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ABSTRACT

The Fast Hartley Transform (FHT), a discrete version of the Hartley Transform (HT), has been studied in
various papers and shown to be faster and more convenient to implement and handle than the corresponding
Fast Fourier Transform (FFT). As the HT is not as nicely separable as the Fourier Transform (FT), a multi-
dimensional version of the HT needs to perform a final correction step to convert the result of separate HTs
for each dimension into the final multi-dimensional transform. Although there exist algorithms for two and
three dimensions, no generalization to arbitrary dimensions can be found in the literature. We demonstrate
an easily comprehensible and efficient implementation of the fast HT and its multi-dimensional extension.
By adapting this algorithm to volume rendering by the projection-slice theorem and by the use for filter
analysis in frequency domain we further demonstrate the importance of the HT in this application area.
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1 Introduction

We usually look at signals as a function of values at
certain times, which are then said to be in spatial do-
main. However, it is sometimes more useful to look
at them as a function of magnitude and phase at cer-
tain frequencies. We call signals specified that way to
be in frequency domain. This way of looking at func-
tions allows us, for example, to explain quite easily a
fundamental concept in computer graphics: sampling
and reconstruction and inevitable aliasing (or recon-
struction error) [Blinn89b, Blinn89a]. Investigation
of functions in frequency domain is also of great im-
portance in, e.g., digital signal processing, electronic
engineering or mathematics.

There exist a lot of approaches that transform data to
the frequency domain. The most widely known and
common used one is the FT. This technique was in-
vented by Jean-Baptiste-Joseph Fourier who used it to
describe conduction of heat in solid bodies. Another
way to change between spatial and frequency domain
is the use of wavelets, which are also quite popular in
computer graphics [Stoll96] and have been used for,
e.g., image and surface compression and editing or
multiresolution surface modeling.

We will use a technique which is quite similar to
Fourier’s, but generates only real instead of complex
output. Since most data is real in computer graphics

(e.g., images) and especially volume rendering (volu-
metric data sets) it is easier and more intuitive to use.
It is named after Ralph V. L. Hartley, who conceived it
in 1942 [Hartl42]. We will demonstrate its usefulness
in the area of volume rendering.

2 The Hartley Transform

In this section we will give definition and properties of
the various types of HTs, specifically the general HT
in Section 2.1, the discrete HT in Section 2.2 and the
FHT in Section 2.3. In Section 3 we will introduce our
generalization of the HT to arbitrary dimensions. To
demonstrate to usefulness of the HT in volume ren-
dering we will present two example applications in
Section 4 and finally we will conclude in Section 5.

2.1 The General Hartley Transform

The HT takes a real-valued function h t through a
similar integral to the FT:

H
1

2
h t cos t sin t dt (1)

The limitations on the existence of this transform are
similar to the Fourier transform, however the HT of a
real-valued function is also real-valued. In addition to



that Hartley showed that the HT is its own inverse:

h t
1

2
H cos t sin t d (2)

For a long time the HT was seen as interesting, but
of no practical value until it was shown that it could
be made to serve all the purposes that were previously
the exclusive domain of the FT [Brace86a].

2.2 The Discrete Hartley Transform

The practical application of the HT is based on the
discrete HT which takes a vector of n real values h t ,
with t 0 n 1 and transforms them into another
vector H f of n real values, with f 0 n 1 :

H f
1
n

n 1

t 0
h t cos

2 f t
n

sin
2 f t

n
(3)

The factor 1
n

is the appropriate scaling so that af-
ter doing two Hartley transforms on the same vec-
tor, the original values are obtained. To interpret the
transformed vector, you can take H f and H f
H n f and think of them as a pair in the Gaussian
plane (H f iH f ). This pair is then a rotated
copy of the FT of h t with the rotation being 4 .

2.3 The Fast Hartley Transform

Bracewell [Brace9O] and others have shown that the
fast version of the discrete HT outperforms the FT
with the additional benefit of being only real-valued
and thus easier to implement and maintain. We use
several optimizations to make our algorithm efficient
but nevertheless maintain comprehensibility.

The basis of the FHT is the following recurrence:

H f Heven f

cos
2 f

n
Hodd f

sin
2 f

n
Hodd n f (4)

where Heven f is the HT of a vector of all values with
even indices, and Hodd f is the HT of a vector of
all values with odd indices. The termination of the
recurrence is supplied by the fact that a vector with
only one value is its own HT, which of course only
works when the data size is a power of two. If it is
not, zeros should be padded up to the next power of
two [Press88].

Since the algorithm is based on performing HTs on
the parts of the vector with even indices and odd in-
dices respectively, the standard practice for both FTs
and HTs, is to split the algorithm in two parts, a part
that rearranges the values in the vector according to
their indices being even or odd, and a part that per-
forms the weighted sums given in Eq. 4.

There are two general strategies, based on the order
of these two parts of the algorithm [Press88]. We
chose to implement the version which performs the
rearrangement of the values first: The necessary re-
arrangement based on the recurrence is to place each
element at the position indicated by the bit-reversal of
its index [Press88].

After this first part the vector contains n Hartley trans-
formed vectors of length 1. Now the part of the algo-
rithm that performs the weighted sums takes each two
successive small “transforms” and combines them to
one transform of double length. In log n passes over
the vector these n small transforms of length 1 are
thus combined to the complete transform of the orig-
inal vector.

The weighted combination of two successive small
transforms to obtain a single double length transforms
makes use of the following facts:

Due to the cyclic nature of the transform (in or-
der to avoid undesired frequencies the data is
assumed to be periodic), the following equiva-
lences hold for all f 0 n 1 :

Heven n 2 f Heven f

Hodd n 2 f Hodd f (5)

If the weighted combination of the values at
H f , H n 2 f , H n 2 f , and H n f
are performed at the same time, the cosine and
sine terms of Eq. (4) need to be evaluated only
once for all these four values.

The combination of these four values can be
performed in-place. This is the so-called but-
terfly scheme [Ifeac93] which is also used in
the fast Fourier transform.

The remaining problem to be solved is the fast eval-
uation of the cosine and sine terms for a number of
successive quadruples of values. Press et al. [Press88]
suggest to use the following trigonometric recurrence
for this evaluation:

a 2sin d 2 2

b sind

cos t d cost a cost b sint

sin t d sint a sint b cost (6)

Alternatively the cosine and sine values could be tab-
ulated for the needed frequencies. As the standard
algorithm only works on arrays of a length being a
power of two, only one big table for the maximum
possible array length is needed.

The resulting algorithm can be written in a
very clear manner and although highly optimized



and efficient it stays comprehensible, as demon-
strated in App. A (source code can be down-
loaded from http://www.cg.tuwien.ac.at/
research/vis/Miscellaneous/MDHT/).

This is in stark contrast to the FFT: since the fourier
tranform operates on complex values, real-valued in-
put data has to be augmented by zero-valued imagi-
nary components so that it can be used.

However if the purely complex-valued fourier trans-
form is used on such augmented real values, a lot of
computational effort is wasted, as the first level of re-
cursion then does a lot of multiplications with these
zero-valued imaginary parts. For efficiency reasons
special versions of the FFT are normally used that
have a hand-tuned and specially coded first level of
the recursion that deals with real-valued input data.

A similar problem exists with the resulting output
vector of complex values. Normally this vector would
need twice the storage of the a real-valued input vec-
tor. But since it is known that the real part of the trans-
form is odd and the complex part of the transform is
even, only one half of the values need to be present in
the output vector, thus reducing the storage needs to
the same size as the input vector. It is however neces-
sary to define which values of the output-vector are to
be interpreted as a single complex value. For multi-
dimensional FFTs such a scheme to interpret the data
puts an additional burden on the complexity of the al-
gorithms.

None of these problems arises in the real-valued FHT.

3 The Multi-Dimensional Hartley Transform

The d-dimensional discrete HT of a function
h t1 t2 td is defined similarly to the equivalent
multi-dimensional FT:

H f1 f2 fd
1

n1 n2 nd

n1 1

t1 0

n2 1

t2 0

nd 1

td 0
h t1 t2 td (7)

cas 2
f1t1
n1

f2t2
n2

fdtd
nd

Where cas cos sin .

However the kernel cas 2 f1t1
n1

f2t2
n2

fdtd
nd

is
not as easily separable as the corresponding kernel of
the FT:

exp i2
f1t1
n1

f2t2
n2

fdtd
nd

(8)

exp i2
f1t1
n1

exp i2
f2t2
n2

exp i2
fdtd
nd

This separability is the basis of performing the multi-
dimensional Fourier transform by successive unidi-
mensional FTs in each dimension.

Bracewell et al. [Brace86b] have described a correc-
tion scheme to overcome the missing separability of
the HT. It is based on the following trigonometric
identity:

2 cas cas cas

cas cas

cas cas (9)

cas cas

Using this scheme, the d-dimensional input data is
first transformed with the HT, as if it were separable,
resulting in a temporary transformation T :

T f1 f2 fd

n1 1

t1 0

n2 1

t2 0

nd 1

td 0
h t1 t2 td cas

2 f1t1
n1

(10)

cas
2 f2t2

n2
cas

2 fdtd
nd

Using the casine identity (Eq. 9) d 1 passes over the
temporary transform (Eq. 10) can be used to succes-
sively combine pairs of casine-terms to a single sum
of all casine terms. This combination of the terms can
be performed in place using a butterfly scheme that
performs four combinations in one step.

Nevertheless, this scheme can be improved as Hong
Hao and Bracewell [Hao87] have optimized the cor-
responding step to Eq. 9 for three dimensions, noting
that a scheme combining three casine-terms at once
uses only four of the eight available terms:

2 cas cas cas cas (11)

cas cas cas

cas cas cas

cas cas cas

This can be used to reduce the amount of operations
necessary for the combination of the casine-terms in
multi-dimensional HTs.

4 Applications of the Hartley Transform in
Volume Rendering

The field of applications for the HT is very broad. In
general, it can be applied to problems that deal with
fluctuating phenomena, like for example in plasma
physics, semiconductor physics, microwave acous-
tics, oceanography or radar mapping [Brace89].

However, we are primarily interested in its applica-
bility in volume rendering for medical imaging pur-
poses where the HT is useful for, e.g., filter analysis
for reconstruction purposes or frequency domain vol-
ume rendering.
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Figure 1: On top several function reconstruction filters are depicted: the ideal function reconstruction filter, the sinc
function, the Hamming windowed sinc function (where the Hamming window itself is also depicted) and the tent
function, which corresponds to linear interpolation. Below the corresponding frequency responses are depicted.



4.1 Filter Analysis

In medical imaging one usually deals with sampled
data sets obtained from acquisition devices like CT
(computed tomography) scanners. Consequently, a
fundamental operation in volume rendering is the re-
construction of a function from a set of samples, since
most volume rendering algorithms require a resam-
pling step and the resampling points usually do not
coincide with the sampling points. Specifically, to ob-
tain values of the function in between sample points
some kind of interpolation has to be performed.

Schafer and Rabiner [Schaf73] state that in a fre-
quency domain interpretation of interpolation it is
clear that “interpolation is fundamentally a linear fil-
tering process”. In other words, interpolation is con-
volution of the sampled data with some filter. Pro-
vided that the sampled function is bandlimited (i.e., it
only contains frequencies different from zero within
a certain interval m; m ) and that it was sam-
pled properly (according to Shannons sampling theo-
rem [Shann49]) the function can be reconstructed ex-
actly from its samples with the filter [Oppen75]

sinc x
sin x

x if x 0
1 if x 0

(12)

This filter has infinite spatial extend, so some finite
approximation has to be used in practice, which will
not, however, reconstruct the original function ex-
actly. A quite common method to assess the qual-
ity of reconstruction filters is to compare the fre-
quency response of the filter to the frequency re-
sponse of the ideal reconstruction filter (which is the
box function for the ideal function reconstruction fil-
ter). This approach has been widely used in com-
puter graphics [Mitch88, Parke83] and volume ren-
dering [Bentu96, Goss94, Marsc94].

Some exemplary function reconstruction filters are
depicted in Fig. 1 on top, below the corresponding
frequency responses are depicted, calculated with the
algorithm presented in Section 2.3 and App. A. Obvi-
ously, the practical reconstruction filters only crudely
approximate the desired frequency response of the
ideal function reconstruction filter so that smoothing
will be introduced as certain frequencies are attenu-
ated, and aliasing will occur as higher frequencies are
not completely suppressed.

4.2 Volume Rendering Based on the
Projection-Slice Theorem

An algorithm which makes use of both the two- and
three-dimensional HT is frequency domain volume
rendering (FDVR), proposed independently by Dunne
et al. [Dunne90] and Malzbender [Malzb93]. FDVR
computes projection images of a three-dimensional
data set in O n2 logn time, after an O n3 logn pre-
processing step. This is achieved by exploiting the

projection-slice theorem, which states, in the 3D case,
that a projection of a volume can be computed by tak-
ing the (two-dimensional) inverse Hartley (or Fourier)
transform of a slice, passing through the origin, of the
3D transform of the volume.

The algorithm mainly consists of three steps:

1. Transform the volume data to frequency do-
main (preprocessing).

2. Extract a slice from frequency spectrum which
passes through the origin with the normal par-
allel to the viewing direction.

3. Back-transform the (two-dimensional) slice.

Obviously, the costly three-dimensional transform
has to be performed only once per data set. When
the viewing direction is changed only another slice
must be extracted from the frequency volume and
back-transformed. This transformation is only two-
dimensional and reduces the overall computational
cost of the algorithm considerably.

However, this approach suffers from some problems.
First, since the projection obtained by FDVR is a
line integral normal to the viewing direction (in other
words, voxels on one viewing ray contribute equally
to the result regardless of their distance to the viewer),
the resulting images lack occlusion and often look
like X-rays of the data set [Malzb93].

This can be overcome though. Levoy notes, that
occlusion is not the only cue for the human visual
system to recognize shapes of and relationships be-
tween objects [Levoy92]. Spatial preprocessing can
be used to provide depth cueing and directional shad-
ing, which is, however, quite memory demanding
since several copies of the data set have to be kept
in memory [Levoy92]. As data sets in volume render-
ing tend to be be quite big this is intolerable. Con-
sequently, Totsuka and Levoy developed a method
which implements depth cueing by frequency domain
differentiation and directional shading by frequency
domain multiplication [Totsu93].

High memory demand of FDVR, the second problem,
however remains since more complex arithmetics in
frequency domain demand a higher precision of the
data set [Totsu93].

Nevertheless, FDVR proves to be quite a useful
method for volume rendering. Most of the loss of
realism due to lack of occlusion can be restored by
depth cueing and directional shading and there is an
undeniable benefit in speed. In Fig. 2 two examples
of the output of this algorithm are given. A projec-
tion of a CT (computed tomography) data set of a hu-
man head is depicted on the left and a projection of a



Figure 2: Two images generated with frequency domain volume rendering: a CT data set of a human head on the
left and a MRI data set of a human kidney on the right.

MRI (magnetic resonance imaging) data set of a hu-
man kidney is depicted on the right.

5 Conclusion

We have presented an easily comprehensible imple-
mentation of the HT and its multi-dimensional exten-
sion. This implementation has been shown to be eas-
ily adaptable to some important applications in vol-
ume rendering, e.g., frequency domain volume ren-
dering or analysis of reconstruction filters by compar-
ing the frequency responses to the ideal one.

We advocate the use of the HT because it has several
advantages over the FT. It is real valued only whereas
the FT will, in general, yield a complex result, and it
offers a speed advantage compared to the FT on real
valued data sets (and data sets used in volume ren-
dering usually are real). Besides, it is its own inverse
which further simplifies its use.
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A C-implementation of the Fast Hartley Transform

void vector_hartley_transform_simple(
double * v, long size) /* size must be a power of 2 */

{
long old_len = 0; /* initialize to avoid warning */
long len;
long new_len = 0; /* initialize to avoid warning */

vector_bitreverse_indices(v,size); /* v[b0 b1 .. bn] <-> v[bn .. b1 b0] */

for (len = 1; len < size; old_len = len, len = new_len)
{

long i, j;
double hi, hj;
new_len = 2 * len; /* build transform of double length */

for (i = 0; i < size; i += new_len) /* for all blocks */
{

j = i + len; /* special case: */
hi = v[i]; hj = v[j];
v[i] = hi + hj; /* f = 0 */
v[j] = hi - hj; /* f = PI */

}
if (len < 2) continue;
for (i = old_len; i < size; i += new_len) /* for all blocks */
{

j = i + len; /* special case: */
hi = v[i]; hj = v[j];
v[i] = hi + hj; /* f = PI/2 */
v[j] = hi - hj; /* f = 3 * PI/2 */

}
if (len >= 4)
{

double d = MATH_2_MUL_PI / new_len;
double a = 2.0 * M_SQR(sin(d * 0.5)); /* initialize trig. */
double b = sin(d); /* recurrence */
double cos_t = 1.0;
double sin_t = 0.0;
long f;
for (f = 1; f < old_len; f++) /* for all freqs in */
{ /* the first quad */

double one = a * cos_t + b * sin_t; /* trig. recurrence */
double two = a * sin_t - b * cos_t;
cos_t -= one; /* cos (t + d) */
sin_t -= two; /* sin (t + d) */
for (i = f, j = len - f; /* for all blocks */

i < size;
i += new_len, j += new_len)

{
long k = i + len;
long l = j + len;
one = cos_t * v[k] + sin_t * v[l];
two = cos_t * v[l] - sin_t * v[k];
hi = v[i]; hj = v[j];
v[i] = hi + one; v[k] = hi - one; /* all four quads */
v[j] = hj - two; v[l] = hj + two; /* (i,j,k,l) */

}
}

}
}

}


