Radiosity Techniques for Virtual Reality -
Faster Reconstruction and Support for Levels Of Detail

Tomas Moller
Clarus AB
Stora Badhusgatan 18-20
S-411 21 Gothenburg
Sweden

e-mail: tompa@clarus.se

Abstract

We present a method, aimed at Virtual Reality (VR) applications with illumi-
nation calculated by radiosity, that provides faster reconstruction of the radiosity
function of non-uniform rational B-splines (NURBS) and ultimate support for levels
of detail, LODs!. For each NURBS, an image, called an illumination map, which
contains its illumination is computed. Since many target machines for VR-rendering
has support for real-time texture mapping, the illumination map is texture mapped,
using bilinear interpolation, onto the surface in order to reconstruct the radiosity
function. We show that the polygon count, used when rendering, can be consider-
ably reduced using our method. Also, by decoupling shading from geometry, our
method supports LODs for VR in an ultimate way, since only one radiosity calcula-
tion is needed for every conceivable LOD. This also implies that the triangulation of
surfaces could be altered, without recomputing the illumination, in order to trade-
off real-time rendering performance by surface approximation of the NURBS. We
have also implemented the method in a real world application with excellent results.

Keywords: radiosity, texture mapping, Virtual Reality.

1. Introduction

To enhance a three dimensional model with more photo realism, radiosity (introduced
in [4]) can be used to calculate realistic illumination of the surfaces. The goal of using
radiosity for Virtual Reality (VR) is to be able to render realistic images fast enough for
animation and walkthroughs.

The radiosity solution of a model is independent of the viewer’s position and view
direction and it could therefore be calculated in advance and used later to reconstruct
the illumination of the model in real-time. The standard procedure for reconstructing
the radiosity function for VR, is to render all patches/elements separately with Gouraud
shading. However, since adaptive sampling [2] must be used to generate an accurate ra-
diosity solution, this results in rendering an enormous amount of triangles. Also, since
the triangulation of a surface usually is used as a foundation for sampling the illumina-
tion, the triangulation could not be arbitrarily altered without recomputing the entire

In this context we mean different triangulations of a surface when speaking of LODs.

209,

radiosity solution, which means that the radiosity solution must be computed again if the
triangulation of a surface is altered.

Different levels of details, LODs, for each object are usually supported by VR-systems.
Using LODs means that surface approximation is more accurate close to the viewer and
less accurate for distant objects. This makes for better rendering performance when the
objects are far away from the viewer, since fewer triangles are used to render the sur-
face, and better surface approximation when they are close, since more triangles are used.
Naturally, LODs should be supported also when radiosity has been used to calculate the
illumination of the model.

2. Faster Reconstruction of the Radiosity Function

The use of Gouraud shading when reconstructing the radiosity function is due to the fact
that many systems support this in hardware. High-end graphics systems, workstations
and game stations has begun to support real-time texture mapping in hardware and to
obtain an improved reconstruction method, we utilize this feature.

To be able to use texture mapping for radiosity function reconstruction, the sample
points of the surfaces must be carefully selected. The radiosity values of the sample
points are sampled using ray tracing [7]. Since texture mapping an image onto a surface is
performed in the surface’s parametric uv-space, uniform sampling of the radiosity function
in uv-space automatically implies a texture map. This means that the radiosity values
must be sampled and stored in a texture map, which we call an lumination map, and the
samples must be located uniformly in uv-space of the NURBS. Note that we select the
sample points independently of the triangulation of the surface. The concept of uniform
sampling on a surface is depicted in figure 1. In this figure an illuminated surface is
shown to the left and the uniformly located sampling points are shown in the middle.
We sample the radiosity values at these points and generate the illumination map to the
right. Uniform sampling of Bézier patches was introduced in [5].

Figure 1: The concept of using uniform sampling in uv-space to generate a texture map
is shown here. Note that the radiosities are sampled at the crossings of the lines.

If uniform sampling is used for a certain surface to generate an illumination map,
the reconstruction of the radiosity function for that surface is straightforward. Simply
texture map the generated illumination map onto the surface. These operations are shown
in figure 2, where the illumination map to the left is texture mapped onto the triangulated
surface in the middle and the result, the surface with reconstructed illumination, is shown
to the right. Similar work has been presented in [6].

However, adaptive uniform sampling has to be used in order to sample high radiosity
gradient regions more heavily. Our method does not immediately imply a texture map
in this case, but this problem can be overcome by transforming the adaptive sampling
bitmap to a common uniform bitmap. Making the adaptive sampling bitmap balanced [1],
reduces this transform into a bilinear interpolation operation, which is applied recursively.

210

—_

Figure 2: Radiosity function reconstruction using an illumination map.

An example of the adaptive to common bitmap transform is shown in figure 3. In this

Figure 3: An adaptively subdivided bitmap (mesh) can be transformed — via bilinearly
interpolating corner values — into a common (uniform) bitmap.

figure, the sample points are located at the line crossings and the dots in the destination
bitmap are determined via bilinear interpolation. This technique is better than the an-
choring method, described in [1], since all eight corner values are used when interpolating
the middle point. A new value between two already computed values are computed by
averaging them, and when this has been done the middle point can be weighted together
from its eight neighbours. Figure 4 shows an example of this.

By Bs B; B Bs B; B;
Bg B¢ By 8 —O+—0B,
B3 B4 B3 Vst B4 B4

Figure 4: Assume that the left hand mesh is part of a larger mesh and that neighbouring
parts have computed the radiosity values Bs and Bg. When calculating the texture map
for the mesh, several new values need to be weighted by old ones. The radiosity values
By, Bs and By need to be computed for this example. By and By are weighted by B, and
B, respectively B3 and B,. Finally the middle point is weighted by all eight radiosity
values. Note that this mesh only contains sample points, it has nothing to do with the
triangulation of the surface.

To replace blockiness with blurriness, i.e. replace sharp edges with soft edges, bilinear
interpolation is used while texture mapping the illumination map onto the surfaces. Note
that bilinear interpolation is rotation-invariant.

For surfaces with an initial texture map, a method based on [2] is used. The average
reflectivity, paverage, Of the initial texture map is used to generate an illumination map in

211,

the same manner as for a non-textured surface. Then the illumination map and the initial
texture map are scaled to the same size, using bilinear interpolation. For each pixel, the
textured illumination map is computed by the following formula from [2].

Pinitial texture (ua U)

(1)

Bfainal(u: U) = Bﬂ!uminﬂtim map(u; U)
Paverage

Byina(u, v) is the pixel value at (u, v) of the textured illumination map, Biumination map(t; V)
is the pixel value from the computed illumination map and pinitiar texture(%, v) is the re-
flectivity for the current pixel. An example of handling initial textures within radiosity
is depicted in figure 5, where the topmost image to the left contains the illumination of
a surface and below is the initial texture map for that surface. These are scaled to the
same size and multiplied, using (1), to form the illuminated texture map the right.

Figure 5: Handling of initial texture maps within radiosity.

3. LOD Support

To increase rendering preformance, most VR-systems support LODs. This means that
surface approximation, which is controlled by the tesselation parameters of the NURBS,
is more accurate when the surface is close to the viewer and coarser when the surface is
farther away. For example, a distant surface that only covers 20 pixels on the screen can
be approximated by a very small number (< 10) of triangles, without reducing the image
quality too much. When the surface comes closer a finer triangulation is used to obtain
a better approximation.

If a radiosity solution has been computed for rendering with Gouraud shading, the
triangulation of the surfaces in the model cannot be altered without recomputing the
radiosity solution.

Our method support LODs in an ultimate way, since only one radiosity calculation is
needed for every conceivable LOD. This is true, since texture mapping is independent of
the triangulation of the surface, that is, shading (the illumination map) is decoupled from
geometry. An example of this is depicted in figure 6, where the illumination map at the
top is texture mapped onto the different triangulations to the left. The textured surfaces
are shown to the right.

A desired feature of a model for VR is to be able to fine-tune the real-time rendering
performance by changing the surface approximation for the LODs. Our solution permits
this kind of action even after the radiosity calculations. Fewer triangles in the model
means more speed and less surface accuracy and vice versa.

I~
()

Figure 6: The same illumination map can be used with any conceivable triangulation of
a surface, which means that LODs are supported in an efficient way.

4. Reducing the total texture size

When the radiosity calculations are finished, the result is a texture map for each surface.
However, the sum, called S, of the amount of memory all texture maps occupy can exceed
the amount of texture memory, called 7. Now, to be able to render the scene efficiently
S must be less or equal to T', S < T. If S > T we must reduce S into S’ so that S’ < T
We propose a heuristic for solving this problem.

For each adaptively subdivided bitmap, find all the sample points at the deepest level
of subdivision and compute the absolute value of the difference between these values and
the values that would have been computed by bilinear interpolation (assuming we remove
the sample points at the deepest level of subdivision). Call this sum D; for surface i.
Now, to reduce the total texture size, we remove the deepest level of subdivision, via low
pass filtering, of the surface with the smallest D; until S’ < T'. By doing this we, in some
way, down sample the image that has the smallest amount of useful information on the
deepest level of subdivision, which should be a good choice. Another approach could be
taken if we have knowledge about the size of T (which is not always the case), before
the radiosity calculations starts. In that case we could turn off further adaptive sampling
when S has reached T, in order to restrict S.

5. Results

Three test scenes have been used to verify the function of the ideas in this paper. Those
are depicted in figures 7,8 & 9 and are called Fruit of the Room, The Monet Room and The
Jussi Car. All three scenes have illumination computed by radiosity and the solutions

213

have been reconstructed by the presented algorithm. The surfaces in the scenes are all
NURBS and they have been triangulated before rendering.

Figure 7: Fruit of the Room.
Figure 8: The Monet Room.

Figure 9: Jussi Car. Note that it is only the illumination of the floor and the walls that
have been computed by radiosity. The car is only used to cast a shadow on the floor. Only
one iteration step has been computed in the progressive refinement radiosity method [3].

In the table below, the traditional radiosity reconstruction method, that is using
Gouraud shading, is compared to the texture mapping reconstruction method. The Mem-
ory columns show how much memory that was used for storing the vertices for the triangles
plus the texture maps (if any) and the Triangles columns show the number of triangles
needed to render the scene. The figures for Juss: Car only includes information for the
floor and the walls, that is the illuminated surfaces. However, the figures in the paren-
theses includes the car as well.

[Gouraud Texture]
! Triangles I Memory Triangles | Memory \
[Fruit of the Room]| 11628 | 5594kB [2710 | 7027kB |
[The Monet Room || 39908 [8724kB | 4018 | 35MB |
[The Jussi Car || 6618 (28084) | 52.3 kB (288.2) | 6 (21472) [46.2 kB (282.1) |

214

Since Gouraud shading and texture mapping are equally fast on the target machine for
rendering, this implies that the fewer the triangles the better the rendering performance.
In the table we show that our method reduces the number of triangles considerably and
therefore the real-time performance is improved with the texture map based reconstruc-
tion method. For the test scenes, the traditional Gouraud method consisted of between
4 to 100 times more triangles than the new method.

In many cases, for example rectangular surfaces like floors and walls, several hundred
Gouraud shaded triangles are replaced by 2 texture mapped triangles. Since texture
mapping is as fast as Gouraud shading, rendering speed is increased substantially. Since
the number of initial sampling points of a surface is rather small (compared to after
adaptive sampling), large surfaces like the walls need not occupy much memory. When
adaptive sampling is activated the texture maps may grow and become large. However,
as can be seen in the table, the texture maps of the floor and the walls in Juss: Car only
occupy 46.2 kB, which is a rather small amount. We can use the presented method for
triangles and quadrangles since they have a natural uv-space. Other polygons could be
decomposed into triangles and quadrangles.

We have implemented the presented method in a real world application called Clarus
CAD Real-Time Link (CRTL), which is a commercial program for CAD-translation and
fine-tuning of VR-models. The surfaces that CRTL forwards to the radiosity program
are all NURBS and for each NURBS, an illumination map is returned. We found that
the texture map based method for radiosity reconstruction greatly improved rendering
performance and supported LODs efficiently. The snapshots in figures 7, 8 & 9 have been
taken directly from CRTL. All the radiosity solutions of the test scenes have been used for
high-performance realistic Virtual Reality on an SGI ONYX. At the point of writing this,
the presented techniques have been used successfully in several real projects, including
for example walkthroughs of a robot industry and a Swedish project called Game-On-
Demand.

6. Conclusions

More and more computers for real-time rendering have support for texture mapping in
real-time. We have presented a method, aimed at VR-applications, for faster radiosity
function reconstruction, that exploits this feature. The method also supports LODs in an
ultimate way since only one radiosity solution needs to be computed. This solution can be
used with any conceivable triangulations, i.e. LOD, of the NURBS. We have also shown,
with test scenes, that the number of triangles needed to render the scene can be con-
siderably reduced using the new method. Another advantage is that real-time rendering
performance can be fine-tuned after the radiosity calculations in order achieve the desired
frame rate in the VR-system. An important aspect of this paper is that the method has
been implemented in a real world application and used in real projects.

A disadvantage is that the texture maps can occupy a lot of memory. This can be
partially solved by using illumination maps for curved surfaces (the banana in figure 6
for example), that is surfaces that need a finer triangulation when they are closer to the
viewer. Flat surfaces, like the floor and walls in the test scenes, could be rendered with
the traditional Gouraud method, since they are rendered with the same triangulation
on every LOD. This would decrease the amount of texture memory needed. Another

215,

—_—

approach would be to reduce the total texture size with the proposed method.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Daniel R. Baum, Stephen Mann, Kevin P. Smith and James M. Winget, Making Ra-
diosity Usable: Automatic Preprocessing and Meshing Techniques for the Generation
of Accurate Radiosity Solutions, Computer Graphics (SIGGRAPH’91 Proceedings)
Vol. 25, No. 4, July 1991, pp. 51-60.

Michael F. Cohen, Donald P. Greenberg, David S. Immel and Philip J. Brock. An
Efficient Radiosity Approach for Realistic Image Synthesis, IEEE Computer Graphics
and Applications, Vol. 6, No. 2, 1986, pp. 26-35.

Michael F. Cohen, Shenchang Eric Chen, John R. Wallace and Donald P. Greenberg,
A Progressive Refinement Approach to Fast Radiosity Image Generation, Computer
Graphics (SIGGRAPH’88 Proceedings) Vol. 22, No. 4, August 1988, pp. 75-84.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg and Bennet Battaile,
Modeling the Interaction of Light Between Diffuse Surfaces, Computer Graphics
(SIGGRAPH’84 Proceedings) Vol. 18, No.3, July 1984, pp. 213-222.

A. Kok, C. Yilmaz and L. Bierens, A Two-Pass Radiosity Method for Bézier Patches,
Eurographics 1989, pp. 115-124.

K. Myszkowski and T. L. Kunii, Texture Mapping as an Alternative for Meshing Dur-
ing Walkthrough Animation, 5th Eurographics Workshop on Rendering, Darmstadt,
Germany, 1994, pp. 374-388.

John R. Wallace, Kells A. Elmquist and Eric A. Haines, A Ray Tracing Algorithm
for Progressive Radiosity, Computer Graphics (SSGGRAPH’89 Proceedings) Vol. 23,
No. 3, July 1989, pp. 315-324

216

