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Abstract: In this paper, we focus on the Jordan sorting problem: Given N intersection points 
of a Jordan curve with the x-axis in the order in which they occur along the curve. The task is 
to sort these points into the order in which they occur along the x-axis. Contrary to general 
sorting whose solution (in the algebraic decision-tree model of computation) requires θ(N log 
N) time in the worst case, the Jordan sorting problem can be solved in θ(N) time. The linear 
worst-case time algorithms for Jordan sorting were proposed by Hoffman et al., and by Fung 
et al. Unfortunately, both these algorithms are rather complicated, which makes them difficult 
to use in practice. In this paper, we propose and analyse a simple algorithm for Jordan sorting. 
Although the worst-case time complexity of this algorithm is O(N log N), we show that the 
worst time is achieved only for special inputs. For most inputs, a better performance can be 
expected. We also show that for a certain class of inputs which may be of practical interest, the 
algorithm runs even in O(N) expected time. We believe that for many practical applications, 
the algorithm may be more advantageous than rather complicated worst-case time optimal 
algorithms. Our main result is the analysis of this otherwise rather straightforward algorithm. 

Keywords:   Computational geometry, Jordan sorting, polygon clipping. 

1. Introduction 

Problem 1 (Jordan sorting). Given N intersection points of a Jordan curve (Jordan curve is a 
homeomorphic image of a circle) with the x-axis in the order in which they occur along the 
curve, sort these points into the order in which they occur along the x-axis (Fig. 1.1a). 

In the algebraic decision-tree model of computation, the worst-case time complexity of general 
sorting is θ(N log N). Contrary to general sorting, the time complexity of Jordan sorting is only 
θ(N). Hoffman et al. [Hoffman 86] proposed an O(N) worst-case time algorithm for solving 
the Jordan sorting problem and polygon clipping. In their algorithm, they used a sophisticated 
data structure, the level-linked search tree. Later, Fung et al. [Fung 90] devised another 
similar O(N) time algorithm. In this algorithm, they replaced the level linked search tree with 
the heterogeneous finger tree. Although their algorithm is somewhat simpler than that 
proposed by Hoffman, it is still rather complicated, which makes the algorithm difficult to use 
in practice. 

In this paper, we propose and analyse a simple algorithm for Jordan sorting. The underlying 
idea of the algorithm was outlined in [Hoffman 86], the authors, however, did not study this 
algorithm in detail, and focused on the O(N) algorithm. Although the worst-case time 
complexity of the algorithm we propose is O(N log N), we show that the worst time is 
achieved only for special inputs. For most inputs, a better running time can be expected. We 
also show that for a certain class of random inputs which may be of practical interest, the 
algorithm runs even in O(N) expected time. For Jordan sorting problem, the performance of 
the algorithm is thus better than the performance of the fast general-purpose sorting 



algorithms. We believe that for many applications, our algorithm may be more advantageous 
than rather complicated worst-case time optimal algorithms. 
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Figure 1.1. a) Cutting a Jordan curve by the x-axis; x8,x1,x2,x5,x6,x7,x4,x3 is an example of the 
input sequence for Jordan sorting. b) The corresponding Hasse diagram of the relation of 
enclosing. The dotted nodes correspond to the additional dummy pair {-∞,∞}. 

The algorithms that solve the Jordan sorting problem can be used in a variety of practical 
applications. The most straightforward application is in cutting and clipping a simple polygon 
by a line. The solution to this problem can be divided into the following three steps: (i) Go 
along the boundary of the polygon and find the intersections between this boundary and the 
line. (ii) Find the order in which the intersections that were found in the previous step appear 
along the line. (iii) Assemble the boundaries of the resulting polygons. Although sorting 
intersection points is the most difficult (in the sense of time complexity) step of this problem, 
the majority of authors do not discuss this step (e.g., [Liang 83], [Sutherland 74]). 

The paper is organised as follows. In Section 2, we explain the basic concepts and the needed 
terminology. The algorithm is described and analysed in Section 3. Section 4 is a conclusion. 

2. Preliminaries 

Although the term Jordan curve is usually used for closed curves, the algorithm we present 
does not require this property. It only requires curves without self-intersection points (an open 
Jordan curve is a homeomorphic image of a line segment). For clarity and brevity of 
presentation, we exclude such intersection points in which the x-axis is tangent to the curve. 
This restriction influences neither the principle of the algorithm nor its time complexity. 
Without loss of generality we also suppose that in the first given intersection point, the curve 
passes from the lower to the upper half-plane determined by the x-axis. 

Let γ be a Jordan curve (Fig. 1.1a). The x-axis divides the plane into two half-planes (upper 
and lower), denoted by Ux and Lx, respectively. We suppose that the curve and the x-axis 
intersect each other at N intersection points, denoted by x1,x2,..., xN. For presenting the 
algorithm, the intersection points are numbered in such a way that the sequence  x1,x2,..., xN  
is ordered along the x-axis (Fig. 1.1a). We will use the notation xi<xj to express the fact that, 
along the x-axis, the point xi precedes the point xj. The intersection points divide the x-axis 
into intervals. We will use the term segment to refer to such an interval. At the same time, the 



intersection points divide the curve into parts which we will call the arcs. We will use the 
notation  arc(xp,xq)  to refer to the arc whose endpoints are xp and xq. 

The algorithm we propose is based on successively constructing a planar map (γ) that 
corresponds to the given input of the Jordan sorting problem (Fig. 2.1a). The final map (γ) 
contains just N+2 vertices. N vertices correspond to the intersection points x1,x2,..., xN. The 
remaining two vertices, denoted by x0 and xN+1, are added on the x-axis such that x0<x1 and 
xN<xN+1. In the map (γ), N+1 edges correspond to the segments, and N edges correspond to 
the arcs of the curve. Furthermore, the vertices x0, xN+1 are connected by the two edges lying 
in Ux and Lx, respectively (Fig. 2.1a). During the computation, the sequence 1, 2,..., N, (γ) 
of the maps is constructed (Fig. 2.2). The computation starts with the map 1 containing x0, 
xN+1, and the intersection point that was read from the first position of the input sequence. The 
algorithm then successively processes the remaining intersection points and updates the map. 
Once (γ) is found, the ordered sequence x1,x2,..., xN is read from this map. 
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Figure 2.1.  a) The map  (γ) corresponding to the final stage of solving the Jordan sorting 
problem for a certain input. b) Illustration of Lemma 1. The numbers show the order in which 
the segments are tested in the algorithm. Before splitting, the size of the face fr is Size(fr)=5. 

Consider the situation in which the map k-1 has already been constructed. Let x denote the 
intersection point that is being processed at this moment, and let γ-Pred(x) denote the 
intersection point that was processed immediately before x. The process of updating the map 
from k-1 to k is based on the following lemma, which follows directly from the fact that the 
curve does not intersect itself (Fig. 2.1b). 

Lemma 1. If in γ-Pred(x), the curve enters a certain face fr of the map k-1, then the 
intersection point x lies inside a segment which is a part of the boundary of fr. • 
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Figure 2.2.  An example of the sequence of the maps that are constructed during the 
computation. 

In the k-th step of the algorithm, a certain face of the map k is split, which gives rise to the 
map k+1. We will use the term transition to refer to this action. The transition updating the 



map from k-1 to k involves: (1) determining the segment containing x and splitting this 
segment into the two segments, (2) splitting the face fr containing the arc(γ-Pred(x),x) into the 
two faces fu, fv. We use Size(fi) to denote the number of the segments that lie on the boundary 
of the face fi, and we will use the term size of face for this number (Fig. 2.1b). Since each 
transition gives rise to a new segment, the following equation holds 

 Size(fu)+Size(fv) = Size(fr)+1. (2.1) 

Note that the size of the faces can be considered at two different moments: (a) at the moment 
when the face arose by splitting another face, (b) at the moment when the face was chosen for 
further splitting (if any). In the latter case, the size increases by one, which is due to the fact 
that during the transition in which a face was chosen for further splitting, the segment in which 
the curve enters the face was split (Fig. 2.1b). Therefore, if the size of all faces is to be 
considered just before their splitting, Eq. 2.1 should be adapted as follows 

 Size(fu) + Size(fv) = Size(fr) + 3. (2.2) 

In the algorithm, the maps 1, 2,..., N, (γ) are represented by a doubly linked list. The 
implementation is supposed to support the inquiry functions Pred(xi), Succ(xi), Upper(xi), 
Lower(xi). These functions are defined as follows: Pred(xi)=xi-1, Succ(xi)=xi+1, Upper(xi)=xj 
if xi,xj are connected by the edge representing an arc lying in Ux (if this edge does not exist, 
Upper(xi) is not defined), similarly, Lower(xi)=xj if xi,xj are connected by the edge 
representing an arc lying in Lx. In addition, the following updating operations are available: 
The operation  Split segment(xi,xi+1, x)  splits the segment xixi+1 into the two segments xix 
and xxi+1 (it is assumed that xi<x<xi+1). The operations  Insert upper edge(xi,xj)  and Insert 
lower edge(xi,xj)  create the edge connecting the vertices xi,xj and representing the arc 
arc(xi,xj) lying in Ux and Lx, respectively. It is easy to check that all the mentioned operations 
can be carried out in constant time. 

3. The Algorithm 

In this section, we will describe a simple algorithm for solving Problem 1. Although the worst-
case time complexity of the algorithm is O(N log N), the theorems presented in this section 
show that the worst time is achieved only for a special input. For most inputs, better running 
times can be expected. The main goal of this section is to present the analysis of running time 
for a certain class of random inputs. 

Algorithm 1 

Input: The sequence of N intersection points between a Jordan curve and the x-axis. The 
points are ordered as they occur along the curve. 

Output: The sequence of intersection points sorted along the x-axis. (If the algorithm is used 
for solving the problem of curve or polygon cutting or clipping, then also the map (γ) can be 
the output). 

1 Read the first intersection point from the input sequence, and create the initial map 1 as 
depicted in Fig. 2.2. 

 repeat 

2 Read the next intersection point x from the input sequence. γ-Pred(x) now denotes the 
intersection point that was processed immediately before x, fr denotes the face 



containing the arc arc(γ-Pred(x),x) (this face was identified when the curve entered this 
face in γ-Pred(x)). 

3 Beginning with γ-Pred(x), go sequentially and simultaneously in both directions along 
the boundary of fr (Fig. 2.1b, the order in which the segments are tested is important 
for the time complexity of the algorithm) For each segment on this boundary, test 
whether the segment contains x. The process stops when the segment containing x is 
found. 

4 Split the segment containing x into the two segments, and insert the new edge 
representing the arc arc(γ-Pred(x),x) into the map (the edges representing the upper 
and the lower arcs alternate as the intersection points are processed). 

 until all the intersection points are processed 

5 From the map (γ), read the output sequence of sorted points. 

In the rest of this section, the analysis of the algorithm will be presented. The time complexity 
of one transition and the time complexity of the whole algorithm will be measured by the 
number of tests deciding whether x lies inside a segment (Step 3, Fig. 2.1b). The time 
complexity of the transition from k-1 to k that splits a certain face fr into two faces fu,fv is 
thus 
 t = 2min{Size(fu), Size(fv)} or t = 2min{Size(fu), Size(fv)}-1. (3.1) 

Note that if the size of one of the faces resulting from splitting (either fu or fv) is 1, i.e., if the 
time complexity of the transition is 1 or 2 (Eq. 3.1), then the size of the other resulting face is 
Size(fr) (Eq. 2.1), which gives the size Size(fr)+1 before the next splitting. The transitions with 
time complexity 1 or 2 thus give rise to the faces with higher sizes. 

First, for completeness, we recall several theorems concerning the worst-case time complexity 
of the algorithm. Since these theorems have already been published, we omit the proofs (they 
can be found in [Sojka 96]). Theorem 1 shows that in the worst case, Algorithm 1 is at least as 
good as the fast general-purpose sorting algorithms. The remaining theorems suggest that a 
lower time complexity can be expected for some inputs. 

Theorem 1. In the worst case, Algorithm 1 requires no more than N(4+log2N) tests deciding 
whether x lies inside a segment. • 

Theorem 2. In the best possible case, the number of the tests that are required by Algorithm 1 
is N. • 

Theorem 3. If during the computation, the size of the faces in the map is bounded, i.e., the size 
is never greater than a certain constant C, then no more than N(4+log2C) tests deciding 
whether x lies inside a segment are needed in Algorithm 1. • 

Theorem 4. If during the computation, the number of transitions with time complexity 1 or 2 
is not greater than D, then no more than N(3+(D/N)log2N) tests deciding whether the 
intersection point lies inside a segment are needed in Algorithm 1. • 

Note that the transitions with time complexity 1 or 2 occur if in the sequence of the points that 
have already been sorted, x (i.e., the point that is being sorted) directly follows or directly 
precedes the point that was sorted immediately before x (Fig. 2.1b). Theorem 4 shows that the 
constant before the term log2N decreases with the decreasing probability of this event. 



Theorem 5. Consider the pair of Hasse diagrams corresponding to a given input of size N 
(Fig. 1.1b). Suppose that in total, the diagrams have Q inner nodes and, therefore, N-Q+2 
leaves. Let ni denote the i-th inner node, let di be the degree of this node (i.e., the number of its 
child nodes), let Li denote the number of leaves of the sub-tree whose root lies in ni, and let hj 
denote the depth of the j-th leaf in the Hasse diagram. For the total number of tests, denoted by 
T, the following inequalities hold 

 a) T N Li
i

Q
≤ +

=
∑2 2

1
, b) T N h j

i

N Q
≤ +

=

−

∑2 2
1

. • 

Theorem 5 shows that if either the depth or the width of the Hasse diagrams that correspond 
to the given input are bounded, i.e., are never higher than a certain constant that does not 
depend on the size of problem, then Algorithm 1 runs in constant time. Less formally, if the 
input sequence is "simple" in the sense that one of the mentioned dimensions of the 
corresponding Hasse diagrams is low, then a short running time can be expected. 

From the worst-case study, it follows that the worst running time is achieved only under rather 
special circumstances consisting in: (a) First, both in Ux and Lx, certain D transitions with time 
complexity 1 or 2 create a face of size D+2 (the number D leading to the worst possible 
running time depends on the size of the problem and increases with this size). (b) In each of the 
remaining transitions, the biggest face in the appropriate half-plane is chosen and split (we 
suppose that the biggest face can always be chosen). If s denotes the size of this face, then the 
face must be split into the faces of size ⎡(s+1)/2⎤, ⎣(s+1)/2⎦. In Fig. 3.1, the process of splitting 
in the upper half-plane is illustrated by a tree. In this tree, the inner nodes represent the faces 
that were split during a certain transition. The leaves represent the faces that have not been 
split and that are thus present in the final map. The process leading to the worst running time is 
highly organised. Any deviation from the rules described above leads to a lower running time. 
This suggests the idea that in the case of a random input, a better running time can be 
expected. Informally, this expectation can be explained by the two facts: (a) It is possible that 
in the case of a random input, the sizes of the faces in the map will not tend to grow too much, 
i.e., the probability of existence of big faces will be low. (b) In the case that big faces will 
appear, there is still a good chance that they will not be split in the worst possible manner. 
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Figure 3.1. a) An example of the tree that depicts the history of splitting. The numbers 
inscribed in the nodes are the sizes of the faces (measured at the moment before their further 
splitting). The tree corresponds to the worst case for M=N/2=8 (T=5*2+7+2*5=27). 
However, there exist another trees leading to the same time (b)(T=4*2+6+5+2*4=27). 



To study the time complexity of Algorithm 1 for random inputs, we will introduce a certain 
model of generating the Jordan sequences. In this model, the curves are supposed to be open. 
The model is based on the assumption that for each of the segments lying on the boundary of 
the face containing the arc arc(γ-Pred(x),x) (according to Lemma 1 no other segment can 
contain x), it makes a sense to think about the probability of the event that x will fall just into 
this segment. We will introduce the numeration of the segments lying on the boundary of the 
face as depicted in Fig. 3.2a. Furthermore, we will introduce the function π(s,u) expressing the 
probability that in the face of size s, the intersection point will fall into the segment whose 
number is u. Different functions π(s,u) cause that the generator produces the curves of 
different "nature". (However, we do not claim that the model can generate the curves of all 
shapes. The assumption that the functions π(s,u) exist and that they do not depend on the size 
of the problem seems to be restrictive.) Fig. 3.2b shows an example of the curve that was 
generated by the generator. 
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Figure 3.2.  a) The numeration of the segments lying on the boundary of a face. In this case, 
s=5, s1=3, s2=5 (see further text). b)  An example of the curve that was generated randomly. 
The distribution of probability was π(s,u)=1/s. 

We will evaluate the time complexity of the transitions in Ux, i.e., we will consider the upper 
half of the problem. Let M (M=N/2) be the number of these transitions. Consider a face in the 
map i. Each such face is a product of a certain sequence of splits. On the beginning of each 
such sequence, there is the first initial face in the map 1. Consider the tree describing the 
history of splitting (Fig. 3.1). Let k denote the number of splits (splitting levels) that lie on the 
branch leading from the root to the desired face. The value of k can vary from 0 (k=0 is the 
level of the initial face in 1) to M. Let pk(s) be the probability of the event that after k levels 
of splitting, the size of the face will be just s. Since the map 1 contains only one face and 
since the size of this face is 2, p0(s) is p0(2)=1, and p0(s)=0 for s≠2. In the rest of this section, 
by size of face we mean the size that is measured at the moment when the face is chosen for 
further splitting (see Section 2). Consider the situation in which a face of size s was split, 
which gave rise to two faces of sizes s1 and s2. We will introduce the rule that the face whose 
size is denoted by s1, is the face that contains the segment lying to the left of γ-Pred(x) (Fig. 
3.2a). The biggest face that can occur after M transitions in Ux (and the same number of 
transitions in Lx) is a face of size M+2. The face of size s1 can occur in such a way that in the 
face whose size is s≥s1-1, the intersection point x will fall into the segment whose number is s-
s1+2. This gives the following recurrent expressions for the probabilities pk(s): 



 pk(2) = π(2,2)pk-1(2) + π(3,3)pk-1(3) + π(4,4)pk-1(4) + ... + π(M+2,M+2)pk-1(M+2) 

 pk(3) = π(2,1)pk-1(2) + π(3,2)pk-1(3) + π(4,3)pk-1(4) + ... + π(M+2,M+1)pk-1(M+2) 

 pk(4) = π(3,1)pk-1(3) + π(4,2)pk-1(4) + ... + π(M+2,M)pk-1(M+2) 

 ... 

 pk(M+2) = π(M+1,1)pk-1(M+1) + π(M+2,2)pk-1(M+2) (3.2) 

The probabilities pk(2),pk(3),pk(4),... can be arranged into the vector  pk=(pk(2),pk(3),pk(4),... 
)T (T indicates the transposition). The vector p0 is p0=(1,0,0,... ). The values of the function π
(s,u) can be arranged into the matrix, denoted by Π, 

 Π =

π π π π π
π π π π π

π π π π
π π π

π π

( , ) ( , ) ( , ) ( , ) ( , ) ...
( , ) ( , ) ( , ) ( , ) ( , ) ...

( , ) ( , ) ( , ) ( , ) ...
( , ) ( , ) ( , ) ...

( , ) ( , ) ...
... ... ... ... ... .

2 2 3 3 4 4 5 5 6 6
21 3 2 4 3 5 4 6 5
0 31 4 2 5 3 6 4
0 0 4 1 5 2 6 3
0 0 0 51 6 2

..

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (3.3) 

Eq. 3.2 can now be rewritten in the matrix form 
 p pk k= −Π 1 . (3.4) 
Substituting for pk-1, pk-2, ..., p1, we have 
 p pk

k= Π 0 . (3.5) 
Note that the dimensions of the vectors and the matrix can be supposed to be higher than M. 
The fact that in the case in which only M transitions are to be done, no face whose size is 
greater than M+2 can occur is expressed by zero probabilities of existence of the faces having 
greater sizes. The vectors and the matrix of a size Q thus can be used for the problems of size 
up to Q. Let μs,k denote the mean value of the size of the faces arising after the k-th level of 
splitting. From the definition of mean value, we have 

 ( )μs k k
s

Q
sp s, =

=

+

∑
2

2
. (3.6) 

We introduce the vector  s = (2,3, ... , Q+2 )T. Eq. 3.6 can now be rewritten as follows 

 μs k
T T k

, = =s p s pΠ 0 . (3.7) 

We now evaluate the mean value of the time complexity of the transition in the k-th level of 
splitting. We introduce the function τ(s,t) expressing the probability that the time complexity of 
the transition in a face of size s will be t. From the order in which the segments were numbered 
(Fig. 3.2a) and from the order in which the segments are tested in the algorithm (Fig. 2.1b), it 
follows that  τ(s,1)=π(s,1), τ(s,2)=π(s,s), τ(s,3)=π(s,2), τ(s,4)=π(s,s-1), etc. Let qk(t) be the 
probability of the event that in the k-th level of splitting, the time complexity of the transition is 
just t. Since the transition having time complexity t can arise only in the face whose size is at 
least t, we have 

 ( ) ( ) ( )q t s t p sk k
s t

Q
=

=

+

∑τ ,
2

. (3.8) 

We use μt,k to denote the mean value of the time complexity of one transition in the face that 
arose in the k-th level of splitting. The definition of mean value gives 



 ( )μt k k
t

Q
tq t, =

=

+

∑
1

1
. (3.9) 

Note that although we expect the faces of size up to Q+2, the face of size Q+2 is never split. 
The biggest face that is split is the face of size Q+1. This explains the upper bound in the 
previous sum. We will introduce the vectors qk=(qk(1),qk(2), ... , qk(Q+1))T, t=(1,2,3, ... , 
Q+1)T and the matrix 

 T =

π π π π π
π π π π π

π π π π
π π π

π π

( , ) ( , ) ( , ) ( , ) ( , ) ...
( , ) ( , ) ( , ) ( , ) ( , ) ...

( , ) ( , ) ( , ) ( , ) ...
( , ) ( , ) ( , ) ...

( , ) ( , ) ...
... ... ... ... ... .

2 1 31 4 1 51 6 1
2 2 3 3 4 4 5 5 6 6
0 3 2 4 2 5 2 6 2
0 0 4 3 5 4 6 5
0 0 0 5 3 6 3

..

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (3.10) 

Eq. 3.8, 3.9 can now be rewritten in the matrix form 
 q Tpk k= , (3.11) 

 μt k
T

k
T k

, = =t Tp t T pΠ 0 . (3.12) 
Furthermore, we introduce 
 { }μ μs

k
s k,max ,max= , { }μ μt

k
t k,max ,max= . (3.13) 

Obviously, if the mean value μt,max is bounded (i.e., for the problems of all dimensions lower 
than a certain constant), then Algorithm 1 runs in linear  expected  time that does not exceed  
Nμt,max. Note that the sequence μt,0, μt,1, μt,2,... is not required to converge. The criterion of 
convergence is stronger. The sequence can be bounded and still need not converge (for 
example, it may contain the cycles of values). In the following theorem, we will study a special 
case. 

Theorem 6. Suppose that all the segments lying on the boundary of the face containing the arc 
arc(γ-Pred(x),x) have equal probabilities that they will contain the new intersection point x, 
then Algorithm 1 runs in 2N expected time. 

PROOF. If the probability that the intersection point x will fall into a certain segment is evenly 
distributed between all possible segments, then the matrices Π and T are of the form 

 Π = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

T

1 2 1 3 1 4 1 5
1 2 1 3 1 4 1 5

0 1 3 1 4 1 5
0 0 1 4 1 5

/ / / / ...
/ / / / ...

/ / / ...
/ / ...

... ... ... ... ...

. (3.14) 

By making use of Eq. 3.12, μt,k is 

 μt k

k

k k, =
−

= −
+2 1
2

2 1
2

1
. (3.15) 

Thus, the sequence μt,0, μt,1, μt,2,... is 1, 3/2, 7/4, 15/8, 31/16, 63/32,... . Note that the values 
in this sequence do not depend on the size of problem. The size of problem is taken into 
account by considering the appropriate number of terms from this sequence when determining 



the maximum in Eq. 3.13. It is easily seen that for k→∞, the value of μt,k converges to 2. For 
completeness, we will also evaluate the mean value μs,k. By making use of Eq. 3.7, we obtain 

 μs k k, = −3 1
2

. (3.16) 

The mean value of the face size is never higher than 3, i.e., the probability of the occurrence of 
big faces is low. This expression elucidates the reason for favourable behaviour of the 
algorithm and shows the area of practical applicability of the theorem. • 

We have implemented and tested the algorithm analysed in this paper. The following table 
shows the mean value and the variance of the quotient (number of tests)/N for the curves that 
were generated randomly. The distribution of probability was π(s,u)=1/s, i.e., constant for 
every segment lying on the boundary of the face (Theorem 6). 

Table 1.  Experimental results for Algorithm 1 and the randomly generated sequences. 

Size of problem (N) 10 100 1000 10000 100000 
Number of experiments 10000 10000 1000 1000 500 
E{Number of segment tests/N} 1.70 1.97 1.99 2.0 2.0 
√Variance of the value above 0.28 0.12 0.04 0.012 0.004 

4.  Conclusion 
In this paper, we have presented and analysed an algorithm for Jordan sorting. Although the 
algorithm runs in O(N log N) worst-case time, the theorems presented in Section 3 have shown 
that the worst time is achieved only for a special input. For most inputs, a better running time 
can be expected. We have also shown that for a certain class of random inputs that may be of 
practical interest, the algorithm runs even in O(N) expected time. For the Jordan sorting 
problem, the performance of the algorithm is thus better than the performance of the fast 
general-purpose sorting algorithms. In comparison with the worst-case time optimal algorithms 
proposed by Hoffman and by Fung, our algorithm does not use any additional tree data 
structure and, therefore, it is fairly easy to implement. We believe that due to its simplicity, the 
algorithm may be useful in a variety of practical applications. The main result presented in this 
paper is the mathematical analysis of this otherwise rather straightforward algorithm. 
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