Full-Frame Merging for Sort-Last
Polygon Rendering on a Multicomputer

J. M. Pereiral2, C.A. Wiithrich!3 and M. R. Gomes!2

1 INESC, Grupo Computagio Grifica, R. Alves Redol 7, 1000 Lisboa, Portugal

2 IST, Instituto Superior Técnico, R. Rovisco Pais, 1000 Lisboa, Portugal

3 Dept. of Informatics and Mathematics, School of Architecture and Civil Engineering
(HAB), Coudraystr. 13, 2-99423 Weimar, Germany.

Abstract

We propose a refinement of the Sort-Last algorithms' classification based on the scheduling of the
rendering and merging steps. ‘

Two algorithms whose rendering and merging steps run consecutively are described. Two different
approaches were taken to implement the merging step: the Distributed Framebuffer approach and the
Pipeline Composition approach. The load balancing problem is also discussed: a dynamic request-
based mechanism is implemented at the end of the rendering phase.

Another solution, the ScanlineFlow Rasterization algorithm, is described. Its main characteristic
resides on the fact that both steps, rendering and merging, run concurrently. This solution has
provided good results and is a viable alternative to implement sort-last algorithms on a multicomputer.

The three algorithms made use of the full-frame merging technique because merging a full frame
from each node is very regular and easy to implement.

Our developing platform consisted of a Parsytec MultiCluster machine with sixteen processors
running the Helios Operating System and using the CDL (Component Distribution Language) parallel

programming language.
1. Introduction

As is well-known [Molnar90], there are two main phases in the rendering process that account for
most of the computation time: the geometric transformation phase and the rasterization phase. We
ignore in the rendering process the problem of traversing the object database prior to rendering.
Recently, the task of classifying parallel graphics algorithms has been improved by the proposal of a
new conceptual model [Molnar94] for multiprocessor architectures that looks at parallel rendering as a
sorting problem. The basis for this taxonomy derives from the fact that the rendering can be viewed as
a problem of sorting primitives to the screen, as noted by [Sutherland74]. For fully parallel renderers
(systems where both geometry processing and rasterization are performed in parallel), this sorting
involves a redistribution of d:ita between procéssors, because responsibility for primitives and pixels
are distributed. The sort can, in general, occur anywhere in the rendering pipeline: during geometry

217

—_—

processing (sort-first), between geometry processing and rasterization (sort-middle), or during
rasterization (sort-last). Sort-first algorithms redistribute "raw" primitives (before their screen-space
parameters are known), sort-middle redistribute screen-space primitives and sort-last redistributes
pixels (pixel fragments or samples). Sort-last (SL) can be done in two ways. One approach, called SL-
sparse, minimizes communication by distributing only those pixels actually produced by scan-
conversion. The second approach, called SL-full, stores and transfers a full image from each renderer.

This paper proposes a more subtle classification for sort-last algorithms based on the fact that
compositing (or pixel merging) can be performed during the scan-conversion or after the scan-
conversion. Three SL-full algorithms are described. The new classification allows to highlight the
differences between them and so, proceed easily to comparison and analysis.

We have implemented two approaches where the merging operation occurs after pixel rendering. In
the first approach, Distributed Framebuffer, the partially rendered frame buffers are merged into
distributed image space frame buffers which are finally copied into the real frame buffer of the
machine. The second one, Pipeline Composition, taking advantage of the pipeline interconnection
network, we used an algorithm based on the image-compositing scheme of the PixelFlow machine
[Molnar 92]. Upon completion, each node must execute three distinct tasks: receiving the frame buffer
from the previous node, z-buffering each of its own pixels with each of the pixels it receives from the
previous node and streaming the resulting pixels to the next node. Our implementation of this
algorithm has a unique feature in the sense that these three operations are multithreaded, increasing
this way the system's throughput.

A solution where pixel merging operation occurs during the scan-conversion was also
implemented: the ScanlineFlow Rasterization algorithm. By taking, again, advantage of a pipeline
interconnection network and since this algorithm renders an image one scanline at a time, each node
rasterizes multiple polygons active on a given scanline after synchronization with the previous node in
order to read the rasterization data concerning that scanline. The execution is pipelined, in the sense
that while a node is rasterizing a scanline, it is also receiving the next scanline from the previous node
and it is sending the previous scanline (already rasterized) to the next node. Like Pipeline
Composition algorithm, these three operations are multithreaded.

The load balancing problem is also discussed. In fact, it has been claimed in the literature that
object-parallel processing in sort-last should "naturally load balance" [Cox92] or that "load balancing
is automatic" [Molnar91]: in the straightforward implementation of SL approach the primitives are
shuffled to the processors in a round-robin fashion. No corroboration of the claim has been offered,
either analytically or experimentally, so far. Thus, when dynamic load imbalances may not be
avoided, a dynamic request-based scheme was employed at the Distributed Frame buffer and the
Pipeline Composition algorithms.

We designed our sort-last rendering algorithms to map onto a class of general purpose parallel
architectures, specifically, MIMD distributed memory (message-passing) systems keeping in mind the
following idea: new low-cost parallel machines have recently appeared or are under development

218

promising a much improved network communication bandwidth and speeds, which means that there
is room for a new analysis taking into account the new communication speeds and the actual
communication requirements of this class of algorithms that fortunately can be estimated with some

accuracy.

2. Sort-Last Algorithms Classification

First we must define precisely some terms. To do that we will consider that the rasterization step of
the graphics pipeline has been broken into two stages called pixel rendering (computing pixel values)
and pixel merging (determining which pixels are visible). We classify an algorithm as sort-last since it
redistributes pixels (or pixel fragments, or samples) over the interconnection network. This
redistribution can occur after each node has finished to generate pixels for its subset of the graphics
database, which means that merging will take place after the pixel rendering, or it can occur as each
node generates pixels, which means that merging takes place during the pixel rendering.

As said before, the convention of [Molnar94] proposes two types of sort-last algorithms, SL-full
and SL-sparse, which make use of the concept of active and inactive pixels at each processor. We say
that a pixel location is active if at least one pixel has been rendered to that position, and that it is
inactive otherwise. SL-sparse algorithms merge only active pixels. SL-full algorithms merge a full
frame (all active and inactive pixel locations) from every rendering processor. Full-frame merging
takes advantage of the fact that merging a full-frame from each processor is very regular and, thus, can
be implemented easily.

We propose a refinement of this classification based on the scheduling of the rasterization stages.
In fact, another variable is the specification of when the pixel rendering/merging stages are to run: are
they run concurrently or consecutively? The former case is designated by Sort-Last Merging-First
(SLMF) where computation and communication are overlapped. The later one is called Sort-Last
Merging-Last (SLML). Again, these two sorts of algorithms make use of either the sparse merging or
the full-frame merging techniques.

Let's see how known SL systems are placed in the context described above.

In the most straightforward solution to SL rendering on a multiprocessor, each node is assigned
responsibility for merging pixels from some subset of the screen resolution. There are two obvious
ways of implementing the pixel merging. In the first one, as each node generates pixels for its subset
of the graphics database, it sends each pixel to the destination node that is responsible for merging for
that pixel location. This is typically a SLMF-sparse algorithm and was explored in commercial
systems like [Evans92, Fuji93, Kubota93] and in software systems [Cox95]. In the other way, each
processor renders its subset performing local z-buffer (that is, with respect to the other pixels it
generates) and producing pixels into a local frame buffer. Then, the active pixels from all nodes' local
frame buffers are merged into the global frame buffer. We are facing a SLML-sparse algorithm. This
solution implies the need of local frame- and z-buffers between the processors and pixel merging

219

network. It has been shown experimentally that, despite under utilization of the local z-buffering
hardware, traffic savings of about 20%, when compared with the above method, should be expected
[Cox95]. An alternative SLML-sparse algorithm, when network broadcast is available, is the
Distributed-Snooping merge algorithm [Cox93].

In the PixelFlow algorithm [Molnar91], processors are connected by a pipeline network. Upon
rendering completion each node streams its full frame to the next node. In the end, the last node
contains a correctly z-buffered image. This is a SLML-full algorithm, which is currently under
construction at the University of North Carolina, Chapel Hill [Molnar92].

As far as we know, no SLMF-full scheme has been proposed so far. We will present in this paper
the ScanlineFlow Rasterization algorithm that should be included in the SLMF-full category.

3. The MultiCluster System Overview

MultiCluster2 from Parsytec is a MIMD message-passing system (also known as a multicomputer)
with sixteen Transputers T800, each processor with 4 Mbytes of private memory, and a reconfigurable
network. It runs the Helios Operating System. With a user interface similar to that provided by Unix,
Helios is designed to work on transputers that have no memory management hardware. Helios
provides a facility called multi-tasking which enables multiple tasks to be run on one or more
Processors.

The Component Distribution Language, or CDL, enables a programmer to carry out parallel
programming under Helios. The purpose of CDL is to provide a high-level approach to parallel
programming, where the programmer defines the program components and their relative
interconnections (the application topology) independently of the size and topology of the Transputer
network. It is, then, Helios who is responsible for mapping the task force onto the available physical

resources.

4. Algorithms Description

The SL algorithms explore object-space parallelism: graphics primitives are assigned to processors
disregarding their screen location, and each processor completely renders the primitives it is assigned.
The sort from object coordinates to screen coordinates (i.e. the pixel merging) takes place 1) after
individual images (of part of the dataset) have been rendered (SLML-full) or 2) during the rendering
(SLMF-full).

Since we are using a message-passing commercial architecture the basic software model for the
implementation of the algorithms consists of two major components: the central controller and the
nodes. We have implemented symmetrical algbrithms in which each node serves both as a renderer
and as a compositor.

220

The central controller reads in the polygonal object descriptions from disk files and then distributes
them to the nodes by using the scattering method [Molnar 91]. If there are P primitives and N nodes
we simply assign P/N primitives to each node. This assignment is done by shuffling primitives in a
round-robin fashion, that is assigning the first primitive to the first node, the second to the second
node, and so forth. The primitives in most databases contain some amount of geometric coherence.
That is, primitives near each other in the database file, generally lie near to each other in the image as
well. This means that scattering distributes coherence among the nodes; in other words, scattering
distributes nearby primitives over each of the nodes. So, the scattering method tries to minimize two
sources of static load imbalances: unequal numbers of primitives on the nodes and unequal

rasterization times due to the size and shape of the primitives.

4.1 - SLML-full Methods

Each node applies to the incoming polygons the whole graphics visualization pipeline.

We implemented a polygon scan-conversion algorithm under the assumption that all polygons of
the database are triangles. The scan-conversion algorithm incorporates the Z-Buffer procedure for
hidden-surface removal along with a smooth-interpolation shading scheme.

It is trivial to partition the database into parts having an equal number of primitives by using
scattering as mentioned above. However, these parts can be of widely differing sizes; in this case,
scattering may not be good enough to statically load balance the processing times on each node.
Hence, some nodes may complete processing sooner than others. In this case, a dynamic balancing
load scheme is needed to transfer work from nodes that are still busy to idle nodes.

Our strategy works as follows: as soon as a node finish computing its initial database, it sends a
request for a work packet (a set of polygons) from a node still working on its own database. This
request moves along a ring. If the neighbour has available work, it splits the queue of polygons in two
parts and responds with a packet of polygons; if not, the request is routed to next node. If the request
returns without satisfaction, the node concludes that all the other local databases have been computed.
This is the local termination detection implemented and is sufficient for our application. No load
information n , xchan The code that implements the dynamic load balancing scheme
runs concurrently with the main task (rasterization procedure).

To ensure a balanced load, two parameters must be determined in order to satisfy two rules: a
reasonable work splitting mechanism and the cost of communicating a work packet must be
significantly smaller than the ultimate time cost of executing the work packet in place. The two
parameters are related and concern to the size of the work packet. The first parameter specifies the
local database splitting factor and determines the number of polygons a work packet must contain.
The second parameter fixes the minimum number of polygons of a work packet. The determination of
these parameters is heuristic and difficult to achieve, since we chose not to estimate computation
times during rendering, but to use a simpler decision criterion baséd on the number of polygons to be
processed. [Pereira95] gives us some hints to assign reasonable values for these parameters.

221

When all nodes have detected their local termination (each node has sent a request packet that
traveled along the ring without satisfaction) pixel rendering has finished and the local frame buffers
are then ready to be merged. Two approaches were taken to implement this phase: Distributed Frame
buffer and Pipeline Composition [Pereira95].

In the Distributed Frame buffer (DF) approach each node is made responsible for a specific area of
the screen (image space partition); when the merging phase starts it asks to each other of (N-1) nodes
for the portion of the frame buffer concerning that screen region and performs the depth-comparison
on it. This procedure is performed simultaneously by all nodes, involving this way an all-to-all
communication scheme. However, it is very difficult to program in CDL this form of connectivity
between all nodes because it does not scale very well. In fact, as the number of nodes grows, the
number of I/0 streams to be allocated would increase considerably. To avoid this situation, we should
implement a topology where the number of I/O channels was fixed whatever the number of nodes of
the system. A 2D torus topology was chosen based on the fact that such a topology is easily scalable,
since each node has always the same number of links and recent studies have been conducted on their
communication efficiency [Badouel92]. As routing algorithm we implemented the so-called e-cube
algorithm [Dally87].

The Pipeline Composition (PC) approach was based on the PixelFlow algorithm [Molnar91]. In
the straightforward implementation of this approach, each node receives the frame buffer of the
previous neighbour, Z-buffers its contents with its own frame buffer and then sends the resulting
frame buffer to next node. Immediately, we conclude that this approach is not efficient since only one
node is activated. In order to exploit as much as possible the available parallelism of our platform,
instead of considering a frame buffer as whole task, we divided it into small chunks, scan-lines, and
" pipelined these. With this solution, all nodes are performing merging simultaneously. Besides that,
taking advantage from the fact that communication and computation can be overlapped on a
Transputer, we have been able to overlap, in each node, the three operations needed to perform the
merging: reading, Z-buffering and sending. Each node has an input double-buffer into which it holds
information of two scan-lines: while one buffer is being accessed by the Z-buffer thread to perform
the depth-comparisons with the local scan-line, the other buffer is available to the read thread for
receiving the next scan-line from the previous node. After finishing the z-buffering operation, the
node can start immediately with the next scan-line by swapping the buffers. Meanwhile, the send
thread is accessing the frame buffer to transmit the scan-line that has been recently processed and the
read thread is reading the next scan-line. The control and management of the input double-buffer and
the frame buffer are done using of semaphores. The first node only needs to execute the send thread,
and the last node only executes the reading and Z-buffer threads.

The Distributed Frame buffer scheme requires that, after merging, each node sends its partition of
the screen to the central controller in order to build the final frame buffer. Concerning the Pipeline
Composition approach, we don't need to perform any frame buffer communication to the central

222

controller because the frame buffer of the last node of the composition network contains, after

merging, the whole picture information.

4.2 - SLMF-full Method

We will describe now the ScanlineFlow Rasterization algorithm which assumes a pipeline
interconnection network for its execution. The implementation of this strategy was based on the
Scanline z-Buffer sequential algorithm [Rogers85].

In comparison with z-buffer algorithm, where the state information necessary for rendering a pixel
is stored for every pixel on the screen, a scanline rendering algorithm presorts the object database in
screen space, and renders each scanline individually - only one scanline of pixel state information is
kept. This is a two pass algorithm. In the first pass, the polygons are transformed, shaded and bucket
sorted by the number of the first scanline on which they first become active. Then, in the second pass,
the bucket sorted list is traversed in screen-y order, maintaining an active polygons list which are,
then rasterized.

After the polygon distribution by the scattering method, all processors perform the first pass of the
algorithm. The rasterization for each scanline starts after the polygons have been sorted. Each node
rasterizes multiple polygons active on a given scanline after synchronization with the previous node in

order to receive the rasterization data concerning that scanline (active and inactive pixels). The
execution of the algorithm through the system is pipelined: while a node is processing scanline y, the
previous node is processing scanline y+1 and the next node is processing scanline y-1. The last node
generates scanlines with the correct information. Communication and computation are overlapped in
the sense that while a node is rasterizing a scanline, it is also reading the next scanline from the
previous node and forwarding the previous scanline to the next node. Each processor has a triple-
buffer into which it holds information of three scanlines and its control and management is done by
using semaphores. This scheme of information flow is very similar to the PC algorithm. The strongest
point of this solution resides on the fact that depth-comparison is performed once for each scanline but
this comes at the expense of synchronization that affects the throughput and the latency of the
algorithm,

5. Performance Results

Since the rasterization phase of the graphics pipeline is the most time consuming section, our
attention had focused on it. The performance tests don't consider the time spent on geometric
transformations. We are finishing a version where a complete renderer is implemented in each node.

We assume that we are given ASCII files containing polygonal representations of 3D objects in
screen space coordinates with backfaces culling performed. Another simplification made by us impose
that the objects are described as collections of triangular facets. The input scenes are rendered with a
resolution of 512 x 512, producing graphics images in Portable Pixel Map (ppm) format.

223

The execution times of sequential versions of the z-buffer triangle rendering and scanline z-buffer
rendering algorithms at one processor are shown. Several test scenes, illustrated in Appendix A, were
used:

Images Number of triangles Uniprocessor Execution Time (secs)
(screen coordinates) z-buffer scanline z-buffer

Teapot 11666 12.68 18.62

Gears 16207 31.8 65.62

Misc_I 16727 18.0 28.87

Misc_II 25661 17.57 37.2

Tetra 34017 17.180 52.78

Misc_III 48168 30.0 97.89

Mountain 75733 40.48

The Teapot, Gears, Tetra and Mountain scenes were created by using the well-known Standard
Procedural Databases (SPD) from Eric Haines [Haines87].
The timing facilities provided by Helios are not very accurate since the clock resolution is only 10

ms.

5.1 - Dynamic load balancing experiments

Load balancing is the primary focus of most designers of parallel programs. In measuring the
contribution of load imbalance, the finishing times of the rendering stage of each node are noted. The
tests consisted of determining the usefulness of the request-based dynamic load-balancing scheme. To
do that, we ran the PC algorithm with the dynamic load balancing feature enabled and disabled, and
registered the load imbalance percentages produced in both situations. The load imbalance percentage
overhead is calculated this way: the difference in time between the longest time taken by a node to
perform pixel rendering and the average of all nodes is recorded and then divided by the longest time
value used previously. However, since we are working with finishing times, a low load imbalance
percentage overhead (all nodes have similar finishing times) doesn't mean better performance results
because total execution time can be larger due to the time spent on the load balancing algorithm. A
measure of performance, like Throughput (polygons/second), must also be considered to check of the
effectiveness of the solution.

Table 1 shows results obtained for some scenes.

224

e p—————————————————————— e

Gears Image _ Misc_limage

Number Dynamic Lead Dynamic Load Dynamic Load Dynamic Load
of Nodes|Balancing enabled]Balancing disabled]Balancing enabled|Balancing disabled
Load Load Load Load
Throughput Throughput Throughput Throughput
Imbalance (Dol/sec) lmbgjgnc_e (Dol/sec) 1E/n.bglqnsze. (Dol/sec) mmggm (pol/soc)
5] L &))
2 0.8 730 6.8 487 1.3 1131 0.8 1137
4 0.6 1036 18.7 956 0.6 1463 24 1378
8 4.4 1289 38.2 1138 251 1570 48.4 1468
16 1.4 1456 57.1 129 51.6 1578 68.8 1561
Misc llllmage. . - F . Mountainlmage
Number| Dynamic Load Dynamic Load Dynamic Load Dynamic Load
of Nodes|Balancing enabledBalancing disabledBalancing enabledBalancing disabled
Load Load Load Load
Throughputy Throughput Ihroughput]
mbalance | * ool secy | HRAMNCE]” (o) sag) [RAACE " oy socy | IRRAICEL o) soc)
(%) &) o) £8)
2 0.9 2160 0.1 2158 0.7 2625 01 2625
4 0.9 a4 0.1 3158 1.2 3948 7.6 3807
8 7.5 4366 0.3 4464 7.8 5597 19.2 5426
16 10.2 5400 1 5642 8.2 6773 34.6 6598

Table 1 - Load Imbalance percentages and Throughputs

A first analysis of table 1 shows that some improvements were achieved mainly for the Gears and
Mountain images. With Misc_III image, since it contains similar and very small triangles, the load
balancing algorithm is an overhead. Facing these figures, we can conclude that only for images that
contain a few very large primitives (like the floor on the Gears image or the ground on the Mountain
image), scattering polygons would not be sufficient to achieve good load computational loads, and the
adding of an extra level of load balancing scheme (a dynamic one) would be useful. Thus, it seems
that, in general, scattering would be enough. However, such conclusion may be too quickly drawn
because several factors that tend to unbalance the workload were not considered in our first versions
of the programs. First, the culling and clipping steps require a different number of operations for
different triangles. Second, the polygons to be rasterized may not be triangles and so they may be of
vastly differing shapes and sizes. A definitive conclusion about the need of an extra-load balancing

scheme in SL algorithms can not be given: further research is required.

5.2 - Algorithms Performance Evaluation
The request-based mechanism in the SLML algorithms was activated only for the test cases where
the performance has improved (like the Gears or the Mountain scenes).
The usual measure of the effectiveness of a parallel algorithm is speedup, defined as the time to
execute a problem on a single processor divided by the time to execute it on N processors. Efficiency
is also a useful measure that gives us an indication of the utilization of the processors in the system,

and can be obtained by dividing the speedup by the number of used processors.

225

Concerning the SLML-full strategy, the total execution time of both algorithms, PC and DF, can
be broken into a perfectly parallel component, pixel rendering, and an explicit overhead component,
the merging phase. In fact, the rendering phase of both programs speeds up linearly as the number of
nodes increases. The merging phase includes computations that do not exhibit linear speedup and
communications. In the PC algorithm, the merging phase time suffers from minor variations as the
number of nodes increases: they are due to the pipeline latency. On the other hand, the DF approach
exhibits a merging phase that changes a lot as the number of nodes varies due mainly to
communication costs. The communication costs associated to the DF algorithm are very high. While
PC approach uses a very simple structure for its topology, the DF strategy uses a 2D torus, which
means that the mapping of this later topology onto the physical network by the Helios operating
system has much more communication costs associated than mapping a pipeline [Pereira95]. Thus,
the speedup results show that PC algorithm pérforms much better than DF algorithm as can be noted
in the figures 1 and 2.

Pipelined Composlition

Number of nodes

Figure 1 - Speedup results for the PC algorithm
In the PC algorithm, speedup performance continues, in general, to increase as processors are
added, even for the smallest scene, although large number of processors are most effective for more

complex scenes: speedup becomes gradually worse primarily due to the fact that the percentage of the
total time execution taken by the merging phase increases as nodes are added.

g

226

Distributed Framebuffer

Number of nodes

Figure 2 - Speedup results for the DF algorithm

In the DF algorithm the results are bad because the communication costs associated with the
merging step become higher as the number of nodes increases imposing smaller speedup values.

The PC approach performed relatively well but the speedup exhibits low values that correspond to
low efficiencies. On the other hand, the SLMF strategy, the ScanlineFlow Rasterization algorithm,
provided excellent results: not only the speedup values increase as more nodes are added but good
efficiencies are also achieved, as it can be observed in the figure 3. The results are due primarily to the
fact that rendering phase executes concurrently with the pixel merging: the scanline synchronization

overhead had a small influence for a moderate number of processors (<= 16).

S canline Flow

141 - Msci
-
12 + A . Teta
S e
. / /’/I
10 + A
o
P
g s e
] P
2 7 Mscll
& 6 7 -
n LT e Gears
P
o i
4 “,//’, e
L . prc - SO t
Ny
-_‘—_‘———
-
0

Number of nodes

Figure 3 - Speedup values for Scanline Flow rasterization algorithm

It is interesting to refer that, at a low number of processors (2 and 4), the algorithm execution, for
Tetra and Misc_III scenes, provided efficiencies greater than 100%. This seems to result from the
fact that we have a lot of memory management associated to the algorithm execution: traversing the

bucket-sorted list and maintaining an active polygon list are not linear operations.

227

The following figure illustrates how well the SLMF scheme behaves when compared with the two
SLML solutions. It is important to refer that while sequential execution of the scanline z-buffer is
slower than the sequential execution of the triangle rendering z-buffer algorithm, the corresponding
parallel versions provided opposite results for a number of nodes greater or equal to 8.

Misc_lI Image
5000
g Scoriine Flow H 2000
2 3000 e Pip Compositon 2150
2 T £ 00
& 2000 e S o
2 1000 g Dist. & 50
= 10004 Frometster =
= 0
o }
1 2 4 8 16
Nurnber of nodes
T etralmage Mis c_lll image
© 8000 8000
H] § .~ Scanine Flow
® 5000 e Scaxiivnfiow ? 6000 e PIp.Composifon
3 4000 M.—,—.zr:. ~ Plp Compositon 2 4000 — QI
® e N s atl
€ 2000 e Dist. § 2000 4o iemssasmzzzzz it Dist. Frametufior
E o Fremebufer E o
1 2 4 8 16 1 2 4 8 16
Number of nodes Number of nodes

Figure 4 - Strategies comparison

6. Conclusions

For a general purpose distributed memory computer system, both full-frame strategies, SLML and
SLMF - merging a full frame from each node is very regular and easy to implement - gave us very
important indicators about research directions for the implementation of sort-last algorithms on
multicomputers. One of these indicators concerns to the merging phase. The answer to the question if
the rendering/merging phases are to run concurrently or consecutively was given in this paper: the
SLME-full strategy, through the ScanlineFlow Rasterization algorithm, has demonstrated to be
capable to provide good results: not only the speedup values increase as more nodes are added but
good efficiencies are also achieved. The SLML-full works relatively well for machines with small
number of processors, but for larger multicomputers this method imposes severe performance
restrictions because the execution of this operation takes a large percentage of the total execution time.
PC algorithm performed much better than DF algorithm since the communications of the former
solution are much lower than the later.

The other indicator regards to the load balancing problem. We saw that, in general, scattering
provided good computational load balancing. An extra dynamic load balancing scheme will be only

effective if the input scenes contain a few large polygons.

228

7. References

[Badouel92] - D. Badouel, C. Wauthrich, E. Fiume, "Routing Strategies and Network Contention
on Low-Dimensional Interconnection Networks", CSRI - TR 258, Univ. Toronto, 1992.

[Cox92] - M. Cox and Pat Hanrahan, "Depth Complexity in Object-Parallel Graphics
Architectures”, Proc. Seventh Workshop on Graphics Hardware, Eurographics Technical Report
Series, 1992, pp. 204-222.

[Cox93] - M. Cox and Pat Hanrahan, "Pixel Merging for Object-Parallel Rendering: A Distributed
Snooping Algorithm", Proc. Parallel Rendering Symp., ACM Press, New York, 1993, pp. 49-56.

[Cox95] - Michael B. Cox, "Algorithms for Parallel Rendering”, doctoral dissertation, Princeton
University, May 1995

[Dally87]), W. Dally and C. Seitz, "Deadlock Free Message Routing in Multiprocessor
Interconnection Networks", IEEE Transaction on Computers, Vol. 36, nr. 5, May 1987, pp. 547-553

[Evans92, Fuji93, Kubota93] - Graphics Workstations Series Technical Notes

[Haines87] - Eric Haines, "A Proposal for Standard Graphics Environments", in JEEE Computer
Graphics and Applications, Vol. 7, n° 11, November 1987, pp. 3-5.

[Molnar90] - S. Molnar and H. Fuchs, "Advanced Raster Graphics Architecture”, in Computer
Graphics: Principles and Practice, 2nd ed., J. D. Foley et al., eds., Addison-Wesley, Reading, Mass.,
1990.

[Molnar91] - S. Molnar, Image-Composition Architectures for Real-Time Image Generation,
doctoral dissertation, TR 91-046, University of North Carolina at Chapel Hill, Oct. 1991.

[Molnar92] - S. Molnar, J. Eyles, and J. Poulton, "PixelFlow: High-Speed Rendering Using Image
Composition", Computer Graphics (Proc. Siggraph), Vol. 26, N° 2, July 1992, pp. 231-240

[Molnar94] - S. Molnar, M. Cox et al., "A Sorting Classification of Parallel Rendering", IEEE
CG&A, Vol. 14, N° 2, July 1994, pp 23-32

[Pereira95] - J. Pereira, C. Wuthrich and M. Gomes, "Implementing Sort-Last Algorithms for
Polygon Rendering on a Multicomputer”, Technical Report RT12/95, May 95.

[Rogers85] - David F. Rogers, "Procedural Elements for Computer Graphics", McGraw-Hill Int.
Publications, 1985

[Sutherland74] - L. E. Sutherland, R. F. Sproul], and R. A. Schumacker, " A Characterization of
Ten Hidden Surface Algorithms", ACM Computing Surveys, Vol. 6, N° 1, Mar. 1974, pp. 1-55.

229

Appendix A - Plates

Plate B - Gears image' | Plate D - Misc_II image

230

Appendix A - cont.

Plate G - Mountain imzige

