with the orthogonal axis.
Proof: Figure 3. shows a triangle which lies on the
XY plane. the normal to this plane is denoted by 0i +
0j + k. Hence the projected length is 1 on the Z-axis,
which indicates the plane of projection is XY, which
is identified from the plane perpendicular to k. In 3D
voxelization of a polygon, the maximum the projected

length of the polygon normal to an axis, the maximum
the orientation of a polygon to the plane perpendic-
ular to that particular axis. We use this property to
determine all the voxels that lie on the polygon.

Left Buffer AY

XZE V2

Right Buffer
X 2 C
vo=<L1,0>
vl =<9,1,0>
v2 =<1,9,0>

[TTTTT1]

CIT T 1]

HNEEEEEN

faremeed
et

®y

z

Figure 3: Projective Triangle Voxelization

Claim 2: A polygon in E™ when projected reduces
to a computational problem in one dimensional space.
Proof: This is done as a two stage process: In stage 1,
we process the boundary of the polygon by rasteriza-
tion of the edges, by voxelizing along the edges. In the
second stage, When the left and right voxel for each
scan-line is known, the problem is to incrementally fill
the interior, which is nothing but a one-dimensional
linear interpolation problem. The total number of
lines processed for a polygon will be the number of
edges plus the number of scan-lines in the projection.
Construction: In our new projective voxelization tech-
nique, instead of layer-order, we traverse in triangle-
order. Figure 3. shows the voxelization of a triangle.
In the traditional rasterization, a scan-line intersects
with the projection of a triangle. In our approach,
voxelization of a triangle is however obtained by first
traversing the boundary of the triangle. The three
edges of the triangle are stored as components of 7, y, z
and color for the left and right extents of each scan-
line in the triangle. As mentioned in the line vox-
elization earlier, if it is a right edge the start value of
the line segment z1,¥1, 21 and colorl are stored in the
1D buffer. The next voxel along the line is obtained
by incrementing Az, Ay, Az and Ac. The same steps
are repeated for all the edges of the triangles. If the
polygon is facing the observer,i.e., if (y2 > y1) that
indicates that the edge should be stored in the right
buffer. If (y1 > y2) the edge goes to the left buffer.
If the polygon is facing away from the observer, then
the right and left buffers are swapped.

For a given scan-line the left buffer and the cor-

- 506 -

responding right buffer has the values of a line seg-
ment in 3D space. All the voxels between the left and
right buffer are computed by incremental interpola-
tion. The left buffer value is the starting voxel for
this scan-line and the color is stored in volume buffer.
All other voxels along the scan-line are computed by
incremental interpolation. This shows that all our op-
erations are just linear interpolation which is therefore
an 1 dimensional problem. When all the scan-lines are
computed, the volume buffer has the voxel triangle.
Figure 4. shows the algorithm for voxelization of a
test polygon, where the vertices lie on the XY plane.
Since the normal is oriented towards the Z axis, the
projection of polygon to XY is done for voxelization.
Once all the edges are traversed, we use the left and
right buffer z and z values to incrementally interpolate
the interior information. If the orientation is towards
Y the polygon is projected to XZ. H it is oriented
towards X, then projection is done onto Y Z. It is an
extension of the rasterization technique, but instead of
2D pixels, 3D voxels are stored. A triangle is visited
only once and all computations are therefore reduced
to incremental interpolations.

4.3 Polyhedron Voxelization

Definition 3. Polyhedra: We define a voxel-
polyhedron as a collection of all the voxels which lie in
the interior and on the boundary of the polyhedron.
This is carried out in two stages. In the first stage
all the front and back facing polygons are projected
separately. The interior of the polyhedron is then vox-
elized as a Beam of Voxels (BOV). This work has been
reported earlier in [CMP95, PM95c, PM95b].

5 IMPLEMENTATION

The projective voxelization algorithms have been im-
plemented and tested successfully with several polyg-
onal mesh data. The results of line voxelization of a
Flange and Space shuttle are shown in Figure 5 and
Figure 7. The triangle voxelization is shown in Fig-
ure 6 and Figure 8 through Figure 10. This shows that
this approach can be used for any 3D model consisting
of lines, polygons and polyhedra.

The performance of the line and triangle voxelization
algorithm on a R10K based SGI O2 system is shown
in Table 1 and 2. The performance obtained shows
that for practical applications we get a performance
of 0.9 million lines/sec. The triangle voxelization per-
formance of 0.13 million triangles/sec have been ob-
tained using our method. These results show that our
method is suitable for day-to-day voxelization of poy-
hedral models for applications such as RPT, 3D Volu-

vox _polygon3d(xyz[N][3], color{N])
{ compute_normal(xyz, a, b, c);
axis = 'Z’%;
if (abs(a) > abs(b) && abs(a) > abs(c)) {
axis = "X’;
interchange x and z for each vertex;
interchange a and ¢ normal components;

}
if (abs(b) > abs(a) && abs(b) > abs(c)) {
axis = 'Y’
interchange y and z for each vertex;
interchange b and ¢ normal components;

if (c > 0) { // front facing polygon
scan_edges(to store in left & right buffers);

if (c < 0) { // back facing polygon
scan._edges(to store in right & left buffers);

scan_face(y.min_max, left & right buffers)

}

scan_edges()

{ for (each edge in polygon) {
compute increment x, z, color;
initialize start x,z,color;
if (left edge) { // y2 > y1

for (each y in the edge) {
store x, z, color in left buffer;
increment x,z, color;

}
if (right edge) { // y1 > y2
for (each y in the edge) {
store x, z, color in right buffer;
increment x, z, color;

}
}}
}

scan__face()

{ for (y = ymin to ymax in the polygon) {
lookup xleft and xright for y
compute increment z, color;
for (x = xleft to xright) {

initialize start x, z, color;
switch (axis) {
case 'Z’:
voxel(x, y, 2, color };
break;
case 'Y":
voxel(x, z, y, color);
break;
case 'X":
voxel(z, y, x, color);
break;

increment z, color;

Figure 4: 3D Polygon Voxelization

metric Fax and for interactive volume visualization of
solid models.

6 CURVES & SURFACES

In successful traditional graphics hardware like Re-
ality Engine and Infinite Reality all primitives such
as Circles, Curves, Cylinders, Spheres, and Surface
are first converted into triangles or lines. Once they
are converted into lines and triangles our voxelization

-507 -

Table 1: Performance of

f line voxelization

Graphics | Number of Rate of
Object Lines | Voxelization
(lines) (x108

lines/sec)

Shuttle 4350 311
Flange 15912 418
Bunny 208353 .665
Dragon 2614242 942

Table 2: Performance of triangle voxelization

Graphics | Number of Rate of
Object Triangles | Voxelization
(triangles) (x108)
triangles/sec)

Shuttle 1450 .018
Flange 5304 .086
Bunny 69451 102
Dragon 871414 139

scheme can be applied for all such curves and surfaces.

7 DISCUSSION

Volume graphics has its own bottlenecks and as time
progresses, with faster CPUs and large memory on
low-end desktops the ultimate dream of aving a vol-
ume graphics station is within reach. We discuss some
of the issues and how our method handles them.

e Comparison with Surface Rendering: The
advantages/disadvantages of volume graphics ver-
sus surface graphics has discussed in greater de-
tail by Kaufman et. al. [KCY93]. The algorithm
described in this paper caters to the demand for
faster voxelization to generate volume data.

¢ Comparison with Bresenham, DDA, Kauf-
man for Line Voxelization: Bresenham and
DDA computes pixels, whereas our method com-
putes voxels. The Kaufman’s Line Voxelization
extends to a 3D-DDA with 6 or more connected
voxels. Our implementation is faster since it does
not have the overhead of the error term in Bre-
senham, DDA or 3D-DDA.

¢ Comparison with Kaufman’s Polygon Vox-
elization: The major computation in Kaufman’s
Polygon voxelization [Kau87a] is the intersection
computation of the polygon with each scan-plane.
Our method doesn’t require that.

¢ Quantity of Voxelization: Our emphasis in
this work is to develop an algorithm which can

do practical day-to-day voxelization for volume
graphics. And we have shown this from the tim-
ing shown on the smallest low cost US$5000 work-
station available in the market today.

e Quality of Voxelization: As in 2D rasteri-
zation, aliasing is inherent to 3D voxelization.
Several anti-aliased schemes for projection algo-
rithms are under implementation. The antialias-
ing techniques proposed in [PM95a] and [WK94]
can be applied during voxelization to achieve bet-
ter quality.

e Memory Requirement: It is indisputable that
volume graphics is memory intensive. This prob-
lem has been handled by researchers in several di-
rections: compression, rendering compressed vol-
umes, hierarchical organization, etc. Our method
currently uses the full volume buffer, but work is
in progress to reduce the memory use.

¢ Volume Morphing after Voxelization: An-
other section of work under progress is to make
these algorithms efficient so that we can perform
volume morphing and volume manipulation. This
can be achieved by implementing fast voxeliza-
tion algorithms on parallel systems and in graph-
ics hardware.

8 CONCLUSION

New simple and efficient algorithms for incremental
voxelization for Lines, Polygons, and Polyhedra have
been developed. The algorithm has been tested for
a variety of polygonal meshes. These primitives can
also be used for all other graphics primitives, including
Circle, Cylinder, Curves, and Surfaces. Our modeling
scheme is independent of the rendering method but on
the other hand compatible with all existing rendering
schemes.

As in 2D scan-conversion, aliasing is inherent to 3D
voxelization. Several anti-aliased schemes for projec-
tion algorithms are under implementation. Another
section of work under progress is to make these effi-
cient algorithms for volume modeling, volume manip-
ulation and voxel representation as a library for public
use. The topic for future research is realization of the
fast voxelization algorithms for parallel and hardware
implementations.

References

[CMP95] V. Chandru, S. Manohar, and C. E.
Prakash. Voxel-based modeling for layered

- 508 -

manufacturing. IEEE CG & A, 15(6):42-
47, Nov 1995.

[Kau87a] Arie E. Kaufman. An algorithm for 3D
scan-conversion of polygons. FEurographics
'87 Proceedings, G. Marechal(ed.), North
Holland, Amsterdam, pages 197208, Aug
1987.

[Kau87b] Arie E. Kaufman. Efficient algorithms for
3D scan-conversion of parametric curves,
surfaces and volumes. Computer Graphics
(SIGGRAPH ’87 Proceedings), 21(4):171-
179, Jul 1987.

[KCY93] Arie E. Kaufman, Daniel Cohen, and Roni
Yagel. Volume graphics. IEEE Computer,
26(7):51-64, Jul 1993.

[PM95a] C. E. Prakash and S. Manohar. Error mea-
sures and 3D anti-aliasing for voxel data.
Proc. of Pacific Graphics '95, World Scien-
tific Publishing, pages 225-239, Aug 1995.

[PM95b] C. E. Prakash and S. Manohar. Hard-
ware architecture for voxelization-based vol-
ume rendering of unstructured grids. Proc.
of Workshop on Eurographics Hardware,
Maastricht, pages 103-115, Aug 1995.

[PM95c] C.E. Prakash and S. Manohar. Volume ren-
dering of unstructured grids: A voxeliza-
tion approach. Computers and Graphics,
19(5):711-726, Sep/Oct 1995.

[SY95] Naeem Shareef and Roni Yagel. Rapid pre-
viewing via volume-based solid modeling.
Proc. of third Symposium on Solid Model-
ing '95, ACM Press, pages 281-291, May
1995.

[WK93] Sidney W. Wang and Arie E. Kaufman.
Volume sampled voxelization of geometric
primitives. Proc. of IEEE Visualization ’93,
pages 7884, Oct 1993.

[WK94] Sidney W. Wang and Arie E. Kaufman. Vol-
ume sampled 3D modeling. IEEE CG & A,
14(5):26-32, Sep 1994.

- 509 -

