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ABSTRACT

Till now there are many rendering models for water and other fluids and their dynamics. Especially
in order to generate the curved surface of flexible objects such as water, jelly, and snow, the implicit
metaball formulation is widely used in favor of its simplicity and flexibility. This paper proposes
one novel method for generating water droplets, which would be deformed in a gravitation field.
In previous works, a water droplet was simply represented by approximated curved surfaces of a
symmetric and quite a simple metaball. So the finally rendered water droplet was far from a realistic
droplet, because they did not consider the gravitation force in droplets attached on a surface. We
give a new generalized metaball model for rendering water droplets placed on an arbitrary surface
considering the gravitation and friction between droplets and the plate. Our new metaball model
uses a new vector field isosurface function controlling the basic scalar metaball, with respect to the
norm of gravitation force. In several experiments, we could render a photo-realistic water droplets
with natural-looking shadows by applying ray-tracing techniques.
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1 INTRODUCTION

Since the 1980’s, many methods have been de-
veloped for representing water droplets and other
fluids[Kaned93a]. In the beginning of these
works, researchers have mainly concentrated on
representing a large mass of the fluids like a wave.
Those methods did not consider the boundary be-
tween fluid and solid, but only study the structure
of fluid dynamics in a free space. Some meth-
ods have been developed to represent the bound-
ary(e.g., seashore) between fluid and solid. How-
ever, those previous methods had some technical
problems to make a realistic model for small mass
of the fluids like a water droplet[Nishi83a].

In order to represent a “soft object” like liq-
uid, the metaball has widely been used since
it was defined by a few simple implicit for-
mula and it allows simple free-form deformation
operations[Wyvil86a, Wyvil90a]. Especially most

of human bodies(e.g. hands, arms, foot and mus-
cular form) are highly adequate to be represented
by a set of metaballs. In the metaball technique,
a free-form surface is defined as an isosurface that
has the same field value in space. The field value
of each point is determined by distance from spec-
ified center point of metaball. The task of the user
is to specify the center position of each metaball,
radius and field function.

This metaball technique was first developed
by Blinn, and he called it blobs. And
this was improved by Nishimura[Nishi83a],
Murakami[Murak87a] and Wyvill[Wyvil86a] et
al.. They called it metaball and soft objects. The
main differences in these previous works are in the
shape of field functions and the methods solving
for ray/isosurface intersections. For n different
metaballs, the shape of the curved surface is de-
fined by the points satisfying the following equa-



tion.

f(x; y; z) =
nX
i=0

qi � fi � C
0
= 0

where C
0

is a threshold constant, qi the density
values.

Previously Kaneda et al. have proposed
the flow dynamics of water droplet on curved
surface[Kaned93a, Kaned96b]. See Fig.1. The
curved surface is divided into small meshes, and
the flow of water droplets was calculated, based
on probability. In the beginning, each new water
droplet is put at each mesh point. And movement
of each water droplets is destined by current state
of each water droplets. Direction of movement is
settled by using a random roulette to achieve a nat-
ural stream. Each water droplets are moved to next
mesh points until movement is impossible because
of the result of wet phenomenon.

Their work proposes a method for generating
realistic animation of water droplets and their
stream on curved surfaces, taking into account the
dynamics that act on water droplets.

The finally rendered water droplet on a curved
surface looks not realistic, since their water
droplet model did not consider the gravitation
force which makes the spherical droplet biased to
the down direction. As was shown in Fig.1, the
droplets scattered on the teapot seems a sticky liq-
uid such as a honey or oil with high viscosity or
merged droplets placed on a flat floor. In fact,
neighboring droplets on a vertical surface should
be merged into one bigger droplet and it finally
runs down to the bottom of a teapot. We can eas-
ily check that Fig.1 shows one unnatural snapshot
of water droplets on a teapot.

Figure 1: Droplets on a Teapot by [Kaned96b]

In this paper, we propose a new droplet model
deformed in the gravitation field using metaball
concept. Previous works on metaball have only
concentrated on how to detect the isosurface fast

and rendering speed of metaball, or how to do ray-
tracing easily in metaball.

The shape of the metaball is symmetric, owing
to the characteristics of scalar field of metaball. In
a real world, water droplet, however, is deformed
by the gravity, the frictional force between droplet
and the surface, the viscosity of the droplet and the
orientation of the surface(normal vector). Thus if
we do not consider these factors, realistic droplet
can not be obtained. In this paper we only consider
the gravity and friction force because the viscos-
ity for a droplet requires more information on a
droplet physics.[Genne85a]

The main idea of our gravitation metaball is that
we use a vector field isosurface rather than the
previous scalar field isosurface, where each point
of isosurface is settled by only the distance from
the center point of a metaball. In our method,
each point of isosurface is divided into three vec-
tor components (~x, ~y and ~z). Each vector will be
deformed in order to represent the gravity, fric-
tion and mass, respectively. And new field value
of metaball is determined by the vector norm of
the summation of three component vectors. On
the plane plate, the height of water droplet is de-
creased and the width of water droplet is increased
due to the gravitation force. On an inclined plate,
since the mass of water droplet is moved to the in-
clined direction, the shape of water droplet can not
be symmetric with respect to the metaball center.
The following sections will explain how to con-
sider these effects to make a realistic droplet using
metaball.

2 DROPLET MODEL ON PLANE
METAPLATE

When a water droplet lies on the plain surface hor-
izontally, interfacial tensions and the contact an-
gle, �, of water and the surface satisfy the follow-
ing equation(See Fig. 2):


SL � 
S + 
L cos� = 0

where 
SL is the interfacial tension between the
surface and the water, and 
S and 
L are their
respective surface tensions[Kaned93a]. When we
consider this phenomenon, we can make the water
droplet more realistic. However, we do not take
into account it because we assume that the center
of water droplet is on the metaplate.



Figure 2: Tension between water droplet and sur-
face

2.1 Vectorizing of Scalar Value

In this paper, we select Wyvill’s the degree six
polynomial for the field function among several
field functions for the isosurface calculation, be-
cause higher degree field function makes isosur-
face of metaball more smooth when two metaballs
are merged into each other.

We assume that the center of metaball is al-
ways on the metaplate. When a water droplet in a
real world appears on the plate, the mass of meta-
ball pushes the metaball itself to be in an equilib-
rium state against the interfacial tension of droplet.
Thus the shape of metaball becomes hemispheri-
cal due to its mass gravitation to the bottom di-
rection. Fig.3 shows the movement of the cen-

Figure 3: Gravity effect on plane metaplate: (a) a
basic general metaball(left up). (b) a given meta-
ball without gravity force(right up). (c) a metaball
with low gravity(left down). (d) a metaball with
high gravity(right down).

ter of mass and deformation of metaball with the
gravity. (a) is an original metaball without gravity
and a movement of the center of mass. We as-
sume that the radius of original metaball is unit
distance 1. (b) shows the movement of the center
of mass. In Fig.3 (b), the radius of deformed meta-

ball becomes 2
1

3 and the radius of isosurface de-
creases to 2

1

3 =2 by Wyvill’s field function because
we set the threshold as 0:5. (c) is a deformed meta-
ball with a low gravity. (d) is a deformed meta-
ball with a higher gravity than (c). Fig.4 shows
a ray-traced image corresponding to droplets in
Fig.3. Fig.5 explains the deforming process of

Figure 4: Ray-traced droplets of Fig.3.

metaball owing to the gravity force. In Fig.5,
Mo is an original metaball and Md is a deformed
metaball. In our model, deformed metaball Md

is affected by three parameters in the following :
Md = DMo

(Gravity; Friction; Slope)
Function DMo

represents the deformation of
metaball Mo controlled by the degree of gravity,
friction and the surface slope. Field value of each
point on Mo is settled by the distance from Mc.
And it is a scalar value. Here we note that grav-
ity G is a vector value with direction toward the
ground. Then each point on metaball must be
divided into vectors to deform the metaball. In
Fig.5, vector force on a surface point o can be di-
vided into ~ox and ~oy . Vector ~ox and ~oy are di-
vided into two sub-vectors ~dx and ~dy due to the
gravity. Therefore, the point o will move to the
direction of point d. Points on the metaball Mo

also will move downwards of the metaball Md

through the same process. A deformed metaball
with this gravitational model has a different field
space. Fig.6 shows a field space of two metaballs.
Ma and Mb share a center point with Da and Db,
respectively. Metaball Ma and Mb have the iso-
surface Mia and Mib, respectively. Ma and Mb

will be not merged, since the distance between two
metaballs is greater than the threshold. Now we
will make the deformed metaball Da and Db to be
merged into one metaball.
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Figure 5: Deformation of metaball on plane meta-
plate with the vertical gravitation field.
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Figure 6: Merging step of two deformed gravita-
tion metaballs, Ma and Mb.

Fig.7 and Fig.8 shows one merged droplet of
two adjacent metaballs. Fig.7 shows one merged
metaball from two neighboring metaballs sepa-
rated in a large distance than Fig.8. Fig.9 shows
ray-traced pictures of droplets in Fig.7 and Fig.8.

Figure 7: A merged metaball with two metaballs
in a large distance. (a) see from up. (b) see from
front.

2.2 Deforming the Shape of Water Droplet

Simply vectorizing scalar value makes a section of
water droplet as a circle. However, in a real world,
water droplets scattered on the surface would have
various shapes of the section. We propose one
method that deforms the shape of water droplet

Figure 8: A merged metaball with two metaballs
placed in a small distance. (a) see from up. (b) see
from front.

Figure 9: A merged metaball with a ray-tracing.

using control points. In this example, we use 12
control points. However, in order to describe the
effect of control points, we use 4 control points
in Fig.10. In order to distribute the control points
uniformly, the angle between two control points
locating nearby is 2�=n, n is the number of con-
trol points. The length from the center point to a
control point is determined interactively by user.
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Figure 10: Deforming the shape of water droplet
by using the control points.

In Fig.10, we calculate a new position of P
0

as
follows:

1. Find points(Pp1; Pp2) that meet the line from
P
0

to line(each control points, O) perpendic-
ularly. Control points C

3
; C

4
do not affect

the movement of P
0

because C
3
; C

4
lie on



the circle.

Pp1 =
~C
1
� ~Po

k ~C
1
k � k ~C

1
k

Pp2 =
~C
2
� ~Po

k ~C
2
k � k ~C

2
k

2. Calculate the ratio of control point to radius,
and find the new locations of Pp1; Pp2 af-
fected by control points respectively.

Pm1
= Pp1

Radius

kC
1
k

; Pb1 = Po�(Pm1
�Pp1)

Pm2
= Pp2

Radius

kC
2
k

; Pb2 = Po�(Pm2
�Pp2)

3. Calculate the cosine value.

cos(�
1
) =

~C
1
� ~Pb1

k ~C
1
k � k ~Pb1k

cos(�
2
) =

~C
2
� ~Pb2

k ~C
2
k � k ~Pb2k

4. Sum the cosine value in each point, and find
the new location of P

0
by using the ratio of

the summation to each cosine value.

cossum = cos(�
1
) + cos(�

2
)

Pt = Pb1
cos(�

1
)

cossum
+ Pb2

cos(�
2
)

cossum

Fig.11 shows the shapes of water droplet de-
formed by control points. The lengths of control
points are as follows:

� Left - 8, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0

� Right - 8, 0, 5, 6, 0, 5, 0, 6, 0, 0, 0, 0

Figure 11: Water droplet deformed by 12 control
points. (a) a water droplet (left), (b) two merged
water droplets.

Fig.12 shows the ray-traced snapshots for a arbi-
trarily shaped droplet.

Figure 12: Ray-traced droplets deformed by con-
trol points.

3 DROPLET MODEL IN
GRAVITATIONAL FIELD

Generally, when a water droplet lies on the in-
clined surface in a natural environment its shape
is quite different from that of water droplet lying
on the flat surface. The effecting elements that de-
termine its final shape is the gravity, including the
friction and the slope of inclined surface. When
the gravity pushes the water droplet down, the up-
per part of water droplet leans downwards. In or-
der to simulate this dynamics, we have to mod-
ify the norm of vectors: ~u = (ux; uy; uz); ~v =
(vx; vy; vz); ~w = (wx; wy; wz). Fig.13 shows that
the shape of droplet is transforming on the inclined
metaplate.

Friction force

Origin�

� ~Gv
P

kGvk

P 0

~w

~v

Figure 13: Droplet model on an inclined meta-
plate: dotted line is a droplet boundary without
gravity.

The rendering procedure for the biased water
droplets on an inclined metaplate is as follows:

1. Calculate the tangent of metaplate.

2. Calculate the friction force between the
droplet and the surface.

3. Change the norm of vectors:~u;~v; ~w consid-
ering the degree of gravity pushing the plate
perpendicularly.



4. Apply those norm vectors to the blending
function.

The degree of skewness of metaball is dependent
on the degree of the metaplate slope. In a real
world, an object lying on a surface is affected by a
frictional force. Therefore, we assume this friction
as follows:

Ffriction =

8>>><
>>>:

�(k ~Gwk � sin � � k~vk)=R
if wz < 0

(k ~Gwk � sin � � k~vk)=R
,otherwise

where � is the slope of metaplate, R is a radius of
metaball that controls the size of water droplet.
The factor that determines the height in P

0

is the
ratio of k~wk to R. This ratio T is settled by the
value of plate tangent, and calculated as follows:

T =

(
�k~wk=R if wz > 0
k~wk=R ,otherwise

We newly define the field vector functions as fol-
lows:

h(T ) =
7

8
T 3 +

9

4
T 2 +

15

8
T

~u0 = ~u � (1�
k ~Gvk

3
)

~v0 = ~v � (1:3 + k ~Gvk+ h(T ) sin �)

~w0 = ~w � (1�
k ~Gvk+ k ~Gwk � Ffriction

3
)

, where h(T ) is the amount of changes of length
calculated by applying to the 3rd order function.
The range of this value is� 1

2
� h(T ) � 5 because

T is �1 � T � 1.
Let k ~Gvk denote the norm of gravity. Since the

amount of gravity is constant in every point in the
real world, the shape of water droplet applied by
the gravity is not destined by the amount of grav-
ity, but destined by the direction of gravity and the
slope of metaplate.

Therefore k ~Gvk has to preserve the different
value according to the slope of metaplate in or-
der to simulate it. The range of k ~Gvk is from the
given amount of gravity (0.6 in experiment) to 0.
And h(T ) sin � denotes the movement of droplet’s
mass.

As the angle of metaplate’s slope changes from
0� to 90�, we can see that the shape of wa-
ter droplet leans downwards fast in our experi-
ments. Fig.14 shows the shape of water droplets

Figure 14: Shapes of water droplet on an inclined
metaplate with degree 30�; 45�.

Figure 15: Shapes of water droplet on an inclined
metaplate with degree 60�; 90�.

with the slope’s angle 30�; 45�. Fig.15 shows
the shape of water droplets with the slope angle
60�; 90�. Fig.16 shows the water droplets with
degree 45�; 90� after the ray-tracing step. Fig.17
shows the shapes of merged two droplets on an
inclined metaplate where two water droplets are
close to each other on a surface with the degree
45�; 90�. The distance between two droplets in the
left snapshot is larger than in the right one.

In this paper, we only take into account of the
situation where a water droplet sticks to the sur-
face. In the future, we will consider the down-
ward flow of water droplet when mass gravity is
greater than the friction. Fig.18 shows the finally
ray-traced images with the degree 45�; 90�.



Figure 16: Ray tracing version of Fig.14,15.

Figure 17: Shapes of merged two droplets on an
inclined metaplate with degree 45�; 90�.

4 EXPERIMENTS

We have conducted experiments for this gravita-
tional water droplet model using OpenInventor,
and rendered on a Silicon Graphics Indigo2 IM-
PACT machine with 512�512 resolution. To im-
prove reality, we adopt a ray-tracing and a shadow
model. We produce a color of water by reflection-
illumination model in Phong shading. The color
contribution of water droplet surface are returned
by the following ray tracing procedure:

IT = Ilocal + krgIreflected + ktgItransmitted

where IT denotes the total color contribution
of water droplet surface, Ilocal denotes the
color of water droplet calculated by reflection-
illumination, krg denotes the value to control
the reflectivity of water droplet surface. And
Ireflected, ktg, Itransmitted denotes the color of re-
flected ray, the value to control the scattering of
light transmitted through the water droplet, the de-
gree of refracted ray, respectively.

In a real world, light rays change its direction by
refraction on entering or leaving the object. The
light becomes dispersed, so that different regions

Figure 18: Ray tracing version of Fig.17.

of space contain greater concentrations of light
than others. Any object placed in this region of
’bent’ light reflects this variation of intensity pro-
ducing so-called caustics on its surface. We adopt
the backward method to make the shadow. For
the every point on the metaplate, we find the in-
tersection points between the points on the meta-
plate and a light source. And then there are two in-
tersection points(P; P 0) and the distance between
two points becomes less than the bound(0.7 in ex-
periment), the color of point on the metaplate is
decreased.

In addition, when light rays pass through the
water droplet in the real world, the intersection
of lower part between the water droplet and the
metaplate is highlighted. We simulate this phe-
nomenon by taking the large value of highlight in
Phong shading. Fig.19 shows a rendered scene
with 512�512 resolution. It consists of 15 water
droplets with radius 1 in a vertical metaplate.

Figure 19: Droplets on the vertical metaplate. The
point light source is located at the (0,20,20)



5 CONCLUSIONS

In this paper, we showed that this gravitational
metaball is a very nice model to generate the bi-
ased water droplet reflecting the degree of the
gravitation force and friction force. However, we
have to solve another problems when we want
an animation of water droplets. If two different
droplets merged into one in an inclined plane, then
that merged droplet would run into down direc-
tion leaving a random trace due to an interfacial
tension. We do not know how the droplet runs
down or sticks to a surface. Also we have to study
how the interfacial tension deforms a little “wide”
droplet. Let us summarize the contribution of our
papers and future works.

� Our model can simulate a droplet that sticks
to a surface and could be deformed consider-
ing the gravity and friction between droplet
and surface.

� By what dynamics two droplets are merged
into one merged droplet ? And when a
merged droplet which sticks to a vertical sur-
face

� After running a merged droplet down to the
bottom, how the resulting water marks are
left by the droplet generated ? For this, we
have to study more about the interfacial ten-
sion dynamics of water on a specific surface.

� In our experiment, ray-tracing for our meta-
ball needs lots of computation, since isosur-
face is defined implicitly. How can we detect
fast the boundary of isosurface in our model
?
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