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ABSTRACT

In this paper, we explore image reconstruction from irregularly spaced samples using
natural neighbour interpolation. We sample the image irregularly using techniques
based on the Laplacian or the derivative in the direction of the gradient. Local
coordinates based on the Voronoi diagram are used in natural neighbour interpola-
tion to quantify the “neighbourliness” of data sites. Then we use natural neighbour
interpolation in order to reconstruct the image. The main result is that the image

quality is always very good in the case of the sampling techniques based on the

Laplacian.
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1 INTRODUCTION

In this paper, we explore image recon-
struction using natural neighbour interpo-
lation. This implies sampling the image
irregularly, and then applying the natu-
ral neighbour interpolation. In our case,
the interpolant is the level of gray, since
we will apply sampling and reconstruc-
tion on black and white images. Spa-
tial interpolation has been used in Com-
puter Graphics, in order to generate inter-
mediate images in animation (also called
“inbetweening”, see [Foley90]), or in 3D

visual models reconstruction [Kuo98], or
in order to reconstruct radiosity over a
patch [Hinke98]. In spatial interpolation,
local techniques have been used in order
to get an interpolation continuous at data
points, and smooth around data points.
In these local techniques, the data points
which influence the interpolant are the
ones neighbouring the given interpolation
point. The interpolation is thus based on
the definition of adjacency or of neigh-
In 1D, the neighbourliness
is given by the natural topology of the

bourliness.

real line, induced by its total order. In



2D, there is no such relationship, and the
neighbourliness can be defined by some
topological structure. Such structures in-
clude the Delaunay triangulation, that is
the dual of the Voronoi diagram. The De-
launay triangulation has been extensively
used in linear interpolation (which cor-
responds to convolving with the triangle
or Barlett filter [Foley90]). Another local
technique is the natural neighbour inter-
polation [Sibso81] based on local coordi-

nates [Sibso80].

These local coordinates were introduced
by Sibson [Sibso80].
based on the Voronoi diagram are used
in natural neighbour interpolation (also
studied in [Gold94] as “stolen area” in-
terpolation), to quantify the “neighbourli-
ness” of data sites. The properties of
these local coordinates have been exten-
sively studied by Sibson [Sibso80] and
Piper [Piper93], who gave a formula for

Local coordinates

the gradient of the volume stolen from
neighbouring Voronoi regions due to the
insertion of a query point, obtained from
The natu-
ral neighbour or stolen area interpolation
technique has been extended from ordi-

two directional derivatives.

nary Voronoi diagrams to Voronoi dia-
grams for sets of points and line segments
in [Anton98]. Anton et al. [Anton98] ex-
tended the results presented in Gold and
Roos [Gold94], by providing direct vecto-
rial formulas for the first order and second
order derivatives for the stolen area. The
analysis presented in [Anton98] general-
izes the analysis of Piper [Piper93] based
on the formalism of partial derivatives, to
the formalism of derivatives of a function
on a normed space.

In section 2, we present three different
techniques to sample irregularly an image.
In section 3, we present the natural neigh-
bour interpolation technique. In section 4,
we present the image reconstruction algo-
rithm that uses the natural neighbour in-
terpolation technique. Finally, in section

5, we present the experimental results of
the 2D image reconstruction.

2 THE IRREGULAR SAMPLING

Different kinds of irregular sampling tech-
niques can be used: irregular point
sampling, irregular area sampling (un-
weighted and weighted), importance sam-
pling, stochastic sampling, or adaptive
stochastic sampling [Foley90]. Since the
derivative of the natural neighbour inter-
polant we will use for reconstruction is
continuous except at data points, it is best
to select data points where the variation
of the intensity (the quantity to be recon-
structed) is highest, therefore the edges in
the image. A wide variety of edge detec-
tion algorithms exist, but the set of ba-
sic tools on which the most general algo-
rithms are built is reduced to differenc-
ing: the derivative in the gradient direc-
tion, the Laplacian, the directional deriva-
tives and the statistical differencing. We
used two edge detection algorithms based
on the Laplacian, and one edge detec-
tion algorithm based on the derivative in
the direction of the gradient, in order to
get samples around the high frequency
changes in the image. We will present now
the three edge detection algorithms that
we have used for sampling.

The gradient is the first order differen-
tial of the interpolant at the point. The
derivative in the direction of the gradient
gives the highest variation of the inter-
polant (in our case the level of gray) at the
point. This derivative in the direction of
the gradient equals to the highest magni-
tude of the derivative, i.e. the square root
of the sum of the squares of the deriva-
tives in any pair of orthogonal directions,
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e.g. [(%) + (%) ] [Rosen69]. This
is a well behaved function used in im-
age sharpening and edge detection, e.g.

in the Prewitt and Sobel edge detectors



[Ritte96]. In the gradient based sampling
that we used, we took the square root of
the sum of the square of the difference be-
tween the row above and the row below
the pixel, and the square of the difference
between the strip on the left and the strip
on the right of the pixel.

The Laplacian (V2f = 227{ + 2275) is pro-
portional to the variation of the derivative
of the interpolant at the point with respect
to an annulus centered at the point. We
used two different computations for the
Laplacian, the standard Laplacian, and an
alternative Laplacian where the “annulus”
is composed of eight pixels instead of four.
In this alternative Laplacian, a % factor
is used to compensate for the wider diago-
nal pixel separation. These two Laplacian
based sampling techniques are the other
two sampling techniques we used in our
experimentation.

The sampling consists in selecting all the
pixels whose derivative operator value is
bigger than some threshold. After the
image is irregularly sampled, the Voronoi
diagram (and its dual graph: the Delau-
nay triangulation) of the set of samples is
computed using an incremental algorithm
based on the Quad-Edge data structure
(see Guibas and Stolfi [Guiba85] for an in-
troduction to the Quad-Edge data struc-
ture and the algorithms for the construc-
tion of the Voronoi diagram based on this
data structure).

3 THE NATURAL NEIGHBOUR
INTERPOLATION

In this section, we will make a brief in-
troduction to the natural neighbour in-
terpolation work developed by Anton et
al.  [Anton98]. We have a set O =
{01, ...,0,} of neighbouring data points,
at which we know the value of the inter-
polant, and we want to interpolate the
value of the interpolant at some unknown

location M in the convex hull of O. In
order to interpolate the value of the in-
terpolant at M from the values at neigh-
bouring data sites, we compute the local
coordinates of M.

These local coordinates are defined as fol-

M) = %, where A\ (M) is

the area of the intersection (region marked
as Vi on Figure 1) of the “old” tile of Oy
and the “new” tile of M.

lows: wg (

Oase
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Figure 1: Natural neighbour inter-
polation

The vectorial expression for the Voronoi
vertex (circumcentre) of P;, P;, and M is:

. Pz’+1M\ 'PZ'M\ N
Viipl = Mgipl + WTMH,
(AR

where m; ;41 is the middle of [P, P;11], and
o Piyi12—Pis
T Py = Py )

From this expression, we get that the
Voronoi vertex is defined, continuous and
differentiable except at data sites, and its
derivative at the point M is:

B dﬁ : Un’+1M\ T
= W— IRER
niiti - O;

D31 (M)

In order to determine Ay (M), we decom-
pose the corresponding area in triangles
(see Figure 2): vp_1k, Vggs1, Cr1 and
Vk—1k, Ck]‘, ij-l—h where Ck]‘ 1s the ith
Voronoi vertex of V (Oy) in the counter-
clockwise orientation from m and



we get the following result:

SN
20, (M) = det (Uk—l Uk k15 Uk—1 kal)

Jk N N
+ Z det (Uk—l $Chjs Uk—1 kaj-|—{) .

i=1

Figure 2: Decomposition into triangles

Therefore, the local coordinates are de-
fined, continuous, and differentiable ev-
erywhere except at data sites, and we get:

PN
2DA, (M) = det (dm7cmvm+1) +

y ———
det (dvkk+17 V-1 £Ch 1) .

By the chain rule DA, (M) = VA, (M) -dﬁ,
we get the direct formula for the gradient of
the area stolen to Oy by M.

4 THE RECONSTRUCTION

The reconstruction of the image follows the
sampling and the construction of the Delau-
nay triangulation and the Voronoi diagram
for the set of samples. The reconstruction is
achieved by the natural neighbour interpola-
tion technique. The image is reconstructed
by interpolating the gray level of each pixel.
In order to interpolate the gray level of a
pixel, the algorithm locates an edge of the tri-
angle of the Delaunay triangulation in which
the pixel lies. Then, it determines if the pixel
is a vertex of the triangle in which it lies. If
this is the case, it means that the pixel is one
of the samples, and therefore its gray level is
the gray level of the sample. If it is not the
case, the algorithm computes the list of ver-
tices from which the pixel would steal some
area if it was inserted in the Delaunay trian-
gulation. This is done without inserting the
pixel in the Delaunay triangulation. Starting

from the located edge, and visiting the three
edges of the enclosing triangle, the algorithm
tests whether the given edge is safe (an edge
is not safe if it should be swapped, resulting
in a triangle swap by exchange of the common
edge of two adjacent triangles [Guiba85]). If
an edge is safe, then it is added to the circu-
lar list of safe edges enclosing the interpolated
pixel. If an edge is not safe, the edge having
the same origin and immediately after it in
the clockwise orientation (the edge pointed
by its Oprev operator [Guiba85]), and the
edge having the same destination and imme-
diately after it in the counterclockwise orien-
tation (the edge pointed by its Dnext opera-
tor [Guiba85]) are successively checked. The
safe edges detected by this algorithm are in-
serted in a circular list in the counterclock-
wise order, and the “previous” pointer points
to the previous edge in the counterclockwise
orientation. The origin of the edge pointed
by the Rot operator [Guiba85] of each edge
of this circular list is a natural neighbour of
the pixel being interpolated.

Once the list of enclosing safe edges is com-
puted, the stolen area by the interpolated
point to each associated neighbour and the
interpolated gray level are computed and the
total area and the sum of interpolated gray
levels maintained. Once all the neighbours
have been visited, the sum of the interpo-
lated gray levels is divided by the total area
in order to get the interpolated value of gray
level for the pixel. The construction of the
Quad-Edge data structure requires like the
Voronoi diagram O (nlogn) worst case time,
where n is the number of sampled pixels. The
reconstruction requires O (N logn) expected
time (like an incremental algorithm for the
Voronoi diagram), where N is the number of
pixels in the image.

5 EXPERIMENTAL RESULTS

We applied the three sampling techniques in
conjunction with the natural neighbour inter-
polation for reconstructing the images. For
the sampling, we set the threshold to 0, such
as all the pixels whose floor of the derivative
operator value is bigger than 0 are selected.



This corresponds in the case of the Laplacian
to selecting the pixels whose gray level dif-
fers by at least one from the average of the
neighbouring pixels. We analyzed the results
of the image reconstruction after each type of
sampling using error measures (L, L3, and
Lo, norms), as used in [Hinke98], and the
compression ratio (the ratio of the number of
unsampled pixels by the size of the image).
These numerical results of the reconstruction
of images are given for five images in the Ta-
bles 1, 2, 3,4 and 5. The root mean square er-
ror is usually considered as an error measure
for the quality of the image (with resolution
and accutance [Rosen76]). The graphical re-
sult of the sampling and the reconstruction
for one of the images (blood cells image, see
Figure 3) are presented in the Figures 4, 5, 6,
7, 8 and 9. The other original images (goat,
bone marrow, figure, mailbox) are shown in
the Figures 10, 12, 14 and 16. Due to space
limitations, we showed only the best recon-
struction (i.e. lowest L.,) for these images
(see Figures 11, 13, 15 and 17).

Figure 3: Original image of blood cells

‘ Measures ‘ Lapl. ‘ Grad. ‘ Alt. L. ‘
Iy 0.0248 | 0.1727 | 0.3558
Ly 0.2662 | 3.0881 | 3.4607
Lo 26 131 80

Compression | 13.1% | 0.7% 1.4%

Table 1: Results for blood cells im-
age (Figure 3)

Figure 5: Sampling using Laplacian

6 DISCUSSION

The main result is that the image quality is
always very good in the case of the sampling
techniques based on the Laplacian: it is diffi-
cult to see the differences between the recon-
structed image and the original. In the aver-
age, the level of gray of a pixel of the recon-
structed image and the one of the correspond-
ing pixel of the original image do not differ by
more than 1 with the Laplacian based sam-
pling techniques. The alternative Laplacian
sampling technique gives very often a smaller
maximum error. The best compression ratios
are always obtained by the ordinary Lapla-
cian sampling technique. The sampling tech-
nique based on the derivative in the direction
of the gradient does not give visually satis-



Figure 6: Reconstruction using di-
rectional derivative

Sampling using direc-
tional derivative

Figure 7:

fying reconstructed images in all the cases
(e.g. the mailbox image, see Table 5 and Fig-
ures 16 and 17). However, this reconstruction
technique based on natural neighbour inter-
polation gives reconstructed images of good
quality. We feel that this technique is use-
ful when one is presented with irregularly
spaced samples, or when one can determine
the representative samples oneself, in which
case using the standard Laplacian appears to
give the best results. In coulour images, an
obvious solution is to treat the three colour
channels as three independent images to be
treated separately. Better results can be ob-
tained using the fact that luminance edges
are much better detected by the human visual
system than chrominance edges, and there-

Figure 8: Reconstruction using al-
ternative Laplacian

Figure 9: Sampling using alterna-
tive Laplacian

fore one would use a higher threshold on the
Laplacian for the chrominance than for the
luminance.
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