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ABSTRACT: Research and development of fractal techniques for modelling and control over
intricate artificial and natural phenomena fall in the scope of this paper. The principal objective
is for close to real-time display of fractal structures. Iterated Function Systems rendering algo-
rithms can be easily adapted to parallel processing. Modification of the IFS representation
allows great speedup of the rendering process. Since the method relies on classical geometrical
transformations, intricate structures such as clouds, plants, etc. can be plugged in already exis-
ting graphical editors and virtual environments. Possible applications of the method include:
travel & flight simulation, architectural design (CAD systems), art and home entertainment.
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1. INTRODUCTION

Computer graphics moves toward the highly detailed images, giving us real time impressions
similar to natural scenes [1, 3, 11, 14, 15]. There are many attempts to reach the ultimate
graphics presentation. Generally, we expect images that represent highly intricate structures,
offer high quality in different viewing scales, are efficiently rendered, have limited memory
consumption and can be interactively manipulated. The chaos and the fractal theories seem to
give us a tool fulfilling these requirements. However, typical fractals are either very time consu-
ming or very beautiful but far from natural objects [1, S, 6, 7, 12, 13]. The IFS theory gives the
best control over the rendered fractals [1, 2, 4, 8, 9]. The original Barnsley technique encodes
fractal structure as a set of maps - geometrical transformations. The gray scale is originally des-
cribed by the associated probabilities. In this paper I present the Modified Iterated Function
Systems where the gray scale transform is encoded together with the shape. There are several
advantages of such a modification. Multicolour objects can be described by one set of IFS
functions. Colours are determined by code not by probabilities, this drastically reduces the
rendering process. A single deterministic framework based on the presented technique can
reach a seemingly unlimited range of objects. The present approach contrasts with the usage of
random recursive algorithms (used to produce terrain models) and stochastic procedures used
to produce clouds and textures [11, 12], in all such cases the final product depends upon the
precise random number sequence called during computation. The Modified IFS have the
feature that small changes in the parameter values in the code yield only small changes in the
resulting image. This is important for system independence, interactive usage and animation.
Furthermore, images vary consistently with respect to changes of viewing window and
resolution. Images can be efficiently generated to a very high resolution, or equivalently
viewed within a small window, without reducing to blocks of solid colour.
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2. FORMALISM EMPLOYED

A two-dimensional IFS consists of a set of N affine contractive transformations, N an integer,
denoted by {w1, w2, ..., wN} where w: RZ — R2 is defined by
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where q, b, ¢, d, e, f are real constants. ’

Each w(x, y) is taking R2 into R2 together with a set of probabilities {p1, p2, ..., PN} each
pi>0and

N
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Let si denote Lipshitz constant for wi for eachi=1, 2, ..., N. Then we say that IFS code is an
IFS {wi, pi,i=1, 2, ..., N} if obeys the average contractivity condition:

s1Pl x 52P2 .. xsNPN < 1.0 3)

By theorem of Barnsley and Elton [1, 2, 4, 8, 9] there is a unique associated geometrical
object, a subset of R2 called the attractor of the IFS (Fig.1). There is also a unique associated
measure. This measure can be thought of as a distribution of infinitely fine sand of total mass
one, lying upon the attractor. The underlying model consists of the attractor together with the
measure. The structure of an attractor is controlled by the affine maps {wl, w2, ..., wN} in the
IFS code. The measure is governed by the probabilities {pl, p2, ..., pN} and in classical
representation is displayed as a grayscale transorm. Algonithms given by Barnsley [1, 2, 3]
compute images with the usage of random iteration. In effect of a random walk in R2 the
attractor is generated from the IFS code. The measure for the pixels is obtained from the
relative frequencies with which the different pixels are visited. The result is a rendered image.

A simple example in two dimensions would be the effect of affine transformations w1, w2 (Fig.
1). w2 is a scaled down, translated copy of a rectangle (0, 0/ 1, 1), while w1 is rotated, skewed
and translated one.




The Collage Theorem [1, 2, 3, 4] provides means for calculating IFS transformations {w1, w2,
..., wN}. Generally, the better the target image is covered by its smaller copies, the closer
visually is the original and the rendered set. The overlapping due to number of iterations is
preferred to be avoided.

3. MODIFICATION OF THE IFSs
Let modify the w transform (1):

X all al2 al3 X bl
wly|=|a2l a22 a23|x|y|+|b2 @)
c a3l a32 a33 c b3

Now, we can observe that the colour does not depend on the set of probabilities (2).
Associated probabilities are chosen according to the volume of each code wi, with total sum
1.0. Larger areas demand larger probabilities [1, 2, 3, 4, 8].

The IFS can be modified in such a way that upper dimensions (for instance representing
brightness (gray scale transform), hue and saturation) are added to an IFS code [8]. For the
purposes of this paper we restrict our attention to a three dimensional IFS, where the
brightness may be treated as the third dimension (6) In that case, the brightness is evaluated by
the following function :

w(c)=a31 xx+a32xy+a33 xc+b3 5)

Considering a modified IFS code (4) we have a number of operators determining the shape
and the colour of an MIFS attractor: all, al2, a21, a22 determine the rotation, skew and
scaling; b1, b2 determine the translation; a33 defines self-similarity of the gray scale transform;
b3 is the basic value for the module brightness; a31, a32 determine local shading (in the
horizontal and vertical direction, respectively); al3 - when different from 0.0 show influence
of the brightness value on the horizontal wi geometry; a23 - as al3 but in the vertical direction.
Parameters a31, a32, a33, al3, a23, b3 with assigned value 0.0 have no influence on the
attractor. Above listed operators are determined for the simplest model of a MIFS. If we
consider more complex MIFS structures (e.g., w(x, y, H, S, B) or w(x, y, R, G, B) ) it will result
in a number of new operators available, e.g., operators determining influence of hue on the
saturation process.

4. PROPERTIES

The model presented in the preceding section has several interesting properties:

- a seemingly unlimited range of objects can be generated;

- thanks to the Collage Theorem we can model graphically most of natural phenomena,
- images can be generated to a very high resolution;

- objects are fully scaleable, transformable and their shape is under control,

- small changes in the values in the code result in small changes in rendered images;
- the model provides deterministic colour control;

- rendering is fast and depends mostly on the target image resolution;

- rendering time is almost invariable considering binary, gray scale and full colour;
- higher dimensions, while applied to MIFS, enable better control of the object;

- the method can be relatively easy developed to 3 dimensional objects;

- parallel and matrix processing will increase efficiency of the rendering process;
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Additional important feature is the high compression rate (considering object data/image data),

for instance: if we have a MIFS object described by 4 codes each {x, y, z, h, s, b, t}; each

parameter is encoded in 4 bytes. Then it needs 4x7x8x4=896, say 1kB to store. Then,

A.  for the Hi-res SVGA screen has 1024 x 1024 pixels, each RGB (3 bytes). It needs 3SMB
of memory to store. Compression rate: 3000 to 1.

B. for the A4 page with 200 DPI resolution needs approximately 36MB of memory storage.
Compression rate: 36000 to 1

C.  Say, that the average MIFS object consists of 20 codes [4, 9], then it needs
approximately SkB. Typical CD-ROM usually offers 650 MB of memory. Hence, we can
save up to 650 000 000 / 5 000 = 130 000 objects on one optical disc.

4., THE RENDERING ALGORITHM

The algorithm presented in the paper (Appendix A) is a developed version of the ideas given
by Barnsley [1, 2, 3]. It starts from a MIFS code {wi, pi,i=1,2, ..., N} for wi descibed as (4)
together with a specified viewing window ¥ and resolution L - horizontal and M - vertical. In
effect of a random walk in R3 the gray scale attractor is generated from the MIFS code. An
initial point (x0, y0, c0) needs to be fixed. We choose its parameters where we suppose the
point (x0, y0, c0) belongs to the image. A total number of iterations num large compared to
L x M also needs to be specified.

This process can be easily applied to parallel processing architectures. It has been shown [10]
that classical IFS rendering algorithm can be mapped to the hypercube architecture. Also, it
has been observed that the larger the dimension of the cube, the better performance is achieved
(almost linear speedup compared with the number of nodes/processors). In the approach
presented in [10] the Host was devoted to the setup and to collection of statistic over the pixels
(the gray scale evaluation) received from different nodes. In such a system the rate of 450.000
pixels in 150 ms for 16 nodes (DEC ALPHA 3000/500 workstation with iPSC/2 Hypercube
simulator) has been achieved [10]. The Modified IFS can decrease the process of rendering
several orders of magnitude. Thus, when applied to parallel architecture, real-time imaging will
be available.

5. RESULTS

The examples of images obtained with the MIFS technique (Appendix B) have been rendered
by the algorithm (Appendix A). All the images have been rendered with a C++ compiler on an
IBM 386DX, 40MHz, SVGA computer. Considering that, the computation time ranges usually
from several seconds, to 5 minutes (800 x 600 - screen resolution). The images should be
treated as basic samples, showing possibilities of the method.

6. CONCLUDING REMARKS

The major advantage of the ideas mentioned in the paper is that the MIFS objects can be
easily designed and manipulated. Achievements in rendering techniques, especially parallel
processing will bring the method to the real-time displaying and interaction. The method,
however, needs further investigations. Full colour three {x, y, z, hue, saturation, brightness,
transparency} dimensional representation will be considered in the nearest future. This should
result in a stand alone fractal design environment [9] or support the existing CAD and Virtual
Reality systems [14, 15], extending their modelling capabilities with natural phenomena, e.g.,
plants, clouds, fur, etc..
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APPENDIX A

Algorithm RenderMIFS(x, y, P, num, xmin, xmax,
ymin, ymax, cmin, cmax, L, M, Maxcolour, seed)

Arguments:

X, y, c-starting point of iteration

P[ ]-array of probabilities summing to 1

num-total number of iterations

xmin, xmax- low and high x-value of image window
ymin, ymax- low and high y-value of image window
cmin, cmax- low and high colour value

Maxcolour- number of colours to be used

L, M- image resolution in x- and y- direction

seed- seed value for random number generator

Variables:
colour, k, I, m, n - integer
sum - real number

Globals:
Arand- rand( ) returns values between 0 and Arand

Functions:

srand( )- initialization of random numbers

rand( )- random number generator

int(x)- integer part of argument x

w(X, ¥, ¢, K)- returns image of (x, y, ¢) under wk
putpixel(x, y, c)- puts a pixel of colour ¢ in (x, y)
getpixel(x,y)- returns colour of the pixel (x, y)

BEGIN
srand (seed);

FOR n:=1 TO num DO
r:=rand( )/Arand,

WHILE (sum<r) DO /* choose a map wk */
k:=k+1;
sum:=sum+P[k];

END WHILE

%, ¥, ©):=w(x, Y, , k); /*apply the map wk*/

IF(x>xminANDx<xmax AND y>ymin
AND y<ymax AND c>cmin AND c<cmax)
* check visibility of the rendered point */

THEN BEGIN /* previewcalculated pixel */

I:= int(L.x(x-xmin)/(xmax-xmin));
m:= int(Mx(y-ymin)/(ymax-ymin));
colour:= int(Maxcolourx(c-cmin)/
{cmax-cmin));
IF (getpixel(l, m)<colour)
* check pixel intensity */
THEN putpixel (1, m, colour)
END IF
END
END FOR
END



APPENDIX B

For the MIFS representation (4), the images presented below have sepecified values:
-1.0<ai, 6i<1.0; All all=a21=0.5; al2=al3=a22=a23=0.0

bl b2
wl 0.0 0.5
w2 0.5 0.5
w3 0.0 0.0
w4 0.5 0.0

Position of the maps (O) and associated attractors (A, B) are presented below together
with the parameters:

w1 w2

w3 w4

)

A: All a31=a32=a33=0.0;forwl, wd b3 =02; forw2, w3 53 =0.0;
B: All a31=4a32=0.0,a33=0.9; forwl, w4 b3 =0.1; forw2, w3 b3 =-0.05,

Images obtained for different values of a grayscale transorm plus self similarity are presented
below:




