An Object-Oriented Tool for Visualization and Debugging of
Finite Volume Methods

Thomas SCHMIDT, Roland RUHLE

Computing Center (RUS)
University of Stuttgart
Allmandring 30, 70550 Stuttgart
Germany
E-Mail: {schmidt,ruehle}@rus.uni-stuttgart.de

Abstract

Visualization tools are not only useful for displaying results of computational simula-
tions; they also may serve as a graphical debugger for the development of numerical
simulation applications. The object-oriented visualization tool presented here takes
the additional requirements into account. It handles arbitrary polygonal and poly-
hedral grids. It is possible to visualize the internal solution data structures of the
simulation program exactly. For finite volume methods this means the possibility
to display higher-order reconstruction functions on the control volumes. Therefore,
a simple interface allows the easy integration of the simulation data structures into
the presented system. It consists of a predefined set of methods which can be defined
by using the internal data structures of the simulation program. The visualization
of additional debugging information is realized through the introduction of special
user objects. Two examples are presented.

1 Introduction

The development and implementation of numerical methods for computational simulation
are getting more and more complex. The target is to simulate real-life problems like the
air flow around a complete airplane or inside a car (heating) as fast as possible. Bigger,
faster computers are needed, but also new, more sophisticated simulation methods have
been introduced during the last decade. Former methods worked only with structured
grids, which are much easier to handle than unstructured grids. Here, a computational
space is decomposed into a set of triangles in 2D space and into a set of tetrahedra in 3D,
respectively. A further extension is to use a small set of predefined polygonal or polyhedral
types. Some finite volume methods even use arbitrarily unstructured grids [SVD89]. Also
adaptive grid refinement is frequently used. This leads to the problem that, during the
development of a computer simulation application, not only the production of correct
results must be checked, but also features like grid database, adaptive refinement and
automatic grid distribution for parallel applications have to be checked.

The presented visualization system deals with finite volume methods on 2D or 3D arbi-
trarily unstructured grids. A 3D grid of this kind is defined as a set of arbitrarily-shaped
polyhedra which build the computational domain. The polygons which build the poly-
hedra may also be non-convex. The example computational cell in Figure 1 consists of
seven polygons, two of them are pentagons, the other five are quadrangles.

484

Figure 1: Example cell of a 3D arbitrarily unstructured grid

Some advantages of arbitrarily unstructured grids are: simplifies grid refinement and
recoarsening, integration of the grid generation into the simulation process, no additional
effort for complex geometries, and no grid degenerations in critical regions [HK94].

The presented system supports the verification of numerical simulation packages during
the development process. Therefore, the numerical data structures can be integrated into
the visualization system. The user defines evaluation functions for these data entities.
The resulting scalars and vectors can then be displayed. Additionally, user-defined data
can be visualized in order to identify possible numerical or adaptive grid refinement prob-
lems. Hence, this tool is one step towards a graphical debugger for the development of
computational simulation systems.

The following sections give an overview about the object-oriented visualization system
including a description of the data model. Then examples are presented, followed by a
comparison with other approaches and a conclusion.

2 Data Model

For structured grids only few parameters must be stored, e.g. for an ashlar grid the width
of the cells in each dimension. The data model for the results of arbitrarily unstructured
grid methods is much more complex. This formal model consists of the description of the
complex geometry and a set of solution functions for quantities.

The whole data model is dimension independent because the geometry is recursively
defined. First, a node n; is a vector of dimension dim and at the same time an element
of the lowest hierarchy level Hy.

n, = (cl, v ,cd,-m)

HO = {nl,---annodes} (1)

Further hierarchy levels H; are defined as a set of subsets M), of the previous level.

Mk = {ml,. .. ,ml} with m; € H'..l
Hi = {Mla osey Melements} (2)

485

A n—dimensional grid G is defined by a tuple of n+1 different hierarchy levels H;.

G = (Ho,...,H,) (3)

The solution values (scalars and vectors) are obtained by an arbitrary number of evalu-
ation functions. For a cell centered finite volume method all quantities are assigned to
the centers of the elements of the highest hierarchy level. A reconstruction function f; is
used to calculate a quantity q at the position z within a cell C;. The solution f on the
complete computational domain D is composed with the functions of all n cells.

fi(z) if z€eC .
f(z) == : with € D and D=|JC; (4)
fulz) i ze(, =1

A quantity may be a scalar or a vector. It follows that the solution over the whole
computational domain must not be continuous because there may be discontinuities on
cell borders. In Figure 2 a 2D example is shown, two neighbouring cells with their solution
functions.

X
Figure 2: 2D example of a discontinuous solution

A model for the representation of solutions of finite element methods and the management
of time-dependent data was presented in [SR95)].

3 The Visualization System

3.1 System Architecture

The presented visualization system VIZARD (VlsualiZer of ARbitrary grid Data) was de-
signed to meet the following demands:

o efficient handling of arbitrarily unstructured grids

e management of time-dependent data with changing grids
¢ visualization of solutions from finite volume methods

e support of piecewise continuous solutions

o integration of online visualization

o support of additional user objects for debugging purposes

486

e interactive solution steering

e easy connection of simulation and visualization

To fulfill these demands the architecture as shown in Figure 3 was chosen to connect the
simulation and the visualization system.

User Interface

Simulation Renderer

- Visualizer
Data Conversion

Communication Link
Files |
-

Figure 3: Overview of the system architecture

One part of the complete system is a simulation package which is connected to the visual-
ization system using the Heterogenous Simulation Data Interface (HSDI). The components
of the visualization system include a renderer; a visualizer, which performs the visualiza-
tion methods; and the user interface, which can access the visualization methods and all
rendered objects. /

The visualization data is organized in a list of time steps. This way, visualization of time-
dependent data is possible. Between two time steps linear interpolation of time is used.
Other interpolation methods may be suitable for animations. Several time step lists can
be managed at the same time. Thus, results of multi-grid methods or distributed grids of
parallel applications can be displayed. For a detailed description of the management and
the visualization of time-dependent data see [SR95).

Polygon lists generated by visualization methods or user objects created by the simula-
tion program are then transfered to the renderer. Open Inventor™, an object-oriented
3D toolkit developed by Silicon Graphics, was used for the implementation of the ren-
derer. This toolkit is supported by several workstation manufacturers and thus ensures
portability.

3.2 The Object Oriented Interface

The Heterogenous Simulation Data Interface is an object-oriented library which was devel-
oped in C++. It provides methods for data conversion, transfer and file I/O. Using HSDI
makes it possible to send data from the simulation directly to the visualization. Alterna-
tively this data can be archived first and visualized later. Three main base classes exist:
HSDI_Geometry, HSDI_Solution, and HSDI_UserData. Details of these classes are descibed
in the following sections. Figure 4 shows the inheritance tree for some important HSDI
classes. The notation is the one proposed by Booch [Boo94]. Not all interdependences
are shown in order to keep the picture clear.

487 |

e

—_—— — -

\HSDI HlerarchyLeveI = HSDI Geomeuysn‘
'\ &
_HsD! Geometryzb‘

P)

[HSDI Geometry10>

~ - -
—— - nA/\ - —_—~
¢ HSDI_GeometryoD \.=’ HSDI BoundaryAn'ay \

- - -

AT \ o

("HSDI_Geometry \ -7 ~
= ’ « . HSDI_NodeArray /\

-
~ - —_ -
p— -

-~
~

- - -
,__/\\ PR - — - ——~

HSDI TimeContainer vel— _ HSDI Solution \.=l HSDI StateVector \.=l HSDI_State)

_‘ - - - - - - - - - -
~—-’ \—/ \—’ \—’

- [t ’/—~—'—\\

~ e e ! "HSDi_objPaint

' HSDI_UserData | - JRBLoY p

. - k.—\'/-_
N -
-

- -~

_ ! _ HSDI_ObjText ,\

— Y-~ —
- - - - -
- - ~ V- -

< HSDI_Objoctarray U0 LHsm Object -
Tt e--"7 N7 HSDI Ob]Pongon
P> inherits : "—_,‘-

N -——— T\
@——— uses (forimp ion . ~
{) " “usol Ob]Bspllne
L - —

._ ~

Figure 4: Overview of the main classes of the interface

3.3 Grid Data

The grid is constructed by calling appropriate methods for an object of a derived class
of HSDI_Geometry. As derived classes, HSDI_GeometryOD, which contains only nodes and
boundary elements, HSDI_GeometrylD, which additionally has edges, HSDI_Geometry2D
with polygons, and on top of it class HSDI_Geometry3D with polyhedra are available.
Edges, faces and cells are realized by the usage of the class HSDI_Hierarchylevel. Another
hierarchy level is always added for the next dimension. If fact, it would be possible to
further increase the number of dimensions because this data model is independent of the
dimension .

The grid data object is built the following way: at first, all nodes are created by calling
the method addNode(), which takes a coordinate vector as a parameter and returns the
ID of the new node. If node IDs already exist, then this method must be called for all
nodes in the correct order. After all nodes are added, edges can be built; just create a
vector of IDs of the nodes which build the edge and pass it as an argument to the method
addEdge(). The creation of faces and cells works analogously.

In order to keep the amount of interface data small, the upward connectivity information
is created by the visualization system. It is used for efficient implementation of the
visualization algorithms. The grid elements are stored in arrays, not as standalone objects,
for performance reasons.

488

3.4 Solution Data

The numerical solutions of finite element methods are administrated by accessing methods
of the class HSDI Solution. Solution values of cells or nodes are added by calling the
method addState(). In addition, boundary solution values can be added.

A predefined method interface of the class HSDI State exists. This way it is possible to
display solutions with higher-order reconstructions. The user of the library must provide
the implementation of some of the class’ methods. These methods should use the solution
data structure of the numerical simulation. This is necessary to select evaluation functions
and to compute scalar or vector values within a computational cell. These query methods
have a position argument, allowing one to compute the value at any position within a
grid cell. The needed methods are in specifically:

e new() and delete()

o getNumberOfScalarMethods()
o getNumberOfVectorMethods()
¢ getNameOfScalarMethod()

o getNameOfVectorMethod()

o setScalarMethod()

o setVectorMethod()

e getScalar()

o getVector()

e read() and write()

3.5 User Data

To support the development process and the debugging of a numerical simulation package,
additional user data can be generated by the HSDI. This allows the display of additional
information beyond the grid and solution data. Therefore, several derived classes of
HSDI_Object exist. At the moment, the following classes of user objects are available:

o HSDI_ObjEmpty for test purposes

e HSDI_ObjPoint for one point

o HSDI_ObjLines for a set of lines

o HSDI_ObjPolygon for one polygon

e HSDI_ObjSphere for a sphere

o HSDI_ObjCone for a cone

e HSDI_ObjText for 2D text

o HSDI_ObjBspline for a b-spline surface

the shape and color of these objects are adjustable and they are displayed at the specified
position within the grid by the renderer. This way cells can be marked in which special
conditions occur. Flags used by the simulation for the computational cells can be dis-
played. Text can be used to provide additional information of the solution process. These
are only some of the many possible applications.

489

These user objects will be used to steer the simulation process. They can be selected by
clicking on them in the renderer. Then it is possible to send them back to the numerical
program. The developer of the computational simulation may, for example, use HSDI user
objects to allow the selection of regions for adaptive refinements.

3.6 Output Facilities

Data generated by the numerical simulation must be transfered to the visualization sys-
tem. This can be done in three ways, by using either files or a database or a direct
communication channel. The described interface provides the appropriate classes (see
Figure 5).

- -

- - - ——— ~

-
{_HsD1_InFile \ ! HSDI_G ,\

L . -—
- N="
- -
- - -

! HSDI_Input '\4-—J_Hsm_|nComm

L__’—

\

\—_’—— L—_’—-
\ B
—— {_HSDI_InDstaBase : e
- ~ \ - - ' ~
{_ HsDI_IObase PSS _ HSDI_Solution \
| N - e - Y [] | N -
N\
- !_usDI_outFile ,\ ' N
7 e
_———T o ———T
- - -
{_ HsDI_output ,\<—I_HSDI_0utComm ,\
L - [- -
- .- - N - -
inherits ‘\’,——_“\ -l
4 B HSDI_UserData
O=——— uses (forinterface) ~HSDI_OutD °, e -
C-o P TN - -

Figure 5: Class diagram showing output organization

An instance of the virtual base class HSDI_Output can either be an object of the class
HSDI_OutFile for file output or of the class HSDI_OutPort for direct communication or
of the class HSDI_OutDB for database access. This way an easy switch between file
output, database access and direct communication is possible. Possible output objects
are instances of the classes HSDI_Geometry, HSDI _Solution and HSDI_UserData.

For the online simulation a client/server protocol is supported by appropriate methods
of the HSDI. Two modes can be realized as shown in Figure 6. The first one is the
independent mode. Only if the visualization demands data it is sent by the numerical
simulation. The second mode is the tracking mode. The simulation may send data at any
time if the visualization is ready to receive.

Server Client Client Server
request (ready?

.
request data reply (ready!
H H O\ e
Simu- | S Visuali— Simu- | S S | Visuali-
lation D zation lation D D | zation
I I send data |
send data
acknowledge
(a) tracking mode (b) independent mode

Figure 6: Possible communication scenarios for online visualization

490 -

3.7 Visualization Methods

As described in [FH94], the visualization methods such as boundary selection, cutting
planes, color mapping, vector display and isolines/isosurfaces can be combined. One
of the system’s purposes is to allow the display of a solution function within a cell.
Therefore, and to display isolines/isosurfaces, the grid cells are triangulated. The Delauny
triangulation is used. Procedures to gain Delauny triangulations are readily available in
the literature (e.g. [LS93]). Within a triangle or a tetrahedron linear interpolation is
used to generate isolines/isosurfaces. If a closer look at a cell is desired, it is possible to do
further refinement on the triangular/tetrahedral cells. The introduction of an additional
grid point requires no interpolation because the available solution function can be used
to get numerically exact values of the quantities. In contrast to the use of the marching
cube algorithm, no problems with ambiguities occur (e.g. see [Mat94]). A more detailed
desciption of the visualization methods can be found in [SR96].

4 Visualization Example

In [HBK95], a parallel euler-solver for highly unstructured grids based on arbitrary con-
trol volumes (CEQ) is presented. The results of this solver are transfered to the presented
visualization system by using the HSDI. This is the reason why in a first step the visual-
ization system was developed for the needs of visualizing fluid flows. As a special feature
(CEQ) works on computational cells which may contain holes. Hence, it was necessary to
implement a conversion method which disassembles these cells into cells without holes.

The visualization examples given are Figure 7 is from an inviscid flow around the NACA
0012 airfoil at mach 0.8 with an incident of 1.25 degrees (2D). In Figure 7 (a), the color-
encoded pressure values are shown (dark - high, light - low). A detail of the grid is shown
in Figure 7 (b). The numbers were generated by the simulation program as HSDI user
objects. They indicate the refinement level on which the edges were created.

5 Other Approaches

Commercial visualization systems are designed for the visualization of results of finite
element methods. Within IRIS Explorer™, for example, the pyramid data type allows
one to create arbitrary control volumes, but the computed quantities are connected with
the nodes. New quantities may be calculated from them. Within the cells interpolation
takes place. This may lead to differences between the correct numerical values and the
displayed ones, such that no visualization of finite volume methods is possible.

In contrast to an object-oriented approach, a functional one is also possible. A very good
example is GRAPE (GRAphics Programming Environment) [GR91]. It is a flexible tool
for the visualization of finite element methods on triangular and tetrahedral grids. Pre-
defined but arbitrary grid elements were introduced in [RSS95]. Handling of unsteady
simulations is integrated. Management of time-dependent data as described in [PR94]
influenced the presented work. The possibility of online visualization was recently intro-
duced using the net-manager concept [OP95].

491

(b) Detail with text user objects

Figure 7: Inviscid flow around the NACA 0012 airfoil
6 Conclusions

An object-oriented visualization tool for finite volume methods on arbitrary unstructured
grids was presented. The solutions may be only piece-wise continuous — no other visu-
alization system is able to handle this kind of data. Using the Heterogenous Simulation
Data Interface (HSDI), an easy connection of a numerical simulation and the visualization
system can be made. This allows the integration of the visualization and a simulation
application. Also mechanisms for interactively steering the simulation are suggested. Ex-
amples were presented.

References

[Boo94] Grady Booch. Object-Oriented Design With Applications, 2nd Edition. The
Benjamin/Cummings Publishing Company, 1994.

[FH94] James M. Favre and James Hahn. An object oriented design for the visualiza-
tion of multi-variable data objects. In Harold P. Santo, editor, Proccedings of
the Visualization ’94, pages 318-325, Washington, D.C., October 1994. IEEE

[GRO1]

[HBK95]

[HK94]

[LS93]

[Mat94]

[OPY5]

[PR4|

[RSS05]

[SR95]

[SR96]

[SVD89]

Computer Society Technical Committee on Computer Graphics in cooperation
with ACM/SIGGRAPH, IEEE Computer Society Press.

M. Geiben and M. Rumpf. Visualization of finite elements and tools for numer-
ical analysis. In Proccedings of the Second Eurographics Workshop on Visual-
ization in Scientific Computing, Delft, Netherlands, April 1991.

C. Helf, K. Birken, and U. Kiister. Parallelization of a highly unstructured euler-
solver based on arbitrary polygonal control volumes. In N. Satofuka, J. Periaux,
and A. Ecer, editors, Proceedings of the Parallel CFD ’95 Conference, Pasadena,
USA, 1995. Elsevier.

C. Helf and U. Kiister. A finite volume method with arbitrary polygonal control
volumes and high order reconstruction for the Euler equations. In S. Wagner,
E.H. Hirschel, J. Périaux, and R. Piva, editors, Proceedings of the Second Fu-
ropean Computational Fluid Dynamics Conference, Stuttgart, Germany, 1994.
Wiley & Sons.

Michael K. Loze and R. Saunders. Two simple algorithms for constructing a
two-dimensional constrained delauny triangulation. Applied Numerical Mathe-
matics, 11:403—418, 1993.

S. V. Matveyev. Approximation of isosurface in the marching cube: Ambi-
guity problem. In Proccedings of the Visualization 94, pages 288-292, Wash-
ington, D.C., October 1994. IEEE Computer Society Technical Committee on

Computer Graphics in cooperation with ACM/SIGGRAPH, IEEE Computer
Society Press.

B. Oberknapp and K. Polthier. A simple concept for distributed computing
in computer graphics. In D.W. Fellner, editor, Modelling - Virtual Worlds -
Distributed Graphics, pages 26-35. Infix, 1995.

K. Polthier and M. Rumpf. A concept for time-dependent processes. In Work-
shop Papers of the Fifth Eurographics Workshop on Visualization in Scientific
Computing, Rostock, Germany, May/June 1994.

M. Rumpf, A. Schmidt, and K.G. Siebert. On a unified visualization approach
for data from advanced numerical methods. In Proceedings of Sizth Eurographics
Workshop on Visualization in Scientific Computing, Chia, Italy, May 1995.

T. Schmidt and R. Riithle. On-line visualization of arbitrary unstructured,
adaptive grids. In R. Scateni, J. van Wijk, and P. Zanarini, editors, Visualization
in Scientific Computing 95, pages 25-34. Springer, Wien, New York, 1995.

T. Schmidt and R. Riihle. Visualization of finite-volume methods on arbitrary
unstructured grids. In Harold P. Santo, editor, Compugraphics ‘96 Conference
Proceedings, Bonneuil-sur-Marne, France, December 1996. GRASP.

R. Struijs, P. Vankeirsbilck, and H. Deconinck. An adaptive grid polygonal finite
volume method for the compressible flow equations. Meeting Paper AIAA-89-
1959-CP, American Institute of Aeronautics & Astronautics, 1989.

493

