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Nonlinear vibrations and stability of aerostatic bearing
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Received 10 September 2008; received in revised form 18 November 2008

Abstract

Bearings based on aerostatic principle belong to the new machine elements advantageous for low- and high-speed

applications, but their dynamic and stability properties are not yet sufficiently known. This paper presents a new

elaborated method and gained results of theoretical investigation of dynamic properties of aerostatic bearing in

general dimensionless form. It is aimed also as a supporting tool for diagnostic and identification methods used

at developing of new bearings proposed by TECHLAB, Prague for industrial applications. Mathematical model

expresses nonlinear and evolutive properties in the entire area of bearing clearance, contains sufficient number

of free parameters in functions of restoring and damping forces and can therefore describe all types of motions

occurring in gas bearings as periodic, quasi-periodic, including beats and instability, which can leads to chaotic

and self-excited vibrations. The influence of non-diagonal elements of stiffness and damping matrices of linearized

model on the spectral properties and the stability of system is investigated, too.
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1. Introduction

Aerostatic bearings are new machine elements applied both for high- and low-speed operation

of rotors. Majority of researchers in the field of fluid — bearings focused their investigation

on the oil journal bearings, but some interesting works oriented on gas bearings appeared in

the last decades. Lot of them elaborate solution of gas flow in bearing clearance by means of

Reynolds equations, few of them are devoted to the rotor dynamics and gas bearing properties.

Let us mention A. Tondl [7] who presented solution of vertical rotor vibrations using linearized

expression for stiffness and damping forces. Experimental procedure for ascertaining linear

stiffness and damping parameters is described in [5]. Vertical test stand described in [6] is being

used to validate gas bearing design model and show how to calculate stiffness and damping of

bearing by means of synchronous excitation. Authors of [8] show the influence of nonlinear

gas film forces on the stabilities of system’s equilibrium position and unbalance responses, by

experimental solution and by simple numerical model of characteristics based on assumption

of exponential stiffness properties. A new type of slot-restricted gas journal bearings is studied

in [9]. Short description of aerostatic thrust bearing is given in [10].

In order to gain reliable experimentally verified data for design of aerostatic bearings devel-

oped in our country by Techlab s.r.o., a project of GAČR No 101/06/1787, “Dynamic properties

of gas bearings and their interaction with rotor” has been opened and elaborated. The experi-

mental investigation of this project is based on using special adapted Rotor Kit Bently Nevada
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(RKBN) complemented by suitable measurement and loading apparatus for identification of

static and dynamic characteristic of aerostatic journal bearings [1, 2].

The presented paper is a theoretical contribution to the analysis of dynamic properties of

RKBN test stand with the aim to determine the effect of nonlinear characteristics and spec-

tral dependences of diagonal and non-diagonal elements of stiffness and damping matrices.

Obtained results will help by the quantitative and qualitative diagnostic analysis of aerostatic

bearings behavior.

For these purposes a new description of nonlinear stiffness and damping properties valid

in the entire clearance of bearing by means of mathematical expression with several free pa-

rameters is developed. A new treatment based on non-synchronous excitation with frequency

different from rotor revolution is advantageous for more exact identification.

2. Scheme of test stand

The detailed description of RKBN structure including special arrangement of aerostatic bear-

ing with apparatus measuring displacements in vertical and horizontal directions of test head

aerostatic bearing, as well as excitations forces in both directions is given in [1, 2].

As distinct from the usual arrangement of rotor systems, the test head with bearing bush

in the RKBN test stand is movable and supported only on a system of thin strings securing its

purely transitional motion. Rigid test shaft is supported in two precise stiff rolling bearings. It

rotates with angular velocity ω and its rotation axis is fixed in space without any motion. The

simplified scheme for derivation of motion equations is shown in Fig. 1. Rigid rotor supported

in two rolling bearings has axis of rotation z and its structure is symmetrical to the plane xy. It is

driven by an electric motor controlled to speeds up to 10 000 rpm, i.e. up to ω = 1 000 s−1. Test

head contains aerostatic bearings surrounding the rotor of diameter D = 30 mm with diameter

clearance 2c = 0.08 mm and has mass 1.2 kg. Length of the bearing shell is L = 1.5 D =
45 mm, its pressurized air hose is connected with the bearing clearance by 16 orifices in two

rows uniformly arranged along the circumference. Inlet air pressure was 0.2 or 0.4 MPa.

3. Forces in aerostatic bearing

Due to the axially symmetrical arrangement of test stand and axially symmetrical flow inlet

of compressed air the force-displacement relation described in polar coordinates r, ϕ is inde-

Fig. 1. Scheme of experimental stand
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a) b)

Fig. 2. a) Forces on test head, b) Displacement of test head

pendent on the angle ϕ (e.g. [7]). Therefore the reaction forces acting on test head at relative

deviation r of test head centre against the rotor centre should be the same in all angular position

ϕ. When the shaft does not rotate, the restoring reaction force is opposite to vector r. Situation

at shaft rotation ω1 is shown in Fig. 2a, where the reaction force has radial component Fr(r)
and tangential component Fϕ(r). Directions of these forces are influenced by unsymmetrical

distribution of aerodynamic pressure (dashed line in Fig. 2b) in the clearance.

Transformation of these forces into components expressed in rectangular coordinates x, y
gives

Fx = Fr cos ϕ + Fϕ sin ϕ Fy = Fr sin ϕ − Fϕ cos ϕ, (1)

where the trigonometric functions of angle ϕ can be replaced by function of rectangular coor-

dinates x, y:

Fx = Fr

x
√

x2 + y2
+ Fϕ

y
√

x2 + y2
Fy = Fr

y
√

x2 + y2
− Fϕ

x
√

x2 + y2
. (2)

Forces Fr, Fϕ can be expressed by very complicated formula as seen from some results pub-

lished e.g. in [10]. In order to construct sufficiently general description of aerostatic bearings

properties, we must use functions containing great number of free parameters, which enable to

fit a set of experimental data in a high approximation. In this paper we restrict our presentation

only on low power of displacements and velocities, but the methodology can be used for more

complex form as well. If we suppose that the reaction force F together with its components

Fr, Fϕ increase linearly with distance r =
√

x2 + y2, than we can introduce stiffness kr, kϕ:

Fr = krr, Fϕ = kϕr (3)

and the equations (2) are

Fx = krx + kϕy Fy = −kϕx + kry or Freal =

[

kr kϕ

−kϕ kr

] [

x
y

]

= Kq. (4)

Tangential force Fϕ, as well as cross-stiffness kϕ, has non-zero magnitude only at rotation:

ω1 > 0. Let us supposed that it depends linearly on the second power of the shaft rotation

velocity ω1: kϕ(ω1) = ω2

1
kf .

If the shaft does not rotate, the stiffness matrix K is diagonal

Kω=0 =

[

kr 0
0 kr

]

. (5)

337
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a) b)

Fig. 3. a) Damping forces, b) Damping forces in rectangular coordinates

The same formal relations as (1, 2) are valid also for damping forces Fbr, Fbϕ, when the polar

coordinates r, ϕ vary with the time t: ṙ = dr/dt, rϕ̇ = r dϕ/dt. Vector diagrams of velocities

and corresponding reactions forces on test head are in Fig. 3, both in polar and rectangular

coordinates. Their magnitudes are connected by relationships:

Fbx = Fbr cos(ϕ) − Fbϕ sin(ϕ) = Fbr

x

r
− Fbϕ

y

r

Fby = Fbr sin(ϕ) + Fbϕ cos(ϕ) = Fbr

y

r
+ Fbϕ

x

r
.

(6)

For linear damping in the whole interval of coordinates r ∈ (0, d), ϕ ∈ (0, 2π), the damping

forces vary proportionally to the velocities ṙ and rϕ̇

Fbr = brṙ, Fbϕ = bϕrϕ̇ (7)

and the force components in rectangular coordinates are

Fbx = brṙ
x

r
− bϕϕ̇r

y

r
Fby = bϕϕ̇r

x

r
+ br ṙ

y

r
. (8)

After expressing derivates ṙ and rϕ̇ from transformation formula x = r cos ϕ, y = r sin ϕ

ṙ = ẋ cos ϕ + ẏ sin ϕ = ẋ
x

r
+ ẏ

y

r
rϕ̇ = −ẋ sin ϕ + ẏ cos ϕ = −ẋ

y

r
+ ẏ

x

r
,

we get

Fbx = (brx
2 + bϕy2)

ẋ

r2
+ (br − bϕ)xy

ẏ

r2

Fby = (br − bϕ)xy
ẋ

r2
+ (bry

2 + bϕx2)
ẏ

r2
.

(9)

This equations are simplified fundamentally if the damping field is isotropic br = bφ = b:

Fbx = bẋ Fby = bẏ and Fb = Bq̇ =

[

b 0
0 b

] [

ẋ
ẏ

]

.

In the general case of nonlinear, anisotropic stiffness and damping fields the general equa-

tions (2) and (6) have to be used. Equations (3) and (7) have to be replaced by

Fr(r, ω1, p), Fφ(r, ω1, p), Fbr(r, ω1, p), Fbφ(r, ω1, p), (10)

where the nonlinear relationships on radial displacement r, angular velocity ω1 and pressure of

inlet air p are expressed.
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4. Nonlinear and evolutive characteristics

4.1. Restoring (stiffness) characteristics

Because the components of restoring (elastic) forces in rectangular coordinate x, y are accord-

ing to the equations (1) ascertained by means of the polar force components Fr and Fφ, the

first step is oriented on the formulation of nonlinear function in these polar components. The

simplest form is linear description given in (3) or without rotation in (5). Assumption of similar

linear properties are used in many publications on aerostatic bearings, e.g. [1, 2, 3, 4, 5, 6], but

there investigated motions of systems are solved very often as special cases around the shifted

equilibrium positions, where the symmetry or asymmetry of matrices K,B (eqs. 4, 8) cannot

be used.

The breaking of symmetry is caused by the nonlinear properties of force-deflection charac-

teristics of lubricated gas film. Let us suppose the nonlinear properties of restoring forces in the

form of quadratic function of displacement r and of angular velocity ω1:

Fr = (kr + kr1r
2ω2

1
)r, Fϕ = (kfω

2

1
+ kϕ1r

2ω2

1
)r, (11)

where basic stiffness for our aim is kr = 1.41 · 106 Nm−1 (see [3]) and coefficients kf , kr1, kφ1

must be identified from experiments or from the solution of Reynolds equation [1, 2, 4]. In this

numerical study, we focus on the investigation of influence of these coefficients on response of

test head excited by external forces. In rectangular coordinate system x, y, there are components

of elastic force after applying (2), (11):

Fex = (kr + kr1(x
2 + y2)ω2

1
)x + (kfω

2

1
+ kϕ1(x

2 + y2)ω2

1
)y

Fey = −(kfω
2

1
+ kϕ1(x

2 + y2)ω2

1
)x + (kr + kr1(x

2 + y2)ω2

1
)y.

(12)

4.2. Damping characteristics

The nonlinear damping properties of aerostatic bearing can be supposed in the similar form

as at stiffness i.e. in the form of damping coefficient proportional to quadratic function of

displacement r and of angular velocity ω1, which in polar coordinates gives

Fbr = (br + br1r
2ω2

1
)ṙ, Fbϕ = (bϕ + bϕ1r

2ω2

1
)rϕ̇. (13)

According to (1) we get for the damping force component in rectangular x, y coordinates

Fbx = (br + br1r
2ω2

1
)ṙ cos ϕ − (bϕ + bϕ1r

2ω2

1
)rϕ̇ sin ϕ

Fby = (br + br1r
2ω2

1
)ṙ sin ϕ + (bϕ + bϕ1r

2ω2

1
)rϕ̇ cos ϕ

(14)

and using (8a)

Fbx = (br + br1r
2ω2

1
)
ẋx2 + ẏxy

r2
− (bϕ + bϕ1r

2ω2

1
)
−ẋy2 + ẏxy

r2

Fby = (br + br1r
2ω2

1
)
ẋxy + ẏy2

r2
+ (bϕ + bϕ1r

2ω2

1
)
−ẋxy + ẏx2

r2
.

(14a)

Nonlinear damping characteristics can be expressed also in following form:

Fbx = (brx
2 + bϕy2)

ẋ

r2
+ ω2

1
(br1x

2 + bϕ1y
2)ẋ + (br − bϕ)

xy

r2
ẏ + (br1 − bϕ1)ω

2

1
xyẏ

Fby = (br − bϕ)
xy

r2
ẋ + (br1 − bϕ1)ω

2

1
xyẋ + (bry

2 + bϕx2)
ẏ

r2
+ (br1y

2 + bϕ1x
2)ω2

1
ẏ,

(15)

where for numerical stability at x = y = 0: r2 = x2 + y2 + ε, ε = 1 · 10−20.
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5. Equations of test head motion

Equations of forced motion with frequency ω1 and amplitude F0 of movable test head at rotated

shaft with velocity ω1 and fixed axes are

mẍ + Fx + Fbx = F0 cos ωt + mg + Fst

mÿ + Fy + Fby = F0 sin ωt,
(16)

where forces components Fx, Fbx, Fy, Fby are given in (12) and (14). So we get

mẍ + (kr + kr1(x
2 + y2)ω2

1
)x + (kf + kϕ1(x

2 + y2))ω2

1
y + (brx

2 + bϕy2)ẋ/(x2 + y2 + ε) +

ω2

1
(br1x

2 + bϕ1y
2)ẋ + (br − bϕ)

xyẏ

x2 + y2 + ε
+ (br1 − bϕ1)ω1xyẏ = F0 cos(ωt) + mg + Fst

mÿ + (kr + kr1(x
2 + y2)ω2

1
)y − (kf + kϕ1(x

2 + y2))ω2

1
x + (br − bϕ)

xyẋ

x2 + y2 − ε
+

ω2

1
(br1 − bϕ1)xyẋ + (bry

2 + bϕx2)
ẏ

x2 + y2 + ε
+ (br1y

2 + bϕ1x
2)ω2

1
ẏ = F0 sin(ωt).

In order to build general mathematical model for various type of aerostatic bearings with

very different parameters, the transformation of the aforementioned equations into dimension-

less form is recommended.

Dimensionless form of motion equations is advantageous also for numerical solution, as it

always contains lower number of system parameters in comparison to the differential motion

equations written in physical quantities. The fundamental physical parameters for this trans-

formation are mass m = 1.2 kg, radial gap c = 0.04 mm, stiffness kr = 1 410 000 Nm−1.

Introducing 14 dimensionless quantities instead of 17 dimension ones:

τ = t

√

kr

m
, X =

x

c
, Y =

y

c
, η = ω

√

m

kr

, η1 = ω1

√

m

kr

, κf =
kf

m
,

κr = kr1

c2

m
, κϕ = kϕ1

c2

m
, f0 =

F0

krc
, fst =

mg + Fst

krc
, (17)

βr =
br√
krm

, βϕ =
br

√

kϕm
, βr1 = br1

√

kr

m

c2

m
, βϕ1 = bϕ1

√

kr

m

c2

m

we get dimensionless form of motion equations (16)

X ′′ + X + η2

1
(κfY + (X2 + Y 2)(κrX + κϕY )) +

(βrX
2 + βϕY 2)X ′

X2 + Y 2 + ε
+

η2

1
(βr1X

2 + βϕ1Y
2)X ′ +

(βr − βϕ)XY Y ′

X2 + Y 2 + ε
+ (βr1 − βϕ1)η

2

1
XY Y ′ =

= f cos(ητ) + fst (18)

Y ′′ + Y + η2

1
(−κfX + (X2 + Y 2)(κrY − κϕX)) +

(βr − βϕ)XY X ′

X2 + Y 2 + ε
+

(βr1 − βϕ1)η
2

1
XY X ′ +

(βrY
2 + βϕX2)Y ′

X2 + Y 2 + ε
+ η2

1
(βr1Y

2 + βϕ1X
2)Y ′ = f0 sin(ητ).

These equations are numerically solved in following chapter.
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Fig. 4. Periodic stable oscillations

6. Examples

Let us show some selected cases of application of derived mathematical model for solution of

head test motion. From 14 dimensionless parameters describing this model 6 of them let have

in Fig. 4–7 fix values: f0 = 0.2, η = η1 = 0.95, βr = βφ = 0.5, κϕ = 0, three of them are

variables (X, Y, τ) and the remaining 5 can be selected.

Response of vibrating system for values

fst = 0, κr = κf = 0, βr1 = βφ1 = 0

is shown in Fig. 4. The motion is periodic with constant amplitudes as seen both from time

histories X(τ), Y (τ) in subplot a) and polar trajectories X, Y (subplot b). The Poincaré map in

subplot c) concentrates into one point, representing the stable periodic state of system recorded

at ητ = (2n + 1/2)π, n = 0, 1, 2, . . .

Cubic nonlinearities in characteristics of restoring forces given by nonzero parameters κr =
κφ = 2 at (fst = 0, βr1 = βφ1 = 0) changes the response into quasi-periodic beats (Fig. 5a, b),

again stable as seen from the Poincaré mapping on Fig. 5c where the representing points form

a cluster similar to a closed circle.

Adding nonlinear damping forces given by positive parameters βr1 = βφ1 > 0 does not

influence the system stability, it changes moderately only amplitudes of oscillations. However

the effect of non-symmetry in βr1 and βφ1 is very strong.

An example of response of system by nonlinear damping with different parameters βr1 =
0.2 and βφ1 = −0.025 is recorded in Fig. 6, where the very small disturbances slowly increase

during the time and at τ > 90 begin to be very decisive, which become evident by a sudden

exponential rise of amplitudes. This loss of stability is clearly seen both at time histories X(τ),
Y (τ) in Fig. 6a, and in polar trajectory X, Y in Fig. 6b. Due to the limited number of recorded

periods of excitation, this instability is in Fig. 6c presented only by 2 points.
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Fig. 5. Quasi-periodic oscillations (beats)

Fig. 6. Quasi-periodic oscillations, lost of stability

Another type of instability is shown in Fig. 7, where free vibrations (f0 = 0) at small initial

condition increase exponentially from the beginning at τ = 0 to the unlimited values. This

phenomenon is caused by the difference between linear damping coefficients βr = 0.1 and

βφ = −0.1.

Static load (weight mg and/or external force) causes vertical shift of X trajectory, both in

time history X(τ) and in polar diagram X, Y, as it is shown in Fig. 8 for dimensionless load

fst = (mg + Fst)/(krc) = 0.7 and for excitation amplitude f0 = 0.1.
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Fig. 7. Instability at small disturbances

Fig. 8. Shift from static load fst = 0.7

7. Model of linearized system

The test head was during preliminary measurements loaded by vertical gravitational force mg
and excited by a small harmonic force. The mathematical model can be in that case simplified

to the linear part of restoring and damping forces. Equilibrium position is on vertical axis
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(|y| → 0) and linearized model according to the simplified equation (16) can be written for

fixed rotation of rotor as

Kq(t) + Bq̇(t) + Mq̈(t) = F(t), (19)

where

q(t) =

[

x(t)
y(t)

]

, F(t) = F0

[

cos ωt
sin ωt

]

, K =

[

kr kϕ

−kϕ kr

]

,

B =

[

br bϕ

−bϕ br

]

, M =

[

m
m

]

.

The mathematical model is aimed for the spectral and modal analysis with the emphasize

to determination of the level of stability motion of system expressed by real parts of complex

eigenvalues. Corresponding homogeneous equation in complex amplitude form (q(t) = q, est,

q ∈ C2) is

(K + sB + s2M)q = o (20)

and complex eigenvalues and eigenvectors are calculated by means of the so-called state space

method. Numerical values of dynamic parameters for this analysis are given by measurements,

by theoretical study — [4] and corrected by the identification — [1, 2] of the experimental

stand — [3].

While the diagonal elements of matrices K,B are determined from theoretical mathematical

models and experimentally with a good accordance, the uncertainty of non-diagonal elements is

greater. For this reason we shall analyze the influence of this (non-symmetric) parameters to the

spectral and stability properties. For purposes of our project, during the numerical simulation

we will in this paper apply following fixed values:

m = 1.2 kg; kr = 1.41 · 106 N/m; br = 500 Ns/m,

the influence of non-diagonal elements will be investigated in the ranges kϕ ∈ 〈102, 6 · 105〉,
bϕ ∈ 〈10, 4 · 102〉. On the Fig. 9 are Real (sj), Imag (sj), j = 1, 2 as a function of parameter

pB = bϕ for fixed kϕ = 105 N/m. The parametric graph of sj , j = 1, 2 in complex plane

as a function of parameter pB = bϕ for fixed kϕ = 105 N/m is on the Fig. 10. Similarly,

on the Fig. 11, 12 are depicted spectral values as a function of parameter pK = kϕ for fixed

bϕ = 102 Ns/m.

Fig. 9. Real (sj), Imag (sj), j = 1, 2 as a function of parameter pB
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Fig. 10. Parametric graph of sj , j = 1, 2 in complex plane as a function of parameter pB . Initial points

are marked by o, ∆

Fig. 11. Real (sj), Imag (sj), j = 1, 2 as a function of parameter pK

Fig. 12. Parametric graph of sj , j = 1, 2 in complex plane as a function of parameter pK . Initial points

are marked by o, ∆ and limit of stability motion by

8. Conclusion

Mathematical model containing sufficient number of free parameters in functions describing

both restoring and damping forces in aerostatic bearings was derived as a tool for qualitative

and/or quantitative analysis of dynamic properties of new bearings developed in project GACR

No. 101/06/1787.
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Presented method of solution can be generalized also for other types of bearings by us-

ing another functions (not only cubic) expressing aerostatic and aerodynamic forces in polar

coordinates r, φ, or after transformation in rectangular coordinates x, y.

Derived expressions are valid in the entire area of bearing clearance, all types of motions

can be investigated with only limitation r < c.

Examples in the paper illustrate possibility of modeling different types of test head mo-

tions: Periodic, quasi-periodic, beats, instability, as well as shift of trajectories due to the static

loading.

The influence of non-diagonal elements of stiffness and damping matrices of linearized

dynamical system on the complex eigenvalues was presented in the numerical examples. For

given range of non-diagonal elements, the changes of eigenfrequencies and the influence of

non-diagonal elements of damping matrix was relatively small.

On the other hand, the increasing non-symmetry of the stiffness matrix leads to the non-

stability of motion caused by the change of sign of real part of the second eigenvalue.

Acknowledgements

This work was supported by the Grant Agency of CR, project No. 101/06/1787 “Dynamic

properties of gas bearings and their interaction with rotor”.

References
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