Interactive Variation of Geometric Shapes Inside a
Constraint-Based Environment

Simon Kolmani¢ and Borut Zalik
University of Maribor
Faculty of Electrical Engineering and Computer Science
Smetanova 17, SI-2000 Maribor, SLOVENIA
tel: ++386 62 25-461, fax: ++386 62 225-013

e-mail: simon.kolmanic@uni-mb.si, http://www.uni-mb.si/~cgai/simon.html

Abstract: In this paper, a 2D constraint-based drawing system which distinguishes between
visible and auxiliary geometry is presented. The auxiliary geometry is fixed by the geometrical
constraints and represents a framework on which the entities of the visible geometry are
mapped. In continuation of the paper, the used constraints and the parametrisation of the
geometric objects are presented. The parametrisation of geometric objects expires
automatically as the user adds new constraints to the object. With change of these parameters,
the user can interactively create an instance of the object. So the instance generation is made
very simple for the user.

Key words: Geometric modelling, constraint-based system, variation of geometry, interaction.

1. Introduction

A time between new series of new artefacts in today’s competitive industry is shorter and
shorter. A design time is without a doubt the critical part in a production process and
therefore, computers have been intensively involved into this process. For this purposes,
appropriate computer software - geometric modellers - have been developed. Although these
programs offer speed, reliability and versatile construction possibilities, the classical solutions
of geometric modellers have remarkable drawback (see for example [ARBAS89]). The inability
to express spatial relationships between presented geometrical objects or elements is without a
doubt one of the most critical. Inside the classical geometric modeller it is not possible to
explain, for example, that a screw is placed in the middle of a hole. If the hole is moved, the
screw has to be moved, too. However, this task has to be performed by the user itself without
any help of the computer program although it could be well defined and therefore, executed
automatically. In this way, a reusability, a new desired feature in design process, is highly
limited to the simple geometric transformations.

A new generation of geometric modellers tries to override mentioned drawbacks by
introduction of feature-based [ROSS90] and constraint-based [ROLL89] paradigm. In our
paper, an experimental 2D constraint-based geometric modeller is presented. Although being
constraint-based, it is highly interactive and user-friendly what is achieved by splitting the
geometry into visible and auxiliary part. The paper is organised into 6 chapters. In the second
chapter, the division of geometry into visible and auxiliary geometry and difference between
them are presented. In the third chapter, the geometrical constraints used in our system are
described. In the fourth chapter, an interactive parametrisation and the instances generation is
presented. The fifth chapter described our 2D constraint-based modelling system and how it



works. Here, the interactive constraint adding process and the interactive instances generation
in our system are presented. The sixth chapter contains the conclusion of this paper. At the
end of the paper, the references can be found.

2. Visible and Aucxiliary Geometry

From the early days of geometric design, the geometry has been divided into a visible and
an auxiliary part. With the introduction of computers into the design process, this division was
lost. The classical representation of a geometrical object in a computer consists of topological
and geometric data as shown in Figure la. The topology determines the neighbourhood
relations between topological elements and the geometry, which is mapped onto the
topological data, determines the position of corresponding geometric elements. However, this
representation does not enable the user to define even simple spatial relationships, which are
needed at construction. It is not possible to say, for example, that two line segments marked as
Is; and ls; in Figure 2a lies on the same line 1. If the slope of line 1 is changed, the slopes of
both line segments have to be changed, too.

Because of this, in our system the geometry is divided into two parts - the visible and the
auxiliary part [ZALI96a] (Figure 1b). The topology again determines how the presented
geometric elements of the visible geometry are connected. However, the actual position of the
visible geometry is determined by the auxiliary geometry which is determined by the
geometric constraints.

Geometry
Geometry Auxiliary | Visual
geometry geometry
\ 4
A A Y A
Topology I Geometric Topolo
constraints pology

a) b)

Figure 1 a) A classical approach of representation of the shape of geometric object
b) A reformed representation of geometric object

Only the most elementary geometric entities are needed to express the auxiliary geometry.
On the other hand, the visible geometry can take a form of any known well-defined form (e.g.,
line segment, B-spline, NURBS). In our system, points, lines, and circles define the auxiliary
geometry, while line segments, circular arcs, and Bézier cubic are members of the visible
geometry. Figure 2b explains how easy the distinguishing between the auxiliary and visible
geometry can be done in the case of the Bézier cubic. The control points pi, p2, p3, ps belong
to the auxiliary geometry. The inner control points p, and ps; are determined as the
intersections between auxiliary lines. If the position (or slope) of any auxiliary line is changed
the inner control points p, and p3 get the new position and in this way, the whole shape of the
Bézier cubic is changed.



inner control
oints
/A/p \;\
P/ P2
d It

carrier lines

Po
P:
I’ v\start point (t=0) end point (t=1) —r \\
P \
, \

b)

Figure 2 a) Line segments Is; and Is; lies on line |
b) Cubic Bézier curve with corresponding auxiliary geometry

All changes, that user wants to make, have to happen interactively. He has to be able to
see the sketch of the designed geometrical object even if the auxiliary geometry is
underconstrained, with other words, if there is not enough data to solve all spatial relations.
System have to update auxiliary geometry each time the new constraint is obtained. In the next
section the tool is represented that enables these operations.

3. The Use of Constraints in Order to Describe the Spatial Relations

To describe spatial relations between geometrical entities, geometrical constraints are
used in our system. Constraints are expressed usually in a declarative way, that is done
commonly by predicates [ALDE91, SUZU90]. The predicates in our system are divided in

three groups:

e Dimensional constraints determine positions, coordinates, distances and angles. Their
constituent part are variables which can be considered as the parameters of geometric
object. Here is the list of dimensional constraints used in our system.

Point(p;, X, y)
AngleValue(l;, o)
Distance(pi/li, pi/l;, d)
Angle(l;, I, o)

Point p; gets absolute coordinates (X, y).

Line 1; gets absolute value of its slope.

Distance between points p; and p; (lines 1; and 1;) is d.
Angle between lines |; and 1; is a.

e Structural constraints determine the spatial relationships between geometrical entities.
Those spatial relations are not changeable. If we require that two lines are parallel, the
lines have to stay parallel forever.

HLine(l;)
VLine(l;)
Through(l;, p;)
On(p;, 1))

Line I; is horizontal.

Line I; is vertical.

Line 1; passes through point p;.
Point p; lies on line I;.



Perpendicular(l;, 1;) Lines 1; and |; are perpendicular.

Parallel(l;, 1;) Lines 1; and |; are parallel.
Middle(pi, pj, px) Point p; is in the middle of points p; and px.
Coincidence(pi/l;, py/l;) Points p; and pj (lines 1; and 1;) coincide.

Symmetric(p; /i, pj /1;, pk /1k) Points p; and px (lines l; and ly) are symmetric
regarding to point p; (line ;).

By using the dimensional and structural constraints, spatial relations are successfully
described in a declarative way by the user. Such description seems to be close to the human
way of thinking. Predicates of dimensional and structural constraints are sufficient for
designing a shape of a geometric object, but in time we establish that we need another
constraints for efficient parametrisation of the geometric objects. With existing predicates the
parametrisation of geometric objects is not the best. We add therefore more constraints,
namely pure numerical predicates.

e By the predicates of pure numerical constraints, simple numerical relations between
parameters of dimensional constraints are expressed.

-1 -1

Product(a, b, c) c=a*b; a=c*b; =c*a;

c-a

b
Sum(a, b, ¢) c=a+b; a=c-b; b

With the pure numerical constraints we can, for example, define that two distances (let us
call them d; and d,) are related with each other. If distance d, is changed, then the distance d,
should be also changed automatically according to the established constraint. In this way, the
connection between parameters of two or more dimensional constraints is made.

Each inserted constraint has to be, of course, solved somehow. In our system we use a
local propagation of known states [LELE88, FREE90] and its implementation is done by a
Biconnected Constraint Description Graph - BCDG [ZALI96b]. BCDG is very flexible
structure which enables an interactive inserting of constraints and supports the work with
completely and partially constrained geometric objects.

4. An Interactive Parametrisation of Geometric Objects and Generation of
Instances

In real situations, a huge number of constraints have to be inserted by the user [KURL93]
to constrain a geometric object completely. This task is extremely demanding because the user
has to insert manually an exact number of non-conflict constraints. If the constraining process
is not interactive, this task is even harder. Quite opposite, our system is completely interactive
and it solves each inserted constraint as soon as possible and shows the results to the user. To
reduce the number of manually inserted constraints, the system observes the actions of the
user and tries to extract all self-understandable constraints automatically [ZALI96a].

The constraining of a geometric object can be done in different ways giving in the final
stage different descriptions with different parameters which control the shape of the geometric
object. To generate an instance, in different situations, different parametric schemes are
useful. To override this problem, our system supports the work with partially constrained
geometric objects. This means that during the design stage, only some key parameters have to
be defined. For example, in figure 3, a geometric object - smoking pipe - is shown where
parameters di, d», d3, and a are introduced. A closer look at figure 3 shows that point psg is not
constrained at all. Despite this, in our system we can work normally with such geometric



object and even change interactively defined parameters. The user can add the missing
constraints later, when he needs them.

d,
P
p4 15 p5 11
2 33 i p7
b Py k P,
P’ (04 19
b 11 P

A

Figure 3.  Smoking pipe, with some key parameters

How does our system behave when it works with a partially constrained geometric
object? In general, inserted constraints tried to be solved and corresponding geometric entities
are modified appropriately. Those geometric entities which are not yet related with geometric
constraints take initial approximate values. For example, if in figure 3, the distance d; is
changed and a constraint propagation starts at the point p;, only the points pg, pig are moved.
Other points stay at the same position including the point ps. The point pg can be constrained,
for example, with defining the distance between points pg and po (let us name it ds). To
prevent the required shape of the pipe, an numeric constraint binding distances d; and d4 has
to be established.

d,
P
p4 15 p5 11
d, 1’ l7pp7 1

ﬁ 12 pxl 8 Py
p2‘ ) AN 19
P, 11 P

d,

Figure 4  An instance of the smoking pipe after we reduce the distance d;

Now, if the distance d; is changed, the distance d4 has to be changed, too, according to
established numeric constraint. In our system, the same result is achieved without introducing
these two constraints by using the initial geometric data.

5. An Interactive Generation of Instances in our System

In this section, the use of our system is presented. The main window in our application is
the drawing window where the user can design the geometric object. In this window, the tools
for drawing geometrical entities of visual and auxiliary geometry such as points, lines, line



segments, Bézier cubic and arcs are available. The user can design geometric objects exactly
in the same way as in the classical hand-made blueprints, or he can start with an sketch of the
geometric object that is changed then to the desired form. In both cases, the geometrical
constraints are needed to describe spatial relationships between geometrical entities.

2% BFoFD - O] x|

File Edit Consiraints Options [nstances Window Help

| s

[ const.. - 0] x| | T A 1 - |
on(P4, L)
=l Through (L7, P

4l On (P8, L7)
Through (LY, PI
|| On (P8, LB)
.|| Through (LB, P
S|l On (P9, LB)
Through (L8, P!
On (P9, LY)
Through (L9, P!
on (Pa, L9

[ infarm... - [0 x|
dine  19:14]
-member ed: |
-edge line
-edge line
-edge line
-edge line
I -edge Bez |
I -edge Bez_|
[ -topology '
-conture w

| I Features 13]x]
M|l- SMOKING_PIPE
b I ’ /;.E

! Cursor last: (308, 225)

Figure 6 The sketch of geometric object smoking pipe

The other windows shown in figure 6 contain textual data about topology, used
constraints and the name of edited geometric object, and are not necessary for designing of the
geometrical objects. In drawing window, in figure 6, a sketch of a geometric object smoking
pipe can be seen. The pipe is partially constrained with self-extracted structural constraints.
All the dimensional constraints needed for the parametrisation of the geometric object still
have to be added by the user manually. This is done by picking of the command for adding the
constraints in systems menu. A dialog box with a list of available constraints appears on the
screen after that (see figure 7). The user chooses the needed constraint in this list, and select
the geometric entities that will be connected by selected constraint. Result of this operation is
visible on the screen immediately.

The geometric object smoking pipe have not the desired shape in the drawing window in
the figure 6. Lines 1; and Is (see figure 3) have wrong slopes. Therefore, we add the constraint
HLine, to repair the slope of line 1;. The slope of line 15 was also set to 0° automatically, as we
define that lines 1; and ls are parallel. As the slopes of lines 1; and Is were corrected, the
dimensional constraints were added. Result of described constraining process can be seen in
figure 7.



EEBroFD
File Edit Feature

Window Help

L]0

-Io]x]

s e

[ Const... - |0] %]
on(Py,L8) [
Through (L8, P!
On (P9, L9)

Al Through (L9, P!
|| On (PS5, L9)
|l Through (L9, P!

HLine (L0}
Parallel (L2, LO'

Distance (P1, P
Distance (P4, P
Distance (L2, L

[Z]Drawing

Constraints

Available constraints:

Coincidence (1. I}
Coincidence (p. p)
Distance (1.1 d)
Distance (p. p. d)
HLine (1)

Middle (p.p.p. 1)
on (p. 1)

Parallel {1.1)
Perpendicular (1.1}
Point {p. x v)
PosXY (p. p. X ¥)

iAngle (I Lalpha)
AngleValue (l. alpha)

. Symmetnc (I, 1 1
E‘;lnfutrn---;lglil Simmeiric Ep. p.:lp)
line  L9:1%] Through (I.p)
-member ed 1 WLine (I}
' -edge line
-edge line
-edge line » =
-edge line [
-edge Bez p-opom L-lins
| x, ¥ - coordinates
I i ‘Edlge Bez_] | alpha - angle {radians)
-topolo d - distance
--Eomﬂ}:‘e W I‘ ; .

Feat
Cursor last: (232, 27)

Figure 7 The geometric object Smoking pipe after we repair the lines

There are some symbols visible in the drawing window in figure 7. Let us explain their
meaning. By designing our system we tried to enable the user so easy building of instances, as
adding constraints to the object. For that purpose, we establish the special marks for all
constraints important for the user. These marks and the constraints that are represented with
them are presented in table 1. The marks have two meanings. First, they can be used to show
all the constraints important for the user on the screen in the design process. This can be
helpful to the user for the better parametrisation of the geometric object, because in the
window of used constraints, there are many constraints like On and Through that are not
important for the parametrisation. In the figure 7, such use of marks of geometric constraints
is presented.

Geometric constraint Mark
Angle(l, 1, a) S
AngleValue(l;, o) 4@
Distance(pi/L;, pi/l;, d) X
Parallel(l;, 1) —
Perpendicular(l;, 1) —I
Symmetric(pi /i, pi /1i, px /Iv) S
Point(pi, X, y) @5'::..

Tablel - Marks for some geometric constraints in our system



The second and more important use of symbols in our system is meant for increasing of
interactivity by the instances generation process. As the user choose command for instances
generation, he has to select one geometric entity that will be changed. Marks for all
constraints, associated with selected geometric entity appear on the screen. When the user pick
the symbol of dimensional constraints, the dialog box for attribute changing appears on the
screen (see figure 8). Attributes can be easily changed by the scroll bar. After the user click on
the button Apply, the changes are visible on the screen. With button Ok, the changes are
confirmed.

fE BFoFD i
| Bile Edit Constraints Options Instances  Window Help |
[¥Const... - [0] ] -10]x]
On (P9, LB =] /

ThrE)ugh [EB, P Angle{lL3, L1)

2l on (P9, L9)
Through (L9, P! :
On (P5, L9) Current value: g0

.|| Through (L9, P!
HLine {L0) [ L L]

Parallel (L2, LO'

Distance (P1, P
Distance (P4, P —
Distance (L2, L fo A Cincal E Apply |

[@]inform... — [5]x] T o
dine L9 12]
-member ed e

-edge line | 7 ]\

-edge line

-edge line / e

-edge line

-edge Bez |

-edge Bez_| N -

-topology . T
-conture w e / o
EFPalurps =1o|x]

4 _FI

{ Cursor last: (464, 397)

Figure 8 Interactive building of instances with use of scroll bar

All dialog boxes for attribute changing look similar. They have one scroll bar, except the
dialog box for changing attributes for constraint Point. There are two scroll bars in that dialog
box, for the each coordinate one. A generation of instances is made very simple with use of
such dialog boxes.

In order to change the shape of geometric object smoking pipe, we change the angle
between line Ig an lg. The proceedings of this change was next: First, the command for
instance generation is selected. Then the line lg and mark for angle between two lines are
selected. After that, the dialog box for attribute changing appears. In the dialog box, we
change the attribute for the angle between lines. We set the value of the angle on 90° and
press the Apply button. Situation after that can be seen in figure 8. The parameters of the
selected constraint can be changed so many times, that the user is satisfied with the shape of
the designed geometric object. After the changes are accepted by the user, he will work in the
rest of the design process with changed shape of geometric object. For example, we reduce
distance d; on our geometric object smoking pipe, and accept this change. The result of this



change can be seen in figure 9a. But we are still not satisfied with look of our object, therefore
we increase angle o and accept its change. Result of this operation is presented in figure 9b.
Both the pipes in figures 9a and 9b look similar to that in figure 6, but in classical drawing
systems, it is quicker to design their shapes from the beginning than to modify the pipe in
figure 6. In our system, these two new shapes are easily generated from the one in figure 6 by
changing the values of two parameters only.

a) b)

Figure 9 a) Smoking pipe after we change attribute of constraint Distance
b) Smoking pipe after we change attribute of constraint Angle

The object smoking pipe was under-constrained in presented example. This means that
the exact values of position of some geometric entities could not be exactly determinate.
Despite this, the instance generation is possible. This is very important feature, because it
enables to use the under-constrained objects for composing them to the complex geometrical
objects. In this way, the reusability of geometric objects is increased. Beside this feature, our
system automatically adds the self-understandable constraints, such as On and Through to the
objects and the user can see all the changes made by constraints on the screen at any time.

6. Conclusion

In this paper, an interactive 2D constraint-based modelling system was described. It
distinguishes between two types of geometry. The auxiliary geometry is controlled by
geometric constraints, and the visible geometry is built on the framework defined by the
auxiliary geometry. The auxiliary geometry has been used widely in the past at hand-made
blueprints, but it is not handled at all in the present drawing packages. In our system, the
auxiliary geometry is very important for its working. The constraint solver used here tries to
calculate only the positions of the entities of the auxiliary geometry. Positions of the visible
geometry are fixed then with position of the auxiliary geometry. If some geometric entities are
not yet related with geometric constraints, so that their positions cannot be calculated, the
system use the initial approximate values. In this way the terms well-constrained and under-
constrained loose their meaning. For the system, it is not important if the geometric object is
well-constrained or not, the user can in both cases interactively change the shape of the object.
Therefore it is possible to make instances of even partially-constrained objects. Beside that,
our system automatically extracts all self-understandable constraints by following users
actions. The number of constraints required from the user is importantly reduced in this way.

Presented system has been written in C++ and runs on personal computers under MS
Windows. Our future work will be concentrated on interactive tools for linking individual
form features into final geometric object.



References

ALDE91

ARBAS89

FREE90

KURL93

LELES8S

ROSS90

ROLL89

SUZU90

ZALI96a

ZALI96b

Aldefeld, B., Malberg, H., Richter, H., & Voss, K., (1991) Rule-Based
Variational Geometry in Computer-Aided Design, in: Artificial intelligence
in Design, D. T. Pham, (eds.), Springer Verlag, pp. 27-46.

Arbab, F., (1989) Examples of Geometric Reasoning in OAR, in:
Intelligent CAD Systems II, V. Akman, P. J. W. ten Hagen, P. J., Veerkamp
(eds.), Springer Verlag, pp. 32-57.

Freeman-Benson, B. N., Maloney, J., & Borning, A., (1990) An
incremental Constraint Solver, Communications of the ACM, Vol. 33, No.
1, pp. 54-63.

Kurlander, D., & Feiner, S., (1993) Inferring Constraints from Multiple
Snapshots, ACM Transactions on graphics, Vol. 12, No. 4, pp. 227-304.
Leler, W., (1988) Constraint Programming [Language, Addison-Wesley.
Rossignac, J.R., (1990) Issues on Feature-Based Editing and Interrogation
of Solid Models, Computer & Graphics, Vol. 14, No. 2, pp. 149-172.
Roller, D., Schonek, F., & Verroust, A., (1989) Dimension-Driven
Geometry in CAD: A Survey, in: Strasser, W. & Seidel, H.-P. (Eds.),
Theory and Practice of Geometric Modeling, Springer Verlag.

Suzuki, H., Ando, H., & Kimura, F., (1990) Geometric Constraints and
Reasoning for Geometrical CAD Systems, Computer & Graphics, Vol. 14,
No. 2, pp. 211 - 224.

Zalik, B, Kolmanig, S., & Podgorelec, D., (1996) A Drawing System Based
on Separated Visible and Auxiliary Geometry, Advances in Computer-
Aided Design, Proceedings of CADEX’96, Austrija, pp. 151 - 160.

Zalik, B., Guid, N., & Clapworthy, G., (1996) Constraint-based Object
Modelling, Journal of Engineering Design, Vol. 7, No. 2, pp. 209 - 232.



