
A Simple and Efficient Algorithm for Sorting the Intersection
Points between a Jordan Curve and a Line

Eduard Sojka
Department of Computer Science, Technical University of Ostrava,

tr.17.listopadu, 708 33 Ostrava-Poruba, Czech Republic
E-mail: eduard.sojka@vsb.cz

Abstract: In this paper, we focus on the Jordan sorting problem: Given N intersection points
of a Jordan curve with the x-axis in the order in which they occur along the curve. The task is
to sort these points into the order in which they occur along the x-axis. Contrary to general
sorting whose solution (in the algebraic decision-tree model of computation) requires θ(N log
N) time in the worst case, the Jordan sorting problem can be solved in θ(N) time. The linear
worst-case time algorithms for Jordan sorting were proposed by Hoffman et al., and by Fung
et al. Unfortunately, both these algorithms are rather complicated, which makes them difficult
to use in practice. In this paper, we propose and analyse a simple algorithm for Jordan sorting.
Although the worst-case time complexity of this algorithm is O(N log N), we show that the
worst time is achieved only for special inputs. For most inputs, a better performance can be
expected. We also show that for a certain class of inputs which may be of practical interest, the
algorithm runs even in O(N) expected time. We believe that for many practical applications,
the algorithm may be more advantageous than rather complicated worst-case time optimal
algorithms. Our main result is the analysis of this otherwise rather straightforward algorithm.

Keywords: Computational geometry, Jordan sorting, polygon clipping.

1. Introduction

Problem 1 (Jordan sorting). Given N intersection points of a Jordan curve (Jordan curve is a
homeomorphic image of a circle) with the x-axis in the order in which they occur along the
curve, sort these points into the order in which they occur along the x-axis (Fig. 1.1a).

In the algebraic decision-tree model of computation, the worst-case time complexity of general
sorting is θ(N log N). Contrary to general sorting, the time complexity of Jordan sorting is only
θ(N). Hoffman et al. [Hoffman 86] proposed an O(N) worst-case time algorithm for solving
the Jordan sorting problem and polygon clipping. In their algorithm, they used a sophisticated
data structure, the level-linked search tree. Later, Fung et al. [Fung 90] devised another
similar O(N) time algorithm. In this algorithm, they replaced the level linked search tree with
the heterogeneous finger tree. Although their algorithm is somewhat simpler than that
proposed by Hoffman, it is still rather complicated, which makes the algorithm difficult to use
in practice.

In this paper, we propose and analyse a simple algorithm for Jordan sorting. The underlying
idea of the algorithm was outlined in [Hoffman 86], the authors, however, did not study this
algorithm in detail, and focused on the O(N) algorithm. Although the worst-case time
complexity of the algorithm we propose is O(N log N), we show that the worst time is
achieved only for special inputs. For most inputs, a better running time can be expected. We
also show that for a certain class of random inputs which may be of practical interest, the
algorithm runs even in O(N) expected time. For Jordan sorting problem, the performance of
the algorithm is thus better than the performance of the fast general-purpose sorting

algorithms. We believe that for many applications, our algorithm may be more advantageous
than rather complicated worst-case time optimal algorithms.

x 3x 1 x 2 x 4 x 5 x 6 x 7 x 8 x

y

Arc(x ,x)3 8

γ Ux

Lx
a)

Ux

L x

x 1 x8,
x 2 x5,
x 3 x4,

x 6 x7,

x 1 x2,

x 5 x6,
x 4 x7,
x 3 x8,

b)

Figure 1.1. a) Cutting a Jordan curve by the x-axis; x8,x1,x2,x5,x6,x7,x4,x3 is an example of the
input sequence for Jordan sorting. b) The corresponding Hasse diagram of the relation of
enclosing. The dotted nodes correspond to the additional dummy pair {-∞,∞}.

The algorithms that solve the Jordan sorting problem can be used in a variety of practical
applications. The most straightforward application is in cutting and clipping a simple polygon
by a line. The solution to this problem can be divided into the following three steps: (i) Go
along the boundary of the polygon and find the intersections between this boundary and the
line. (ii) Find the order in which the intersections that were found in the previous step appear
along the line. (iii) Assemble the boundaries of the resulting polygons. Although sorting
intersection points is the most difficult (in the sense of time complexity) step of this problem,
the majority of authors do not discuss this step (e.g., [Liang 83], [Sutherland 74]).

The paper is organised as follows. In Section 2, we explain the basic concepts and the needed
terminology. The algorithm is described and analysed in Section 3. Section 4 is a conclusion.

2. Preliminaries

Although the term Jordan curve is usually used for closed curves, the algorithm we present
does not require this property. It only requires curves without self-intersection points (an open
Jordan curve is a homeomorphic image of a line segment). For clarity and brevity of
presentation, we exclude such intersection points in which the x-axis is tangent to the curve.
This restriction influences neither the principle of the algorithm nor its time complexity.
Without loss of generality we also suppose that in the first given intersection point, the curve
passes from the lower to the upper half-plane determined by the x-axis.

Let γ be a Jordan curve (Fig. 1.1a). The x-axis divides the plane into two half-planes (upper
and lower), denoted by Ux and Lx, respectively. We suppose that the curve and the x-axis
intersect each other at N intersection points, denoted by x1,x2,..., xN. For presenting the
algorithm, the intersection points are numbered in such a way that the sequence x1,x2,..., xN
is ordered along the x-axis (Fig. 1.1a). We will use the notation xi<xj to express the fact that,
along the x-axis, the point xi precedes the point xj. The intersection points divide the x-axis
into intervals. We will use the term segment to refer to such an interval. At the same time, the

intersection points divide the curve into parts which we will call the arcs. We will use the
notation arc(xp,xq) to refer to the arc whose endpoints are xp and xq.

The algorithm we propose is based on successively constructing a planar map (γ) that
corresponds to the given input of the Jordan sorting problem (Fig. 2.1a). The final map (γ)
contains just N+2 vertices. N vertices correspond to the intersection points x1,x2,..., xN. The
remaining two vertices, denoted by x0 and xN+1, are added on the x-axis such that x0<x1 and
xN<xN+1. In the map (γ), N+1 edges correspond to the segments, and N edges correspond to
the arcs of the curve. Furthermore, the vertices x0, xN+1 are connected by the two edges lying
in Ux and Lx, respectively (Fig. 2.1a). During the computation, the sequence 1, 2,..., N, (γ)
of the maps is constructed (Fig. 2.2). The computation starts with the map 1 containing x0,
xN+1, and the intersection point that was read from the first position of the input sequence. The
algorithm then successively processes the remaining intersection points and updates the map.
Once (γ) is found, the ordered sequence x1,x2,..., xN is read from this map.

x0 x1 x2 xN xN+1

segment
arc

L x

Ux

a)

f r

x
-Pred(x)

12 34

b)

γ

Figure 2.1. a) The map (γ) corresponding to the final stage of solving the Jordan sorting
problem for a certain input. b) Illustration of Lemma 1. The numbers show the order in which
the segments are tested in the algorithm. Before splitting, the size of the face fr is Size(fr)=5.

Consider the situation in which the map k-1 has already been constructed. Let x denote the
intersection point that is being processed at this moment, and let γ-Pred(x) denote the
intersection point that was processed immediately before x. The process of updating the map
from k-1 to k is based on the following lemma, which follows directly from the fact that the
curve does not intersect itself (Fig. 2.1b).

Lemma 1. If in γ-Pred(x), the curve enters a certain face fr of the map k-1, then the
intersection point x lies inside a segment which is a part of the boundary of fr. •

1 2 3

x 0 x N+1

First x

87 ()γ

Figure 2.2. An example of the sequence of the maps that are constructed during the
computation.

In the k-th step of the algorithm, a certain face of the map k is split, which gives rise to the
map k+1. We will use the term transition to refer to this action. The transition updating the

map from k-1 to k involves: (1) determining the segment containing x and splitting this
segment into the two segments, (2) splitting the face fr containing the arc(γ-Pred(x),x) into the
two faces fu, fv. We use Size(fi) to denote the number of the segments that lie on the boundary
of the face fi, and we will use the term size of face for this number (Fig. 2.1b). Since each
transition gives rise to a new segment, the following equation holds

 Size(fu)+Size(fv) = Size(fr)+1. (2.1)

Note that the size of the faces can be considered at two different moments: (a) at the moment
when the face arose by splitting another face, (b) at the moment when the face was chosen for
further splitting (if any). In the latter case, the size increases by one, which is due to the fact
that during the transition in which a face was chosen for further splitting, the segment in which
the curve enters the face was split (Fig. 2.1b). Therefore, if the size of all faces is to be
considered just before their splitting, Eq. 2.1 should be adapted as follows

 Size(fu) + Size(fv) = Size(fr) + 3. (2.2)

In the algorithm, the maps 1, 2,..., N, (γ) are represented by a doubly linked list. The
implementation is supposed to support the inquiry functions Pred(xi), Succ(xi), Upper(xi),
Lower(xi). These functions are defined as follows: Pred(xi)=xi-1, Succ(xi)=xi+1, Upper(xi)=xj
if xi,xj are connected by the edge representing an arc lying in Ux (if this edge does not exist,
Upper(xi) is not defined), similarly, Lower(xi)=xj if xi,xj are connected by the edge
representing an arc lying in Lx. In addition, the following updating operations are available:
The operation Split segment(xi,xi+1, x) splits the segment xixi+1 into the two segments xix
and xxi+1 (it is assumed that xi<x<xi+1). The operations Insert upper edge(xi,xj) and Insert
lower edge(xi,xj) create the edge connecting the vertices xi,xj and representing the arc
arc(xi,xj) lying in Ux and Lx, respectively. It is easy to check that all the mentioned operations
can be carried out in constant time.

3. The Algorithm

In this section, we will describe a simple algorithm for solving Problem 1. Although the worst-
case time complexity of the algorithm is O(N log N), the theorems presented in this section
show that the worst time is achieved only for a special input. For most inputs, better running
times can be expected. The main goal of this section is to present the analysis of running time
for a certain class of random inputs.

Algorithm 1

Input: The sequence of N intersection points between a Jordan curve and the x-axis. The
points are ordered as they occur along the curve.

Output: The sequence of intersection points sorted along the x-axis. (If the algorithm is used
for solving the problem of curve or polygon cutting or clipping, then also the map (γ) can be
the output).

1 Read the first intersection point from the input sequence, and create the initial map 1 as
depicted in Fig. 2.2.

 repeat

2 Read the next intersection point x from the input sequence. γ-Pred(x) now denotes the
intersection point that was processed immediately before x, fr denotes the face

containing the arc arc(γ-Pred(x),x) (this face was identified when the curve entered this
face in γ-Pred(x)).

3 Beginning with γ-Pred(x), go sequentially and simultaneously in both directions along
the boundary of fr (Fig. 2.1b, the order in which the segments are tested is important
for the time complexity of the algorithm) For each segment on this boundary, test
whether the segment contains x. The process stops when the segment containing x is
found.

4 Split the segment containing x into the two segments, and insert the new edge
representing the arc arc(γ-Pred(x),x) into the map (the edges representing the upper
and the lower arcs alternate as the intersection points are processed).

 until all the intersection points are processed

5 From the map (γ), read the output sequence of sorted points.

In the rest of this section, the analysis of the algorithm will be presented. The time complexity
of one transition and the time complexity of the whole algorithm will be measured by the
number of tests deciding whether x lies inside a segment (Step 3, Fig. 2.1b). The time
complexity of the transition from k-1 to k that splits a certain face fr into two faces fu,fv is
thus
 t = 2min{Size(fu), Size(fv)} or t = 2min{Size(fu), Size(fv)}-1. (3.1)

Note that if the size of one of the faces resulting from splitting (either fu or fv) is 1, i.e., if the
time complexity of the transition is 1 or 2 (Eq. 3.1), then the size of the other resulting face is
Size(fr) (Eq. 2.1), which gives the size Size(fr)+1 before the next splitting. The transitions with
time complexity 1 or 2 thus give rise to the faces with higher sizes.

First, for completeness, we recall several theorems concerning the worst-case time complexity
of the algorithm. Since these theorems have already been published, we omit the proofs (they
can be found in [Sojka 96]). Theorem 1 shows that in the worst case, Algorithm 1 is at least as
good as the fast general-purpose sorting algorithms. The remaining theorems suggest that a
lower time complexity can be expected for some inputs.

Theorem 1. In the worst case, Algorithm 1 requires no more than N(4+log2N) tests deciding
whether x lies inside a segment. •

Theorem 2. In the best possible case, the number of the tests that are required by Algorithm 1
is N. •

Theorem 3. If during the computation, the size of the faces in the map is bounded, i.e., the size
is never greater than a certain constant C, then no more than N(4+log2C) tests deciding
whether x lies inside a segment are needed in Algorithm 1. •

Theorem 4. If during the computation, the number of transitions with time complexity 1 or 2
is not greater than D, then no more than N(3+(D/N)log2N) tests deciding whether the
intersection point lies inside a segment are needed in Algorithm 1. •

Note that the transitions with time complexity 1 or 2 occur if in the sequence of the points that
have already been sorted, x (i.e., the point that is being sorted) directly follows or directly
precedes the point that was sorted immediately before x (Fig. 2.1b). Theorem 4 shows that the
constant before the term log2N decreases with the decreasing probability of this event.

Theorem 5. Consider the pair of Hasse diagrams corresponding to a given input of size N
(Fig. 1.1b). Suppose that in total, the diagrams have Q inner nodes and, therefore, N-Q+2
leaves. Let ni denote the i-th inner node, let di be the degree of this node (i.e., the number of its
child nodes), let Li denote the number of leaves of the sub-tree whose root lies in ni, and let hj
denote the depth of the j-th leaf in the Hasse diagram. For the total number of tests, denoted by
T, the following inequalities hold

 a) T N Li
i

Q
≤ +

=
∑2 2

1
, b) T N h j

i

N Q
≤ +

=

−

∑2 2
1

. •

Theorem 5 shows that if either the depth or the width of the Hasse diagrams that correspond
to the given input are bounded, i.e., are never higher than a certain constant that does not
depend on the size of problem, then Algorithm 1 runs in constant time. Less formally, if the
input sequence is "simple" in the sense that one of the mentioned dimensions of the
corresponding Hasse diagrams is low, then a short running time can be expected.

From the worst-case study, it follows that the worst running time is achieved only under rather
special circumstances consisting in: (a) First, both in Ux and Lx, certain D transitions with time
complexity 1 or 2 create a face of size D+2 (the number D leading to the worst possible
running time depends on the size of the problem and increases with this size). (b) In each of the
remaining transitions, the biggest face in the appropriate half-plane is chosen and split (we
suppose that the biggest face can always be chosen). If s denotes the size of this face, then the
face must be split into the faces of size ⎡(s+1)/2⎤, ⎣(s+1)/2⎦. In Fig. 3.1, the process of splitting
in the upper half-plane is illustrated by a tree. In this tree, the inner nodes represent the faces
that were split during a certain transition. The leaves represent the faces that have not been
split and that are thus present in the final map. The process leading to the worst running time is
highly organised. Any deviation from the rules described above leads to a lower running time.
This suggests the idea that in the case of a random input, a better running time can be
expected. Informally, this expectation can be explained by the two facts: (a) It is possible that
in the case of a random input, the sizes of the faces in the map will not tend to grow too much,
i.e., the probability of existence of big faces will be low. (b) In the case that big faces will
appear, there is still a good chance that they will not be split in the worst possible manner.

2

2

2

2

2

2

3

4

5

6

7

5 5

4 4 4 4

a)

2

2

2

2

2

4

3

4

5

6

5

4 4

4 3 4 3

b)
Figure 3.1. a) An example of the tree that depicts the history of splitting. The numbers
inscribed in the nodes are the sizes of the faces (measured at the moment before their further
splitting). The tree corresponds to the worst case for M=N/2=8 (T=5*2+7+2*5=27).
However, there exist another trees leading to the same time (b)(T=4*2+6+5+2*4=27).

To study the time complexity of Algorithm 1 for random inputs, we will introduce a certain
model of generating the Jordan sequences. In this model, the curves are supposed to be open.
The model is based on the assumption that for each of the segments lying on the boundary of
the face containing the arc arc(γ-Pred(x),x) (according to Lemma 1 no other segment can
contain x), it makes a sense to think about the probability of the event that x will fall just into
this segment. We will introduce the numeration of the segments lying on the boundary of the
face as depicted in Fig. 3.2a. Furthermore, we will introduce the function π(s,u) expressing the
probability that in the face of size s, the intersection point will fall into the segment whose
number is u. Different functions π(s,u) cause that the generator produces the curves of
different "nature". (However, we do not claim that the model can generate the curves of all
shapes. The assumption that the functions π(s,u) exist and that they do not depend on the size
of the problem seems to be restrictive.) Fig. 3.2b shows an example of the curve that was
generated by the generator.

x
-Pred(x)

5 14 2

γ

3

a) b)

Figure 3.2. a) The numeration of the segments lying on the boundary of a face. In this case,
s=5, s1=3, s2=5 (see further text). b) An example of the curve that was generated randomly.
The distribution of probability was π(s,u)=1/s.

We will evaluate the time complexity of the transitions in Ux, i.e., we will consider the upper
half of the problem. Let M (M=N/2) be the number of these transitions. Consider a face in the
map i. Each such face is a product of a certain sequence of splits. On the beginning of each
such sequence, there is the first initial face in the map 1. Consider the tree describing the
history of splitting (Fig. 3.1). Let k denote the number of splits (splitting levels) that lie on the
branch leading from the root to the desired face. The value of k can vary from 0 (k=0 is the
level of the initial face in 1) to M. Let pk(s) be the probability of the event that after k levels
of splitting, the size of the face will be just s. Since the map 1 contains only one face and
since the size of this face is 2, p0(s) is p0(2)=1, and p0(s)=0 for s≠2. In the rest of this section,
by size of face we mean the size that is measured at the moment when the face is chosen for
further splitting (see Section 2). Consider the situation in which a face of size s was split,
which gave rise to two faces of sizes s1 and s2. We will introduce the rule that the face whose
size is denoted by s1, is the face that contains the segment lying to the left of γ-Pred(x) (Fig.
3.2a). The biggest face that can occur after M transitions in Ux (and the same number of
transitions in Lx) is a face of size M+2. The face of size s1 can occur in such a way that in the
face whose size is s≥s1-1, the intersection point x will fall into the segment whose number is s-
s1+2. This gives the following recurrent expressions for the probabilities pk(s):

 pk(2) = π(2,2)pk-1(2) + π(3,3)pk-1(3) + π(4,4)pk-1(4) + ... + π(M+2,M+2)pk-1(M+2)

 pk(3) = π(2,1)pk-1(2) + π(3,2)pk-1(3) + π(4,3)pk-1(4) + ... + π(M+2,M+1)pk-1(M+2)

 pk(4) = π(3,1)pk-1(3) + π(4,2)pk-1(4) + ... + π(M+2,M)pk-1(M+2)

 ...

 pk(M+2) = π(M+1,1)pk-1(M+1) + π(M+2,2)pk-1(M+2) (3.2)

The probabilities pk(2),pk(3),pk(4),... can be arranged into the vector pk=(pk(2),pk(3),pk(4),...
)T (T indicates the transposition). The vector p0 is p0=(1,0,0,...). The values of the function π
(s,u) can be arranged into the matrix, denoted by Π,

 Π =

π π π π π
π π π π π

π π π π
π π π

π π

(,) (,) (,) (,) (,) ...
(,) (,) (,) (,) (,) ...

(,) (,) (,) (,) ...
(,) (,) (,) ...

(,) (,) ...
...

2 2 3 3 4 4 5 5 6 6
21 3 2 4 3 5 4 6 5
0 31 4 2 5 3 6 4
0 0 4 1 5 2 6 3
0 0 0 51 6 2

..

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (3.3)

Eq. 3.2 can now be rewritten in the matrix form
 p pk k= −Π 1 . (3.4)
Substituting for pk-1, pk-2, ..., p1, we have
 p pk

k= Π 0 . (3.5)
Note that the dimensions of the vectors and the matrix can be supposed to be higher than M.
The fact that in the case in which only M transitions are to be done, no face whose size is
greater than M+2 can occur is expressed by zero probabilities of existence of the faces having
greater sizes. The vectors and the matrix of a size Q thus can be used for the problems of size
up to Q. Let μs,k denote the mean value of the size of the faces arising after the k-th level of
splitting. From the definition of mean value, we have

 ()μs k k
s

Q
sp s, =

=

+

∑
2

2
. (3.6)

We introduce the vector s = (2,3, ... , Q+2)T. Eq. 3.6 can now be rewritten as follows

 μs k
T T k

, = =s p s pΠ 0 . (3.7)

We now evaluate the mean value of the time complexity of the transition in the k-th level of
splitting. We introduce the function τ(s,t) expressing the probability that the time complexity of
the transition in a face of size s will be t. From the order in which the segments were numbered
(Fig. 3.2a) and from the order in which the segments are tested in the algorithm (Fig. 2.1b), it
follows that τ(s,1)=π(s,1), τ(s,2)=π(s,s), τ(s,3)=π(s,2), τ(s,4)=π(s,s-1), etc. Let qk(t) be the
probability of the event that in the k-th level of splitting, the time complexity of the transition is
just t. Since the transition having time complexity t can arise only in the face whose size is at
least t, we have

 () () ()q t s t p sk k
s t

Q
=

=

+

∑τ ,
2

. (3.8)

We use μt,k to denote the mean value of the time complexity of one transition in the face that
arose in the k-th level of splitting. The definition of mean value gives

 ()μt k k
t

Q
tq t, =

=

+

∑
1

1
. (3.9)

Note that although we expect the faces of size up to Q+2, the face of size Q+2 is never split.
The biggest face that is split is the face of size Q+1. This explains the upper bound in the
previous sum. We will introduce the vectors qk=(qk(1),qk(2), ... , qk(Q+1))T, t=(1,2,3, ... ,
Q+1)T and the matrix

 T =

π π π π π
π π π π π

π π π π
π π π

π π

(,) (,) (,) (,) (,) ...
(,) (,) (,) (,) (,) ...

(,) (,) (,) (,) ...
(,) (,) (,) ...

(,) (,) ...
...

2 1 31 4 1 51 6 1
2 2 3 3 4 4 5 5 6 6
0 3 2 4 2 5 2 6 2
0 0 4 3 5 4 6 5
0 0 0 5 3 6 3

..

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (3.10)

Eq. 3.8, 3.9 can now be rewritten in the matrix form
 q Tpk k= , (3.11)

 μt k
T

k
T k

, = =t Tp t T pΠ 0 . (3.12)
Furthermore, we introduce
 { }μ μs

k
s k,max ,max= , { }μ μt

k
t k,max ,max= . (3.13)

Obviously, if the mean value μt,max is bounded (i.e., for the problems of all dimensions lower
than a certain constant), then Algorithm 1 runs in linear expected time that does not exceed
Nμt,max. Note that the sequence μt,0, μt,1, μt,2,... is not required to converge. The criterion of
convergence is stronger. The sequence can be bounded and still need not converge (for
example, it may contain the cycles of values). In the following theorem, we will study a special
case.

Theorem 6. Suppose that all the segments lying on the boundary of the face containing the arc
arc(γ-Pred(x),x) have equal probabilities that they will contain the new intersection point x,
then Algorithm 1 runs in 2N expected time.

PROOF. If the probability that the intersection point x will fall into a certain segment is evenly
distributed between all possible segments, then the matrices Π and T are of the form

 Π = =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

T

1 2 1 3 1 4 1 5
1 2 1 3 1 4 1 5

0 1 3 1 4 1 5
0 0 1 4 1 5

/ / / / ...
/ / / / ...

/ / / ...
/ / ...

...

. (3.14)

By making use of Eq. 3.12, μt,k is

 μt k

k

k k, =
−

= −
+2 1
2

2 1
2

1
. (3.15)

Thus, the sequence μt,0, μt,1, μt,2,... is 1, 3/2, 7/4, 15/8, 31/16, 63/32,... . Note that the values
in this sequence do not depend on the size of problem. The size of problem is taken into
account by considering the appropriate number of terms from this sequence when determining

the maximum in Eq. 3.13. It is easily seen that for k→∞, the value of μt,k converges to 2. For
completeness, we will also evaluate the mean value μs,k. By making use of Eq. 3.7, we obtain

 μs k k, = −3 1
2

. (3.16)

The mean value of the face size is never higher than 3, i.e., the probability of the occurrence of
big faces is low. This expression elucidates the reason for favourable behaviour of the
algorithm and shows the area of practical applicability of the theorem. •

We have implemented and tested the algorithm analysed in this paper. The following table
shows the mean value and the variance of the quotient (number of tests)/N for the curves that
were generated randomly. The distribution of probability was π(s,u)=1/s, i.e., constant for
every segment lying on the boundary of the face (Theorem 6).

Table 1. Experimental results for Algorithm 1 and the randomly generated sequences.

Size of problem (N) 10 100 1000 10000 100000
Number of experiments 10000 10000 1000 1000 500
E{Number of segment tests/N} 1.70 1.97 1.99 2.0 2.0
√Variance of the value above 0.28 0.12 0.04 0.012 0.004

4. Conclusion
In this paper, we have presented and analysed an algorithm for Jordan sorting. Although the
algorithm runs in O(N log N) worst-case time, the theorems presented in Section 3 have shown
that the worst time is achieved only for a special input. For most inputs, a better running time
can be expected. We have also shown that for a certain class of random inputs that may be of
practical interest, the algorithm runs even in O(N) expected time. For the Jordan sorting
problem, the performance of the algorithm is thus better than the performance of the fast
general-purpose sorting algorithms. In comparison with the worst-case time optimal algorithms
proposed by Hoffman and by Fung, our algorithm does not use any additional tree data
structure and, therefore, it is fairly easy to implement. We believe that due to its simplicity, the
algorithm may be useful in a variety of practical applications. The main result presented in this
paper is the mathematical analysis of this otherwise rather straightforward algorithm.

References
Fung K.Y. - Nicholl T.M. - Tarjan R.E. - Van Wyk C.J.: Simplified linear-time Jordan sorting

and polygon clipping, Information Processing Letters, Vol. 35, (1990), pp 85-92.

Hoffman K. - Mehlhorn K. - Rosenstiehl P. - Tarjan R.E.: Sorting Jordan sequences using
level-linked search trees, Inform. and Control, Vol. 68 (1986), pp 170-184.

Liang Y.D. - Barsky B.A.: An analysis and algorithm for polygon clipping, Comm. ACM, Vol.
26 (1983), pp 868-877.

Shutherland I.E. - Hodgman G.W.: Reentrant polygon clipping, Comm. ACM, Vol. 17 (1974),
pp 32-42.

Sojka E.: Two simple and efficient algorithms for Jordan sorting and polygon cutting and
clipping, In Compugraphics 96, Paris 1996, pp 241-252.

