
Global Illumination with Glossy Surfaces

Wolfgang Stürzlinger

GUP, Johannes Kepler Universität, Altenbergerstr.69, A-4040 Linz, Austria/Europe
wrzl@gup.uni-linz.ac.at

Abstract

Photorealistic rendering is used to generate views of computer stored scenes. Global illumination
algorithms take all transfers of light in the scene into account thereby creating a realistic looking
image. Previously several approaches have been presented which are able to deal with global illu-
mination for diffuse surfaces. More general surfaces are handled only by few methods.
This work presents a new algorithm for the generation of photorealistic images for scenes with
arbitrary surfaces. Initially particle tracing and a reconstruction phase are used to obtain a good
approximation to the directionally dependent illumination in the scene. The illumination informa-
tion is stored and can be used subsequently to generate images from different viewpoints directly
from the stored solution. The whole system is structured into several independent phases and is
designed to allow parallel processing and incremental refinement.

1 Introduction and Background

This paper presents a new method for the generation of view-independent global illumination
solutions of complex environments with arbitrary surfaces. One motivation for a new approach
is to avoid the memory overhead associated with storing illumination data for all polygons
simultaneously, which makes large scenes impractical to simulate. Also some approaches have
quadratic complexity making large scenes prohibitively expensive to compute. Other methods
cannot be parallelized for faster computation times. Mirrors and more general surfaces are not
taken into account in many approaches.
Lischinski [5] observed that the triangulation for the calculation and the triangulation used in
scene display have different purposes and can be handled separately. Shirleyet al. [7], [11]
built upon this concept and proposed a global illumination algorithm which is based on particle
tracing and density estimation. This algorithm shoots photons from the light sources, follows
these particles until they are absorbed by a surface, and stores the hits. The illumination for a
surface is then approximated by examining the density of the absorbed photons for each part of
a surface. The approximation is optimized for memory usage and the reduced version is used
in the final rendering step to generate images. A more detailed description of each phase fol-
lows:
• Particle-tracing phase: Each light source emits a number of photons proportional to it’s

power into the scene. Whenever a photon hits a surface it is randomly reflected, refracted or
absorbed depending on the surface characteristics. Each hit point is stored and uses only a
few bytes allowing for many photons to be traced.

• Density-estimation phase: For each surface the method computes an estimation of the illu-
mination by examining the density of the photon hits. A surface parts which has been hit by
many photons is brighter than a surface part which has absorbed only a few photons. An
approximation to the irradiance for each surface is computed for a dense grid on each sur-
face.

• Meshing phase: The information calculated by the second phase is enough to allow the gen-
eration of images. Due to the large amounts of data generated this is impractical. Therefore
the dense grid of irradiance samples is simplified with an adaptive triangulation algorithm
(as used for height field simplification) yielding a compact representation of the irradiance
for each surface.

• Rendering phase: The image is generated by tracing rays from the viewpoint into the scene
and computing the first surface hit. For each hit point the light reflected to the viewer is
computed by interpolating the irradiance at the surface point using the triangulation output
by the meshing phase.

The advantages of this method are:
• Diffuse surfaces, perfect mirrors and perfect refractors can be handled within this algo-

rithm.
• The complexity of each phase is less than quadratic which allows the application to large

scene datasets.
• The method parallelizes easily. For the particle tracing and rendering phase each photon or

viewing ray is independent and can be traced separately. The density estimation and trian-
gulation phase can be applied to multiple surfaces in parallel.

Shirley’s method handles diffuse and perfect mirror surfaces well. General surfaces which
reflect light depending not only on the outgoing direction but also on the incoming direction
cannot be handled consistently. But many surfaces in the real world are neither diffuse nor per-
fect mirrors. To allow for general surfaces the above algorithm needs to be generalized.

2 Irradiance Reconstruction for Directional Illumination

Similarly to Shirley’s approach the algorithm is structured into four phases: particle-tracing,
reconstruction, meshing, and rendering. But each of the four phases is enhanced or modified to
take directional dependent illumination into account. Also the capability for incremental
updates to the global illumination solution is added.

2.1 Particle-tracing phase
Initially each light sourceλi emits a number of photons proportional to it’s powerΦi into the
scene. If the light source emits directionally dependent light the emission distribution function
is used to generate the directions for the photon, otherwise a uniform distribution is used. Each
photon is traced through the scene until it is absorbed or it leaves the scene. At each surface hit
a random number is used to decide between absorption, diffuse or glossy reflection. If the pho-
ton is reflected the bidirectional distribution function of the material is used to generate a ran-
dom outgoing direction. The photon hits are stored on disk. The data includes the incoming
direction, needed for the reconstruction of the directional irradiance function, a reference to
the light source the photon was emitted from, and the attenuation the photon received until it
hit the current surface. Storing the attenuation factor renders each hit record independent of
the total number of photons emitted by a light source. Whenever the contribution of a photonφ
is needed it can be recomputed by dividing the power of the light sourceΦi by the current
number of emitted photonsmi and weighting the result with the attenuation factorρφ:

This scheme is used to implement incremental refinement of the solution. Furthermore it
allows to increase of the number of photons emitted by each light source selectively. Note that
the selective increase per light source will introduce bias to the solution.

2.2 Reconstruction phase
For each surface the irradiance is reconstructed from the samples stored in the first phase. The
total irradianceE(u,v) for each point of the surface and the directional dependent irradiance
relative to the total irradianceD(u,v,θ,ψ) are reconstructed as explained below.

φ
Φi

mi
------ρφ= (1)

The irradianceE(u,v) for the surface is approximated by constructing a dense regular grid for
the surface and inserting the contribution of each hit pointφj by sampling the corresponding
kernel functionk at the grid pointsxj:

whereh is the scaling factor of the kernel andx is a hit point determined by the surface param-
etersu,v.
The functionD(u,v,θ,ψ) is the irradianceLi(u,v,θ,ψ) coming from a certain direction(θ,ψ) rel-
ative to the total irradianceE(u,v):

The relative directional irradiance is used because it varies less than the absolute directional
irradiance for each surface. The farther a surface is from a light source the smaller the irradi-
ance will be. The relative irradiance cancels this effect and allows for greater compression
ratios later on.
To obtain the relative directional irradiance the incoming directional irradiance is computed
first. The same reconstruction principle as for the total irradiance is used, only four dimensions
are taken into account:

wherey represents the incoming direction (given byθ,ψ) andyj is a grid point on the hemi-
sphere. The relative directional irradiance is then computed by applying equation (3) at each
grid point.
The functionD(u,v,θ,ψ) is stored as set of two dimensional functions for each combination of
incoming anglesθ andψ. In other words for each grid point in the grid of all possible incom-
ing angles a two dimensional function on the surface parameter domain is stored. The reasons
for this choice of representation are: The irradiance in a certain direction on the hemisphere for
neighbouring surface points varies less than the irradiance on neighbouring directions on the
hemisphere. This situation is depicted in figure 1:

This fact allows to benefit from better simplification in the following meshing phase. Another
benefit of the chosen representation is that the solid angles needed in the rendering phase are
easier to compute.
To obtain a good approximation the irradiance meshes have to be sufficiently dense resulting
in large memory requirements in the rendering phase. To ameliorate this the meshes are sim-
plified in the following phase.

Figure 1. Variation of Directional Irradiance for Surface Points.

E u v,() 1

h
2

----- φ j k
x xj–

h
------------- 

 

j 1=

n

∑= (2)

D u v θ ψ, , ,()
Li u v θ ψ, , ,()

E u v,()
--------------------------------= (3)

Li u v θ ψ, , ,() 1

h
2
h

2
----------- φ j k

x xj–

h
------------- 

  k
y yj–

h
------------- 

 

j 1=

n

∑= (4)

2.3 Meshing phase
To reduce the storage requirements of the irradiance representation the meshes are simplified.
As the reconstruction phase generates only two dimensional meshes the problem is solved by
applying an data dependent adaptive triangulation algorithm for the simplification of height
fields to each mesh. This yields a compact representation of the irradiance for each surface and
is stored as a triangular subdivision of the surface domain with associated values.

2.4 Rendering phase
The image is generated by tracing rays from the viewpoint into the scene and computing the
first surface hit. To compute the diffuse illumination at the hit point the total incoming irradi-
ance is interpolated linearly in the mesh for the functionE(u,v). Weighting the irradiance by
the diffuse coefficient and colour gives the diffuse component of the outgoing radiance. If the
surface is a perfect mirror or refractor a recursive ray is shot into the scene. For general sur-
faces the outgoing radianceLo(u,v,θo,ψo) is computed by weighting the incoming directional
irradiance by the bidirectional reflection distribution functionρ(θi,ψi,θo,ψo) of the surface:

wheredω is the solid angle associated with each incoming directionθi,ψi. The directional irra-
diance is stored for a grid of directions on the hemisphere and the solid angle for a direction is
calculated as described in section 3.4.

3 Implementation

The presented global illumination algorithm was realized on a 90 Mhz Pentium PC with 16
megabytes of memory. As local illumination model the model introduced by Ward [8] is used.
Scene input uses the MGF file format [10]. In the following a few noteworthy details of the
implementation are described for each phase.

3.1 Particle-tracing phase
The information stored on disk for each hit includes the surface number, the surface parameter
(u.v), the incoming direction, a reference to the light source the photon was emitted from, and
the attenuation factor for the photon due to previous reflections. For storage efficiency the fol-
lowing representations are stored: surface number (4 bytes), surface parameters (2 x 2 bytes),
incoming direction angles (2 x 2 bytes), number of the light source (2 bytes), and RGB attenu-
ation factor (3 x 2 bytes) - a total of 20 bytes for each hit point.

3.2 Reconstruction phase
For each surface the contribution of a hit point is inserted in dense grid with an appropriately
scaled kernel function. If the support of the kernel function is not totally inside the surface
(e.g. for hit points near the border), the contribution is scaled so the volume under the kernel
stays unity. This is approximated by calculating the number of grid points inside the kernel
support and counting the grid points inside and outside the surface domain. The ratio between
inside and outside points is then used to scale the contribution appropriately.
First the total irradianceE(u,v) is computed for the surface. The width of the kernel and the
density of the irradiance mesh for a surfacek are controlled by the following expressions:

Lo u v θo ψo, , ,() Li u v θi ψ i, , ,()ρ θi ψ i θo ψo, , ,()dω
θi ψ i,
∑= (5)

hk C1

Ak

nk
------= dk C2

Ak

nk
------= (6)

whereAk is the surface area,nk is the total number of hit points, andC1 andC2 are constants.
For the relative directional irradiance the width of the kernel and the density are given by:

whereA0 is the surface area of the unit hemisphere (2π).
The grid for the hemisphere is the usual azimuth-elevation parametrization. To avoid difficul-
ties with elevation angles near0 or π/2 the grid points are shifted by half the grid width in both
parameter directions (see figure 2).

The solid angle corresponding to a grid point is computed easily (see e.g. [1]).
For simplicity the reconstruction uses the three dimensional distance of points on the hemi-
sphere (see equation (4)) when adding the contributions of hit points to the mesh. Although
this is not correct the error is small in practise. Useful values forC1 are in the range of 30-50.
For C2 the range isC1/2 to C1/5. For the hemisphere the range forC3 is 75-200. Useful values
for C4 are found similarly in the rangeC3/2 to C3/5.
For each surface both functions are stored on disk. To decrease disk usage each function file
stores the maximum RGB value across the function and stores all grid points as values relative
to this maximum in 3 x 2 bytes.

3.3 Meshing phase
For the simplification of the irradiance function E(u,v) and eachθ,ψ slice of the directional
irradianceD(u,v,θ,ψ) an data-dependent adaptive triangulation algorithm as presented by Gar-
land and Heckbert [2] was used. Beginning with a basis mesh the triangle with the highest
error is refined until the error is below a predefined threshold.

3.4 Rendering phase
The renderer shoots rays from the eye point through each pixel into the scene. For a surface hit
the diffuse and specular component are computed as described in section 2.4.
One problem which arises in practise is that the resolution of the hemisphere is not sufficiently
dense for surfaces with a low roughness coefficient. The area on the hemisphere which con-
tributes to the illumination for a given outgoing direction decreases with surface roughness. In
the extreme no sample points can be found resulting in no contribution. The image of a red and
blue emitter illuminating a plane illustrates the problem and is shown in
figure 3:
The constantC4 for the surface mesh was set to50 resulting in a mesh with7 degrees resolu-
tion (i.e. a hemisphere mesh with 52x13 entries).
To avoid this situation the algorithm automatically ensures that enough samples are found on
the irradiance hemisphere area which contributes for an outgoing direction. New samples are
generated adaptively by linear interpolation between the grid points on the hemisphere until

Figure 2. Grid Points on the Hemisphere.

hk C3

A0

nk
------= dk C4

A0

nk
------= (7)

the density of the samples is high enough. In the implementation the needed density is deter-
mined by the following heuristic dependent on the surface roughness:

In figure 4 the results of this method are demonstrated.

3.5 Incremental Refinement
Each hit record stores the attenuation the photon received until it hit the surface. This value
and the total number of photons emitted by a light source allow the computation of the contri-
bution of one photon according to equation (1). This technique allows to increase the number
of photons emitted by light sources. Even the number of photons emitted by a single light
source can be increased if necessary. For an example of incremental refinement for the cornell
box see figure 5.

Figure 3. Problem Case: Surfaces with Decreasing Roughness.

Figure 4. Surfaces with Decreasing Roughness.

Figure 5. Increasing the Number of Photons.

α = 0.2 α = 0.1 α = 0.05

dneeded 100α2
= (8)

α = 0.2 α = 0.1 α = 0.05

n = 1.0E4 n = 1.0E5 n = 1.0E6

3.6 Parallelization
Each photon is independent of others therefore multiple photons can be traced in parallel. The
parallel system starts a particle tracing process for each processor available. Each processor
outputs the resulting hits to a separate file. After particle tracing has been completed a parallel
sort/merge phase separates the photon hit files into separate files for each surface. Each surface
is independent of all others and the reconstruction and meshing phases can be run in parallel
for multiple surfaces. Parallel rendering proceeds by partitioning the image in horizontal
stripes and allocating these stripes to available processors until the image is finished.

4 Results

A simulation of the cornell box with varying surface parameters was performed. The top left
view in figure 6 shows an overview of the scene - the background is a perfect mirror surface. In
the top right view the larger box is shown with a diffuse material, the lower left shows the box
as perfect mirror, and the lower right view is a glossy surface with roughness parameter 0.5.

The second simulation used the office scene available in MGF-format and is shown in figure 7.
Timings for these images are shown in the table 1. The large times in the last two examples
(marked by an asterisk *) indicate that 16 megabytes main memory were not enough for the
rendering phase and the system had to swap to disk.
The code was ported subsequently to a workstation cluster with 8 cpu’s. First results show that
on average a speed up of about 6.9 is realistic.

Figure 6. Cornell box with different surfaces (see text).

5 Conclusions and Future Work

This work presented a new algorithm for the generation of photorealistic images for scenes
with arbitrary surfaces. By storing the incoming direction for each photon in the particle trac-
ing phase the directional irradiance for each surface can be approximated. For memory effi-
ciency the used meshes are simplified subsequently. The rendering phase uses this information
to compute the radiance in the direction of the viewer. The system is structured into several
independent phases to allow efficient parallel processing. The chosen storage format facilitates
also the incremental refinement of the solution.
Other comparable approaches (e.g. [3], [9]) avoid meshing altogether which reduces the mem-
ory overhead further. But these method have to evaluate many rays per pixel to reduce the var-
iance significantly whereas the presented algorithm computes the outgoing radiance from the
approximated irradiance hemispheres.
Future work includes the investigation of other methods to store the directional irradiance as
the memory requirements for meshing each surface are too high for complex scenes (e.g.
plants). One solution are spatial density estimation schemes [3], [9]. The integration of Quasi-
Monte Carlo Methods [4] with proven subquadratic complexity is planned.

Figure 7. MGF-Office scene.

Parameter/Image Top Left Top Right Bottom Left BottomRight Office

of Photons 1.0E6 1.0E6 1.0E6 1.0E6 2.5E6

ConstantC1 40 40 40 40 30

ConstantC2 20 20 20 20 10

ConstantC3 - - - 200 100

ConstantC4 - - - 100 50

of Surface 17 17 17 17 4072

Mesh elements 14029 14029 14155 45781 306093

Resolution 3002 3002 3002 3002 3002

Timing (h:m:s) 1:49:20 1:47:28 2:17:00 13:01:58* 11:21:33*

Table 1: Timings for Figures 6 and 7 (see text).

Acknowledgements

Thanks to T. Nöhammer for implementing part of this work.

References

[1] M. F. Cohen, J. R. Wallace,“Radiosity and Realistic Image Synthesis”, Academic Press,
1993.

[2] M. Garland, P. S. Heckbert,“Fast Polygonal Approximation of Terrains and Height
Fields”,Technical Report Carnegie Mellon University, Pittsburgh, Sept. 1995.

[3] H. W. Jensen,“Global Illumination using Photon Maps”, Proceedings of 7th Workshop
on Rendering (Porto, 96), pp 22-31, June 1996.

[4] A. Keller, “Quasi-Monte Carlo Radiosity”, Proceedings of 7th Workshop on Rendering
(Porto, 96), pp 102-111, June 1996.

[5] D. Lischinski, F. Tampieri, D. P. Greenberg,“Combining Hierarcical Radiosity and Dis-
continuity Meshing”, Computer Graphics (SIGGRAPH `93 Proceedings), pp 199-208,
Aug 1993.

[6] T. Nöhammer,“Globale Beleuchtungssimulation mit Particle Tracing”, Master Thesis,
Johannes Kepler University Linz, 1996.

[7] P. Shirley, B. Wade, P. M. Hubbard, D. Zareski, B. Walter, D. P. Greenberg,“Global Illu-
mination via Density-Estimation”, Proceedings of 6th Workshop on Rendering (Dublin,
95), pp 187-199, June 1995.

[8] G. J. Ward,“Measuring and Modeling Anisotropic Reflection”, Computer Graphics
(SIGGRAPH `92), pp 265-272, Aug. 1992.

[9] G. J. Ward,“The RADIANCE Lighting Simulation and Rendering System”, Computer
Graphics (SIGGRAPH `94), pp 459-472, July 1994.

[10] G. J. Ward, R. Shakespeare, I. Ashdown, H. Rushmeier,“MGF Parser and Examples”,
http://radsite.lbl.gov/mgf/HOME.html

[11] D. Zareski, B. Wade, P. Hubbard, P. Shirley,“Efficient Parallel Global Illumination using
Density-Estimation”, Proceedings of ACM Parallel Rendering Symposium, (Atlanta, 95),
pp 47-54, Oct. 1995.

