A New Look At
Mipmap Level Estimation Techniques

Leon Shirman and Yakov Kamen
Epson Research and Development, Inc.

ABSTRACT

In this work, we study various methods of mipmap level estimation. We show that despite their
differences, these methods depend on the interpolated inverse homogeneous coordinate. We introduce a
new method based on homogeneous coordinates only that has functionality and efficiency advantages over

traditional approaches.

Keywords: texture mapping, mipmapping, mipmap level, inverse homogeneous coordinates

1. INTRODUCTION

Texture mapping is a widely used technique in
modern graphics applications. Aliasing artifacts that
arise when mapping two-dimensional images onto
three-dimensional objects are well-known and have
been studied by many researchers [Watt93,
Wolberg90]. Various filtering schemes are usually
used to deal with this problem [Crow84, Greene86].
However, by far the most popular filtering scheme is
mipmapping [Williams83]. In this method, the
original texture is averaged down to successively
lower resolutions, each image in the mipmap
sequence being one half of the resolution of the
previous image. Then, instead of always using the
original texture map, an appropriately scaled image is
used.

Choosing the proper image in the sequence, or,
alternatively, the proper mipmap level, is extremely
important to minimize aliasing. However,
surprisingly few approaches to selecting this level are
described in the literature. The most common ones
are Heckbert’s derivatives method [Heckbert83] and
area-based estimation [Watt93]. Both of these
techniques are computationally expensive, which is a
serious disadvantage, because mipmap level
estimation has to be done for each pixel of the
rendered image.

In this work, we start by examining existing mipmap
estimation methods. We show that despite their
apparent formulation differences, all of them depend
on the interpolated inverse homogeneous coordinate.

Further, we introduce a new model that is a function
of inverse homogeneous coordinate only. This model
possesses various desirable properties and is very
computationally efficient. We conclude by giving
direction for future research.

2. OVERVIEW OF EXISTING METHODS

Traditionally, mipmap level estimation is based on
the relationship between screen and texture
coordinates, namely, on the mapping from screen to
texture coordinates u = u(x,y) and v =v(x,y).

2.1. Derivative-based Methods

Consider an axis-aligned unit square (i.e. pixel) in
screen space with lower left coordinates (xg, Yo).
According to Taylor expansion to the first order,

d 0
u(x,y) =u(xo,y0)+a—1(x—xo)+$u(y - yo)

+0(x —x9,y = ¥o)
and similarly for v. Therefore, the bottom and left
sides of the unit square will map approximately to

vectors (a_u’a_v) and (%,ﬂ) respectively.
ox Ox dy dy

Heckbert [Heckbert 83] suggests the following

maximum length formula for mipmap level estimation

(D:

-339-

d =log| max (a—u)2+(a—v)2 o 2+ 2 2
ox ox) Y\ oy dy

where log is taken to the base 2. In geometric terms,

this simply means selecting the larger of the

Euclidean lengths of the two vectors (a_u,a_v) and
ox ox
du dv . .
—,— | for mipmap computation.
dy dy

Clearly, the above formulation is somewhat arbitrary.
Instead of taking Euclidean norm, it is possible to
take Manhattan or max norms; instead of taking the
larger length, we could consider average length, etc.
For example, using average of Manhattan lengths
yields a computationally more attractive formula:

1{{ou| |ov] |oul |ov
d =logl — + +
2 ox| [dy| |9y

ox

Other possible expressions for d can be readily
derived.

In addition to the problem of choosing norm in
texture space, derivative-based methods have two
even more serious drawbacks. First, calculation of
partial derivatives of # and v per pixel is required.
This is expensive. Second, derivative-based methods
are not invariant to rigid transformations in the screen
space, such as rotations and mirror images. Figure 1
shows a pair of perspectively distorted, trilinearly
mipmapped triangles in two different orientations.
Mipmap level distribution according to the maximum
length model is superimposed on the texture map.
Each shaded region corresponds to an integer
mipmap level (i.e. from 1 to 2, from 2 to 3, etc.). This
dependence of mipmap levels on triangle orientation
could create visible artifacts during animation.

2.2 Invariant Derivatives Method

In the previous section, we only considered partial
derivatives of u and v along axis-aligned directions.
Since these derivatives change when axes are rotated,
so does mipmap level distribution. In order to make
the distribution invariant under rigid transformations,
we should consider partial derivatives along a
specified direction, and then attempt to find a
maximum or an average of these derivatives.

From elementary calculus, a partial derivative of u
along direction s = [cos(c), sin(a)] is given by

and similarly for v. Then, the square of Euclidean
length [of the partial derivative in the texture space is
given

by

2 2 2
12 = (%) + (%;i) = (% cos(o) + gy_u sin(a)) +
2
(—g-xv- cos(a)+ g—; sin(a))

We tried to find the maximum of the above
expression by differentiating it with respect to o and
equating the result to zero. Using Mathematica, we
were able to derive closed-form expressions for o;
however, they were too complicated to be of practical
use.

However, finding the average of partial derivatives
turns out to be more tractable. The average can be
computed by integrating the above equation for the
full circle:

2
2= f](2) +(2) e
" o ° os os
Substituting and carrying out integration yields

2 2
lZve =...1_ (_ai)z + a_u +(a_v)2 + f’l
2|\dx oy ox ay
and therefore the mipmap level can be computed (2)

o=yl (22

Figure 2 shows distribution of mipmap levels using
this new method. As we can see, the distribution is
invariant under rigid transformations.

We could also attempt to compute maximum and
average lengths of partial derivatives using non-
Euclidean norms. We have not investigated this
approach.

2.3 Area Estimation

Together with Heckbert’s method, the area estimation
method is relatively well-known and described in
literature [Watt93]. The idea of the method is very
simple. Instead of computing partial derivatives of u
and v and subsequently ignoring higher-order terms
of the Taylor expansion, we compute the area a of the
quadrilateral in the texture space that the current
pixel maps to. Then the mipmap level is

d= log(w/;) = %log(a) 3)

Figure 3 shows mipmap level distribution using this
model. By construction, the distribution is clearly
invariant under rigid transformations. Another
interesting property of this method is that mipmap
level is constant along g = const lines, where g is
linearly interpolated among the inverses of the
homogeneous coordinates at three triangle vertices.

- 340 -

This is because along these lines the mapping from
screen to texture space is linear [Blinn92] and
therefore pixels map into quadrilaterals with the same
area (this is not exactly true, as pixels have non-zero
size, but since that size is typically very small
compared to the whole image, we can make the
assumption that g = const for the whole pixel). Once
again, efficiency is a drawback of this method: it is
expensive to calculate the area of the image of each
pixel in texture coordinates. This is even more costly
than calculating partial derivatives for previously
described schemes.

In the above approach, we assumed that a pixel is a
square. We could change that assumption and
consider a pixel to be a circle, and observe that the
image of a circle in screen coordinates under
perspective transformation is an ellipse in texture
coordinates. This observation was used by Greene
and Heckbert [Greene86] for construction of
elliptical weighted average (EWA) filter. They
showed that ellipse’s coefficients can be expressed in
terms of partial derivatives of wu(x,y) and v(xy)
(section 2.1). Our attempts to derive a practically
useful expression for the area of this ellipse in terms
of the partial derivatives were not successful.
However, since we assume that either square or
circular pixels are small compared to the whole
image, the results obtained with either method should
be very similar.

3. INVERSE W METHOD

In this section, we show that all the methods
discussed above, despite their apparent differences,
can be described using inverse homogeneous
coordinates g = 1 / w. Further, we introduce a new
mipmap estimation method that depends on g only.

Many of the methods in the previous section relied
on partial derivatives of u(x,y) and v(x,y). These
derivatives are usually computed numerically in
practical implementations; however, a closed-form
solution can be easily derived. Consider a horizontal
(y = const) scanline with endpoints x, and x;, u values
ug and u,, and weights wy and wy. Then
ug /' wy +t(u1 Iwy —uy /Wo)

u(x) = , =
®) 1wy +t{1/w; =1/ wy)

Differentiating, we obtain
’
u'(t Uy —u wyw
u'(x) = () -1 0 01

Xp=Xo X1~ %o (w1 +1t(wp —w,))2

However, since w(t) =wg +2(w; —wy) , then

.x_xo

X1 = Xp

U —u wow
w(x)y =" %o oW .
X —Xo (wo+w,--w)

C)

Thus, within each scanline, the partial derivative
along the scanline depends only on the homogeneous
coordinate. Similar result obviously holds for
vertical scanlines, and, in fact, for arbitrary
directions.

The above expression can be rewritten in terms of
inverse w as follows:

1 1 1
g =—+1(—-—)
Wo Wi W

as follows:

W' (x) = ad S - 1 _wm—iu ‘1031 (5)
X1— X0 g wgw; X1~ X ¢

where gy = 1/wp and g, = 1/w;. This formulation is

more convenient for practical use, because it is the

inverse homogeneous coordinate ¢, not w, that needs

to be interpolated for the perspective division

[Blinn92].

These expressions for partial derivatives can be used
to derive closed-form expressions for mipmap level
using derivative-based methods from section 2. For
example, Heckbert’s formula (1) simplifies to

d =max(log(A,) - 2log(g), log(4,) ~ 2log(9))
where

PR () S Gl) R
x = > qd0491
(x; = x0)

and
@ —ud)>+ 0] v
Ay=J 1 0 1 0 qaql)

-y o)2
The superscript x or y denotes the fact that «, v, and q
values are taken from endpoints of horizontal or
vertical scanlines, respectively.

Similarly, invariant derivatives computation (2) can
be expressed as

d =C-2log(q)

where C depends on two components, one constant
along horizontal and the other along vertical
scanlines:

Cc= %(A3+A)2,)

This result allows a faster practical implementation.

Even though both maximum length and invariant
derivatives methods depend on g, strictly speaking,
they are not functions of g only. In fact, evaluation of
per scanline quantities A,, A,, or C accounts for most
of computation cost. On the other hand, area
estimation method (section 2.3) relies just on the
inverse w. This leads us to our next model, where the
mipmap level for the whole triangle is a function of ¢
only. We derive the formulation of this model from
the equation (5).

-341 -

If we were considering mipmap level estimation in
one dimension, then we could do so in terms of the
derivative u’(x) as follows:

d= log(|u'(x)|)

= log(%’] +2 log(,[qoq1)— 2 log(q)

= d gy, +210g(ge)-210g(q)

where d,,. is the average mipmap level for the whole
line segment, and gq,,. is the geometric average of the
inverse w’s at the endpoints. Generalizing into two
dimensions, we have (6):

d= dave + 2log(qave)_ 210g(q), Qave = ‘\/3 909192

where d,,. is the average mipmap level for the whole
triangle (discussed below), g,.. is the geometric mean
of inverse w’s at the triangle vertices, and ¢ is the
interpolated inverse w. This inverse w method has a
clear geometric interpretation. First, we calculate the
average mipmap level for the whole triangle. Then,
we assume that this level is reached at some interior
point within the triangle. Since we are calculating
log(g), it is natural to assume that at this point, log(q)
is the average of logs at triangle vertices:

108(4ne) = 5 (108(d0)+ log(a)+ log(a.)

In other words, g.. is the geometric mean of the

. .. —
inverse w’s: q,, —\/3 909192 -

The average mipmap level for the whole triangle can
be computed using a variety of ways, for example by
calculating the ratio of areas in texture and screen
spaces

1 A
d. =—log =L
ave 2 g(As]

or by computing the ratio of triangle perimeter
lengths in the same spaces:

P,
dave = log(?i’]

Figure 4 shows distribution of mipmap levels using
inverse w method. By construction, mipmap level is
constant along g = const lines within each triangle.
Note, however, that since

C=d,, + 210g(m)
is determined per triangle, mipmap levels could be

shifted across triangle boundaries. This property of
the method is discussed in the next section.

4. DISCUSSION

The inverse w method, introduced in the previous
section, possesses various desirable properties.

Similar to area estimation method, it is invariant
under rigid transformations. Also, mipmap levels are
constant along g = const lines. In geometric terms,
this means that mipmap level is a function of the
distance to the eye point.

Most importantly, however, and unlike the other
approaches discussed above, this method is very
efficient. The only computations per pixel required
are a subtraction, a shift (multiplication by 2) and
calculation of log(g). The logarithm function can be
efficiently implemented with a lookup table. Further,
we found that for vast majority of triangles in
practical applications, it is acceptable to simply
compute C — 2 log(g) at the triangle vertices, and
then perform linear interpolation for interior pixels.
That way, mipmap level estimation simply becomes
another triangle interpolant, such as screen and
texture coordinates, color, etc. In case when
interpolation is not accurate enough, i.e. when the
triangle has high w ratio among its vertices and
therefore spans several mipmap levels, it is always
possible to subdivide the triangle so that w ratios for
subtriangles are appropriately reduced [Kamen98].

A possible area for future research is determination of
the constant C. In the previous section, we defined it
as

C= dave +2 log(qave)

While this formulation has a geometric interpretation,
it is still somewhat artificial. For example, since C is
calculated per triangle, there could be a discontinuity
of mipmap levels across triangle boundaries (Fig. 4).
This may or may not be desirable.

In all of the described methods, the final mipmap
level depended in one way or another on some
relationship between screen and texture coordinates.
What if we base our estimation on the world
coordinates instead of screen coordinates? It is
highly likely that in the world coordinates, texture
coordinates are assigned to vertices in such a manner
as to maintain the constant “stretching” of the texture
map on the object surface. This way, texture appears
to be naturally painted on the surface without
distortions. If that is the case, the constant C will be
the same for the whole object, and therefore the
continuity of the mipmap level across the whole
surface can be maintained. Otherwise, C should
clearly be determined on a per-triangle basis.

One possible approach to defining C for the whole
object proceeds in two steps. The first step is
computing the average mipmap level d,. for the
triangle in world coordinates. This can be done by
computing the ratio of the area (perimeter) of the
triangle in texture space to the triangle area
(perimeter) in world coordinates. Assuming the

-342 -

constant texture map stretching, d,,, will be the same
for all triangles.

Since the rendering takes place in screen coordinates,
d,. needs to be adjusted by the scale of the viewing
transformation. This scale s can be defined, for
example, using factorization of viewing
transformation. Abi-Ezzi [AbiEzzi90] showed that a
perspective transformation can be factored into three
parts: a rigid transformation (rotation and
translation), a simplified projective transformation
(essentially shear in homogeneous coordinate), and a
scaling transform. In this formulation, s is the norm
of the above scaling transform, so that

C=d,, +log(s)

Thus, C is constant for the whole object and needs to
be recalculated only when a viewing transformation
changes. Figure 5 shows mipmap level distribution
when C is computed using this model. In this case,
mipmap level depends on g, or, alternatively, to the
distance from the eye point only.

As we can see from Figures 1-4, the methods
discussed in section 2 preserve mipmap level
continuity for a pair of coplanar triangles. However,
this is not the case for complex objects, represented
by many triangular facets. Therefore, these methods
are similar to the inverse w method in this respect.
On the other hand, the approach described above
truly preserves the continuity. Figure 6 shows
mipmap level distribution for a tessellated spline
using maximum length model. Figure 7 shows
continuous distribution for the same object.

5. CONCLUSION

In this work, we have studied various mipmap level
computation methods. We have investigated current
techniques, discussed their drawbacks, and
introduced a new Invariant Derivatives method.
While it belongs to the family of derivative-based
schemes, it shows an improvement over existing
solutions.

Further, we have shown that partial derivatives along
any given direction depend on the interpolated
inverse of homogeneous coordinates. This allowed
us to derive simple closed-form expressions for
derivative-based methods. More importantly, that
lead us to a new conceptual model of computing the
mipmap level based on the inverse homogeneous
coordinates only. This approach is very efficient and
possesses various desirable properties.

Finally, we have shown that under certain conditions,
it is possible to extend this model to preserve the
continuity of mipmap levels for the whole object. In

this approach, mipmap level at a certain point
depends on the distance to the eye point only, making
this method more predictable and even more
efficient. Various mathematical formulations of this
model is an open research issue.

Another wide area for research is general description
of mipmap level functions. So far, we have

considered functions of the type d = C—210g(q).

However, more general formulations are possible,
such as d=C- log(f(q)) or d=C+ log(g(w)) ,
where fand g are some monotone functions.

6. REFERENCES

[Abi-Ezzi90] S. Abi-Ezzi and M. Wozny, “Factoring
a Homogeneous Transformation for a More Efficient
Graphics Pipeline”, Proc. Eurographics 90, pp. 245-
255, Sept. 1990.

[Blinn92] J. Blinn, “Hyperbolic Interpolation”,
Computer Graphics and Applications, pp. 89-94,
July 1992.

[Crow84] F. Crow, “Summed Area Tables for
Texture Mapping”, Computer Graphics, 18(3), pp.
207-212, 1984.

[Heckbert83] P. Heckbert, “Texture Mapping
Polygons in Perspective”, Tech. Memo No. 13, NYIT
Computer Graphics Lab, April 1983.

[Greene86] N. Greene and P. Heckbert, “Creating
Raster Omnimax Images Using the Elliptically
Weighted Average Filter”, Computer Graphics and
Applications, pp. 21-27, June 1986.

[Kamen98] Y. Kamen and L. Shirman, “Triangle
Rendering Using Adaptive Subdivision”, to appear in
Computer Graphics and Applications, 1998.

[Watt93] A. Watt, “3D Computer Graphics”, 2™
edition, Addison-Wesley, 1993.

{Williams83] L. Williams, “Pyramidal Parametrics”,
Computer Graphics, 17(3), pp. 1-11, 1983.

[Wolberg90} G. Wolberg, “Digital Image Warping”,
IEEE Computer Society Press, Los Alamitos,
California, 1990.

-343 -

AN

Figure 1. Mipmap level distribution for maximum length method.

AN

Figure 2. Mipmap level distribution for invariant derivatives method.

AN

Figure 3. Mipmap level distribution for area estimation method.

- 344 -

AN

Figure 4. Mipmap level distribution for inverse w method.

AN

Figure 5. Continuous mipmap level distribution for inverse w method.

-345.

for perspectivcly s
oo e O™
mapping, Elesﬂﬂf p
nipmap o
| g for @ ot
e

e

Figure 6. Mipmap level distribution for a spline Figure 7. Continuous mipmap level for a spline
using maximum length method. using inverse w method.

- 346 -

