Form factor evaluation with regional BSP trees

Karel Nechvile, Jifi Sochor
Masaryk University
Buresova 20, 602 00 Brno, Czech Republic
e—mail: kodl@fi.muni.cz, sochor@fi.muni.cz

Abstract

Form factor evaluation is an expensive and time consuming operation for ra-
diosity applications. Visibility algorithms have to deal with a huge number of
patches, rapidly increasing during an adaptive subdivision. This paper presents
one possible approach to visibility part of complex radiosity algorithm - dividing
the scene to non-overlapping regions and creating hierarchical BSP tree with many
regional BSP trees. The regional BSP approach offers possibility to solve radiosity
in acceptable time without special HW.

1 Introduction

Radiosity is one of the most important methods that are applicable to photorealistic
rendering. Radiosity is predominantly implemented on high-end workstations that have
power sufficient to do intensive computations with large volumes of data. Therefore we
have tried to seek time and memory trade-off solution that will allow to solve radiosity
on low-end stations. Modified method reduces the intensive and time consuming compu-
tations in the most critical part of radiosity algorithm, namely form factor computation.
We use common paradigm; to speed up repeated computations we rely on preprocessing
and additional memory.

2 Scene preprocessing

Form factor evaluation is the most difficult part of radiosity computation. Choosing the
classical hemicube [2] for form factor computation, one has to solve the visibility of the
whole scene in every iteration. _

Form factor part of the radiosity algorithm solves the scene visibility for thousands
of different places. For the scene with constant geometry it is worth seeking some sort-
ing, that would help to speed up repeated calculations. We have chosen the following
approach: '

Our form factor solution uses painter’s paradigm. We project pre-sorted
patches on hemicube and paint them without z-buffer.

This pre-processing has the following advantages: We don’t need to interpolate and
store the depth information in every hemicube pixel. Software solution of hemicube is

285

—

thus more simple without additional memory for software z-buffer. On the other hand
we need to store information for alternate visibility solution. The proposed method is
suitable for workstations with sufficient memory; no hardware z-buffer is needed. ?

3 Scene sorting with BSP tree

A BSP ? tree provides a simple and natural solution. With the help of BSP sorting one
can easily establish the scene visibility from every viewpoint. However, it is impractical
to partition the scene with only one BSP tree. BSP sorting can produce extremely large
number of divided patches and this is inacceptable. Therefore we have chosen the hybrid
solution: we decompose a scene into regions and use regionally restricted BSP sorting.
The resulting data structure is named the regional BSP tree and is used to establish the
local visibility of a patch in the region.

Our solution has been motivated by the following reasoning:

Radiosity scenes are defined as closed environments with active light sources 3. Every
object is described by B-rep model. There should be (almost) no problem to add BSP
sorting to every object. CSG modeller is able to forecast the local visibility and to stamp
it on an object.

If we have been successful in the placement of individual objects or small groups of
objects into unambiguously defined subspaces and sorting objects inside these regions
(with BSP trees), then we only need to decide the visibility on the regional level. For
this task we also use a modified BSP tree that contains information about planes that
separate the regions. Leaves of the regional BSP supertree point to the BSP subtrees of
individual regions.

Ceartainly it is not easy to decompose a scene into non overlapping and easily sortable
regions. Any algorithm starting from zero without any information about a scene, tends
to give many different and unstable results. We have avoided this problem by omitting
all these facts. The most of objects are solids and they do not penetrate each other.
CSG modeller knows the way of processing an object and all constraints following its
introducing. Therefore we believe that sorting information can and will be provided by
someone else (perhaps a more clever fellow).

In fact, we do not need to store any physical object as one solid. We can split each
object into several logical parts and even cut it into small pieces. For instance, an object
"table” can be saved as one object or as a "whole-part” model of a desk and legs. In the
latter model we would have an easier task to find suitable separating planes.

The different approach is similar to Warnock algorithm. A scene can be divided with
respect to the number of patches residing in a specific part of the scene. If the number
of patches exceeds the threshold value, the patches in subspace will be clipped to the
specified volume and a subspace will be treated as a new region. The regional BSP tree
is then constructed for the patches clipped to the subspace. In our implementation we
use simple, axis oriented parallelepiped regions.

1That does not mean we exclude z-buffer completely. It is useful during scene rendering and it can
speed up other algorithms as well.

2Binary Space Partitioning

31ight sources are useful if you want to publish at respectable conferences.

286

4 Data structures with pre-processed scene infor-
mation

Topological relations are represented by the winged-edge structure (WES). WES contains
the information about the solid’s geometry and its neighbourhood relations. WES is sup-
plied with additional information about surface/patch hierarchy. Hierarchy information
is useful for the subdivision process. We have also added information about the regional
subdivision of a scene. Figure.l shows an example of a hierarchical data structure. This
structure is used by the algorithm in Figure 2.

R tree node

regional BSP tree

} P ol +‘
:
\\
[%ent }-»[element]-»[element]->

Figure 1: Data structures for scene subdivision and patch hierarchy

Scene input
v

r Region tree construction]
J

v

BSP tree construction

[v
[Surface-patch subdivision
[
[

: J
Patch-element subdivision]

v
Iteration }G——
v
[Adaptive subdivision }
v

[Scencrendering |

v

Figure 2: Radiosity with scene pre-processing

287

5 Radiosity and regional BSP trees

5.1 Assumptions

A scene is divided to subspaces that can be separated by planes into non-overlapping
regions. The model of every region contains planar convex polygons (faces) and topolog-
ical information (neighbourhood faces). Polygon attributes define the diffusion reflection
coefficients for primaries R, G, B and initial non-shooted energy per surface unit.

5.2 Construction of regional tree

The algorithm finds the planes that separate regions. Only one region is left in every
subspace. This way algorithm decides the regional visibility (Figure 3). With axis aligned
planes, regions are restricted to parallelepipeds in 3D space.

(v) | m
R
(R0 | [e]

- R2 R3

-]

- e il e e s ame e

Figure 3: Regions, separating planes and regional tree (2D)

The search for separating planes is done as follows:

Using the bounding volume information, algorithm sorts regions independently for
every axis (z,y, z) and creates 3 lists containing bounding volume projections to axises -
limit lists. In the next step the algorithm searches lists for a place where the separating
plane could be placed (a test checks the number of objects being projected to an axis).
If such a place is found, this list is split and the new regional tree node will store the
information about the separating plane. Regions stored in the tree fall in two categories
- regions lying in front of the separating plane and regions lying at the back of the
separating plane. Algorithm aplies the procedure recursively to front and to back regions.
Process is terminated when the region limit-list is empty or contains only one region.
Inner nodes of the resulting tree contain separating planes and its leaves store pointers
to individual regions (regional BSP trees).

5.3 Construction of regional BSP tree

BSP tree is built by a well-known algorithm [3]. The algorithm selects a patch defining
a separation plane and builds recursively lists with patches belonging to the front half
space and to the back half space. For a root-patch selection we have used no heuristic;
we rely on a well-balanced BSP model supplied by a pre-radiosity modelling process.
The heuristic methods are discussed in [4].

An input face is split according to our BSP sorting. This is done before the radiosity
refinement process starts its own adaptive subdivision. The parts of a splitted face have

288

—_—

common attributes (reflection, normal vector etc.). We store these attribute values out
of BSP tree in the node called Properties (Figure 1).

5.4 Faces splitting to patches

The quality of a radiosity solution depends heavily on the subdivision process. We have
used the results published in [1]. Triangulation is done as follows:

We transform a face (rotation + translation) to achieve more convenient position for
further processing. The face is then split by a horizontal strip of a chosen width. The
strip is triangulated in L direction. Two triangles are added to complete the strip at
both ends and to ensure the convexity of a remaining shape. We repeat the procedure
to triangulate the rest of the face (Figure 4).

H H

[3 A

» L » L
common position alignment to axis inital strip

H H

4 A

> L —» L
triangulated strip border triangles

Figure 4: Face splitting to triangular patches

We receive the set of triangle patches with attributes of the original surface. Patches
are chained and stored in one BSP node (Figure 1 - patch nodes).

5.5 Patch splitting to elements

The process that splits surfaces to patches produces patch-element tupples. To evaluate
the radiosity gradients more precisely we need a mesh consisting of small area elements.
The shadow borders can be estimated and used for the initial subdivision. Several
iterations for light sources would provide some information about shadows and this
enables to apply a more sophisticated patch subdivision.

Again, we have not used any of these approaches. We only specify an element /patch
ratio assessing the density of the element-mesh compared to the patch-mesh. We keep
data structures as simple as possible to lower the processing overhead.

5.6 Iteration

The iteration step of our algorithm follows the classical refinement step of the shooting
radiosity. The tree traversal process gives the element ordering. The patch with the

289

—_—

most energy left is selected and a temporary co-ordinate system for a hemicube is set.

The algorithm projects all patches on the hemicube in a given order. The re-
gional tree and BSP trees are traversed from back to front giving correctly depth-sorted
patches/elements for a painter algorithm. Therefore we need not interpolate and store
the depth.

In one pass for element edges we get the element projection on every hemicube wall.
Projected borders are then scan-line filled with the element identifier. We speed the
process with some tricks based on coherence information.

Another test tries to exclude the whole region from further processing. We use
the bounding volume test. If the region passes the test, then BSP tree is traversed
and more detailed tests are applied on the patch/element level. When all elements
are projected, algorithm calculates from the hemicube-wall information all form factors
by simple addition using pre computed delta form factors. BSP traversal process is
described in Appendix A.

In our implementation we pre compute delta form factors for one quarter of the top
plane and for half of the side plane of the hemicube. In this way we get form-factors for
every receiving element with respect to selected shooting element.

In the next step tree structures are traversed once again and radiosity increments
are placed on receiving elements. Compared with the z-buffer approach, we need not
initialise hemicube walls at the beginning of every iteration.

5.7 Adaptive subdivision

The goal of an adaptive subdivision is to compute radiosity more precisely in all areas
with notable gradient. This is not the only possible solution but it is used here because
of its simplicity.

The first task of the adaptive subdivision is to identify places (elements) that should
be divided. Looking for such places, one has to apply some metric evaluating the dif-
ference between real and computed values. We have used a simple heuristic based on
radiosity difference of neighbouring elements. When the difference exceeds the thresh-
old value, subdivision is done. The lower limit is controlled by the smallest acceptable
edge length. The disadvantage of this simple heuristic is that it produces unnecessary
subdivision in places with great but constant gradient.

An element is divided to 4 new elements. If neighbouring elements are not divided,
then common edges contain T-vertices. Their existence may result in visible radiosity
discontinuities. It is also important to produce the smooth transition of the mesh density.
We have adopted the method of an element anchoring [1]. When we find T-vertices, we
anchor the neighbouring elements (a special edge is added). Figure 5 shows typical
configurations during the anchoring and subdivision process.

After the subdivision, one has to establish the initial radiosity for new elements, e.g.
by interpolation, and to process these elements by the standard iteration procedure.

6 Scene rendering

Our implementation uses a linear interpolation for a smooth colour rendering. An el-
ement radiosity is transformed to vertices by simple averaging calculation. Values for
patch edges can be extrapolated from inner-vertex values.

290 -

T

Before anchoring ; ‘ Before subdivision

/\ /\A

Anchored elements e : ' Subdivided elements

Figure 5: Element anchoring and subdivision

Vertices colours of triangular elements are linearly interpolated and every triangle is
Gouraud shaded.

The radiosity can be smoothed by averaging carefully selected neighbour values.
Averaging can suppress undesirable artefacts but it can also hide correct, important
shadow borders.

7 Results

The modified method has been implemented in C on Silicon Graphics. Graphical
outputs have been programmed with IRIS GL. GUI has been implemented with Forms
library (public domain). Implementation has been tested on SG Indy R4000. We have
used several simple testing scenes. Tests have been focused mainly on special cases, such
as energy distribution between very close patches. We have also tested an adaptive sub-
division, its depth and hemicube resolution, and influence of these factors on a rendering
quality.

Due to the hemicube, our method suffers from all related disadvantages. The modified
method also tends to alias in cases, where patches are projected on a hemicube with the
extreme distortion. Using only painter’s algorithm without the depth information, these
situations have to be processed with an extra care, e.g. using higher resolution near the
centre of the top hemicube wall.

The adaptive subdivision enables to compute shadow borders more precisely. Too
fine resolution also leads to aliasing because small and close-by elements project on the
same part of a hemicube wall. Aliasing can be also resolved with a higher hemicube
resolution.

The choice of resolution is very important for the rendering quality. The radiosity
computation based on regional BSP trees is feasible even with higher hemicube resolu-
tion. Till now, we have not had an opportunity to process some well known complex
scene and to compare the processing time with other methods. Figure 6 shows a simple
test scene with two light sources. The subdivided scene contains 5930 elements.

Results of the few experiments are illustrated in Table.1.

The test scenes have been prepared by hand and our future work will be focused
on the design of a better user-friendly input model. We plan to experiment with model
converters; they will supply additional BSP sorting information. An ideal solution would
be to implement a compact 3D scene modeller that would dynamically build and maintain

291

light 2

lightl — : S

-4
= ra
=

v-s

Figure 6: Simple test scene - 2 light sources

[hemicube resolution | # elements | time/100 iterations [s] |

150 x 150 5930 31.23
300 x 300 52.05
600 x 600 121.34

Table 1: Results for simple scene - SGI R4000

models with additional sorting information and pass them to the radiosity render. The
tree of regional BSP trees needs to be thoroughly investigated and evaluated, both
theoretically and practically.

References

[1] Baum, D.R., Mann, S., Smith, K.P., and Winget, J.M. Making Radiosity Usable:
Automatic Preprocessing and Meshing Techniques for the Generation of Accurate
Radiosity Solutions Computer Graphics, Vol. 25 No. 4, July 1991.

[2] Cohen, M.F., and Greenberg, D.P. The hemi-cube: A Radiosity Solution for Com-
plez Environments Computer Graphics, Vol. 19 No. 3, July 1985.

[3] Foley, J.D., van Dam, A., Feiner, S.K., and Hughes, J.F. Computer Graphics, Prin-
ciples and Practise, 2nd Edition Addison-Wesley, Reading, Massachusetts, 1990.

[4] Thibault, W.C., and Naylor, B.F. Set Operations on Polyhedra Using Binary Space
Partitioning Trees Computer G;aphics, Vol. 21 No. 4, July 1987.

292

A Pseudocode

Assumptions: The patch acting as actual energy source was selected. Painter’s algorithm
starts in the patch centre and walks through the sorted scene to obtain patches in correct

order.

void GoSTree (pointer_to_regional_tree Node)

{
if (first walk through left subtree, then right subtree)

{

if (next left node is inner node) GoSTree (Node->left subtree);
else /* we are in leaf - project region */
GoRegion (Node->region);
if (next right node is inner node) GoSTree (Node->right subtree);
else GoRegion (Node->region);

¥

else /* same in reverse order */
{ if (next right node is inner node) GoSTree (Node->right subtree);

else GoRegion (Node->region);
if (next left node is inner node) GoSTree (Node->left subtree);
else GoRegion (Node->region);
}
}

void GoRegion (pointer_to_region Region)
{
if (region is partialy visible from given point)
GoRegionTree (Region->node);

¥

void GoRegionTree (pointer_to_BSP_tree BSP_Node)
{ /* traversing BSP tree */

if (node is empty) exit;

if (patch is front face as seen from given point)
{
GoRegionTree (BSP_Node->back);
Action for all patches/elements
belonging to this node of BSP tree.
GoRegionTree (BSP_Node->front);
¥
else {
RGoRegionTree (BSP_Node->front);
RGoRegionTree (BSP_Node->back);
X
¥
¥

+293

