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At the beginning of this paper some elementary properties of the simplices,
barycentric coordinates, convex polyhedra, affine ratio of three points and Eu-
ler’s theorem are mentioned. The reader who wishes to know more about the
geometrical background is reffered to [1]. A central projection in n-dimensional
Euclidean space is modelled with the help of barycentric coordinates, the center

~ of the projection is a vertex of the simplex, the opposite hyper-side is the hyper-
plane of the projection (hyper-screen). The direction of the parallel projection
is chosen as the direction of one edge of the simplex.

A simplex on a straight line has 2 vertices, then v = 2. If we join segments (without
overlapping) we get again a segment with two vertices, v = 2.

A simplex in a plane has 3 vertices and 3 sides: v — s = 0. If we join the triangles in a
two-dimensional space (without overlapping) we get a polygon with n vertices and n sides:
v—s=0.

A simplex in a three-dimensional space has 4 vertices, 6 edges and 4 faces: v—-e+ f =
4 — 6 + 4 = 2 If we join tetrahedra in a three-dimensional space (without overlapping) we
get a simply connected polyhedron - it can be homeomorphicly mapped onto a ball. Convex
polyhedra belong to such polyhedra. Two polyhedra joined along two identical k-polygons
(faces) lose two faces, k vertices and k edges. We get again

v—et+f=vi—e1+fitva—es+fo—k+k—2=2,

the so called Fuler’s relation.

To complete the proof we shall add the case of smoothing onto one face, where is in
fact the previous plane case, and we shall deal also the case of a plane section adding m
vertices and j edges to each of the both parts of the polyhedron. These added elements
will be deleted after joining .

In a four-dimensional space we have analogously v — e + s — p = 0, where p is the
number of boundary polytopes.

In an n-dimensional space we have: v —e+s—p+---=1—(=1)"

This Euler’s formula (a cradle of algebraic topology) is valid for simply connected
polytopes.
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Schlafli's symbol (4.3.3)
afli's symbol (3.3.4)

(rhombic dodekahedran)
8 cubes

Hypercube in E*
16 wvertices
32 edges
24 squares
Cocube in E*
(two pyramids)
8 wvertices
24 edges
32 triangles
16 tetrahedra
Schl

X3

Barycentric coordinates in E° < E*
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In the space E™ points Py, Py, - - -, P, form vertices of a simplex if and only if the vectors
(P — P), (P, — P),--+,(P. — PR) are linearly independent. If the points { Py, Py, -+, Pn}
form the vertices of a simplex in E™ then we have for every point L € E*

L=P+MP—-PFP)+ Pe—PFP)+ -+ M(P.— P).

n

n n
L=Ea,'P,', a0=1—2)\.~, a,-=)\j,j=1,---,n, :>Za,-=1.
1=0 i=1 =0
The numbers [ag, ai, as, - -, ay] are called barycentric coordinates of the point L with re-
spect to the simplex { Py, P1,---, P.}.

In E® a one-to-one correspondence exists between the points of the given simplex
{Po, P1,---,P,} and their barycentric coordinates [ao,a1,az," -, a,] (with the condition
that their sum equals one).

Let the vectors (Py — Py), (P2 — Po),--+,(Pn — Po) be linearly independent. Thus for
arbitrarily chosen j (j = 1,---,n) the vectors (P; — P;), 1 =0, -n,15 j are also linearly

n

independent. For, if Z ai(P; — P;) =0 and

1=0,1#£5
0= Z ai(-Pi"'PO)—(Pj—Po) Z a,-,then ak=0(Vk=0,1,---,n).
i=0, i#j i=0, i#]

Hence we can define linearly independent points with the help of linearly independent vec-
tors P, — Py, P,— Py, -+, P,— P,. If the points { Py, P, P,,- - - , P, } were linearly dependent,
to each point L could belong many (n+1)-tuples ag, a1, a2, ,a,. It is not convenient to
call such groups of numbers the coordinates (barycentric).

The affine ratio d(A; Po, P,) of the point A = aoPo + a1P1, A # P, with respect to
the points Py, P, is the ratio —a;/ao, where ao, a; are the barycentric coordinates in the
simplex { Py, P,}. The affine ratio is a real number not equal to one. Passing to projective
extension of the straight line, we see that the improper point A, of the straight line Py P
has the affine ratio equal to one.

In a metric space the barycentric coordinate ag of the point A with respect to the
simplex {Po,- -, P,} equals the ratio of the oriented distance of the point A and the hy-
perplane {P,,---, P,} and the hight (positive) of the simplex between P, and the opposite
hyper-face { P, -, P,}. In the same way we visualize the barycentric coordinate a;.

Let S = {P, P\, P;,-+-,P,} in E™, m > n be a simplex and A € E™ the point.
Let us seek the barycentric coordinates of the point A with respect to the simplex S™*.

A=ia-iei, A=ZG;P¢‘, > ai=1.
i=1

1=0 1=0

'
Since the vectors (P, — Py), ¢ =0, --,n are linearly independent, it is possible to choose
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such n coordinates (suppose that n first ones) from m coordinates that the matrix

1 1 ... 1
Po1 Pu1 °°* Pni
P=| Poz P12 - Pn2 is non-singular .
Pon Pin *°* Pan
For the given Cartesian coordinates [a;,- - -, a,] the barycentric coordinates to be found

are the unique solution of the following system of linear equations
T T — - -
P'(a07al)a27"'7an) =(1,a‘1’a‘27"'aa"n) ) a=P l'a"

The matrix row of all units is written on the first place, but this is not necessary.

In the space E3 the revolution of tetrahedron { Py, P, P;, P3} around the axis passing
through the origin (the old axis z receives the geographic-spherical coordinates (¢, 1)) and
the following translation by vector § (¢ = (q1, ¢2,¢3)) can be expressed using matrices

1 1

P’ P11 P'a1 P'm =T —

. . x =T(q)- R(¢,%) - P =
P02z P*12 P'22 P's2 () (’)
P03 P*13 P23 DP'ss

1 000 1 0 0 0 1 1 1 1
| e« 1 00 0 —sin¢g —cos¢siny cos @ cosy Por P11 P21 Psi
“lg 010 0 cos¢ —singsing sing cosy Poz P12 P22 P32

g3 0 0 1 0 0 cos ¢ sin Po3 P13 P23 P33

(T(q) - R(¢,%)- P)™" = P™'- R(¢,%)" - T(—q).

In other words: instead of moving the projecting simplex, we can first translate the object
conversely and then revolve it conversely - in fact this is a trivial conclusion.

In the projective extension of the space E* — P™ we shall add the 0-th coordinate
instead of the usual (n+1)-th coordinate. Let us consider the point of P" lying in the
hyperplane p: —xo + 21 + 22 + - - - + 2, = 0. The hyperplane p passes through n points

(1)1101"'70)7 (1’0’1,"',0)) Y (1,0,0""’1)'

If zop # 0 the homogeneous coordinates of our point divided by the number zo, can be
considered as barycentric coordinates of the point X, ¥ = OX, with respect to the (n-1)-
dimensional simplex

{(LO,"',O)a (071,"'70)>"" (0,0771)}

in the hyperplane xj 4+ Xz + --- + X, = 1. This hyperplane naturally belongs to the space
E".
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Dimension: 8
" 16 vettices
112 edges

448 triangles
1120 tetrahedra
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In the Euclidean plane E? we have

1 1 1 1 ag
ap |=P-a2=| pm Pu Pa || a1 |,
a3 Poz P12 P22 az

det(P) = (p11 — po1)(p22 — Poz2) — (P21 — po1)(P12 — Poz) ,

) 1 P11P22 — P12P21 P12 — P22 P21 — P11
= ae—t(jg—) Po2P21 — Po1P22 P22 — Po2 Po1 — P21
Po1P12 — Po2P11 Po2z — P12 P11 — Pom

We can write the central projection from the vertex Py onto the hyperplane {Pi,: -

in the barycentric coordinates:

* = * * a; a; .
A =Zaij, a; = =1 , 1=1,--,n.
] Eak — Qg
k=1

It is easy to verify that > af =1, (1 —ao)A" + acFo = A.

=1
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Points of a hyperplane passing through the center of projection parallel to the plane of
projection, i.e. the coordinate ao of which is equal to one have no image.

In the linear perspective: a; >0, j =1,---,n, —00 <@ <1, a /1 = A4 will be
visible. ,

The inner points of the simplex are the points between the centre of projection and the
plane of projection. They are useful not only for the estimate of the visual angle, but also
for visibility.

In photographing (onto a hyperplane ap = 0) the pre-image points fulfil: a; <0, j =
1,---,n, 1 < ap < +00, ag \, 1 = A will be visible. The points of the space with the 0-th
coordinate greater than one and other barycentric coordinates negative, lie in a projective
pyramid outside the plane of projection. We can again estimate the visual angle and decide
about visibility.

In the Euclidean space E® we denote: 0 =0, Bhb=S=0+d-e3, B=0=H, A =
O + e, P, = O + e;. In the orthonormal basis we have

{81,82,63}, A=H+01(P1-H)+CL2(P2—H)+a—;'(Po—H), a0=0273,

d- aj * _ d- Qas
d— as %2 T

This is in accordance with usual expression of the central projection through homoge-
neous coordinates o

*
a; = .
1 d—a3

Central projection of the hypercube
{ barycentric coordinates )

i

16 wvertices
32 edges 10
24 squares
8 cubes
(4.3.3) Schldfli's symbol

10 Visibility
A/ / 3
/ [J / N ,-:'_.f N
CD . ’ / = N
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af d 0 00 oy
e | _|0d 00 Qs
0| "100 00| | as
af 00 -1 d 1

If we project the point A from the vertex Py of the simplex {Po, Py, -, P,} onto the
hyperplane determined by the simplex {P,, Pi,- -, Pe—1, Piy1,- -+, Pn}, the barycentric
coordinates {a§, a}, - ,a5_y, @5, -, a5} of the image A* will satisfy

* a;

a;

= , 7=0,1,--- k-1, k+1,---,n.

1-— ag
We will choose a chain of the central projections, such that the dimension of space dimin-
ishes by one and in practice we will end by the projection onto the plane.

The parallel projection A — A* in the direction PoP, onto the hyperplane
{P,,P;,---, P,} (we assume the simplex { Py, P, P,,- -+, P,}) is written in barycentric co-
ordinates in the following way:

* * * * * * * *
A= [a07alaa27"an]a A= [a17a27' e ,an], a; =a1, Gy =4z, a,_1 = an-1, G, = 0n +ao.

n
We have again ) af =1, A*— A= ao(P, — Po). To determine visibility the point with
i=1
a greater coordinate ag has priority.
If we choose the simplex with the first vertex in origin, the second vertex on axis z, the
third vertex in the plane z y and the fourth vertex outside the plane z y, we get the matrix
of the transformation P from the barycentric coordinates {a;} to the Cartesian coordinates

{ax}; the columns will be the Cartesian coordinates of the vertices of the simplex

1 1 1 1 1 ao
a1 | _| 0 P Pa Pa o ,a=Pd and conversely
ag 0 0 p3s2 pa a2
as 0 0 0 pas as
det P —pagpas (P31 — P21 )P43 P32 (P41 - le) - p42(P31 - pzl)
-1 _ 1 0 P32P43 —P31P43 D31P42 — P32P41
det P 0 0 P21P43 —P21Pa2

0 0 0 P21P32

If we choose the regular tetrahedron with the height d, the center of gravity in the
origin O, one vertex on the axis z, the next vertex under the axis —z, then the matrix
of the transformation from the Cartesian coordinates to the barycentric coordinates will
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satisfy

(1 1 11\

4 -4 -4 3d 8/2 0 —4
V2 VB VB _ 1 | 3d —4v2 —4/6 —4
0 —d g d g 0 S 12d | 3d -4v2 46 —4
“d -d —d 34 3d 0 0 12

\7T 7T 1 1

The visual angle can be limited by the interior of a tetrahedron.

We can consider a convez hull of the (n+1) points in E*, k < n, as an image of the
parallel projection of the simplex in E" onto E*. For k < n the images of the vertices are
not linearly independent, but each pomt L of the convex hull (and also of the pre-image, i.e.

simplex in E™) can by written as L* = Z A P! (not uniquely), L= E AiP; (uniquely),
=0 =0
=1, 0<XN<1 Vi,i=0,---,n

1=0
The method described above was tested using a program, which generates vertices

{P1, Py, P3, Py, Ps} of a simplex in E* by randomizing all coordinates uniformly in the inter-
val [~10,10]. The first four points {P;, P;, Ps, P4} determine the hyperplane of projection
p, the last point P; determines the center of projection S. To verify linear independence
of the vertices the program computes the volume v of the simplex { Py, P,, Ps, Py, Ps }:

1 1 1 1 1

1 P11 P12 P13 P4 Pis
P; = (p1i, p2i» p3ir Pai), (1 =1,---,5), d= a1 | P P2 P P P, U= |d| .
P31 P32 P33 P34 P3s
P41 P42 P43 Piaa Pas

Let us choose the orthonormal basis {e;, ez, €3} in the hyperplane p:

fi f,

fi=P—P, e = -I?l—’ f2:P3—-((P3——P1)e1)el, e, = H’

f3

Ifa]

We construct also the principal point H as the orthogonal projection of S onto the hyper-
plane p

fa=P4—((P4—Pl)el)el—((P4—P2)ez)ez, €3 =

H=P +((Ps—P)e)es+((Ps— Pi)ey)es + ((Ps — Pi)es)es

and focal distance f = \/lP5 — P|2- |H - B2
By increasing the distance |H — P;| the central projection of the solid will be prolonged.




Central projection of the cocube Visibility
{ barycentric coordinates )

8 wertices, 32 triangles, 24 edges, 16 tetrahedra, (3.3.4) Schléfli's symbol

‘9

Orthogonal projection
E4SES
in barycentric coordinates




If the origin of the Cartesian coordinate system in the hyperplane p is put to the prin-
cipal point H, then the tetrahedron {P;, P,, Ps, P4} of the hyperplane p will be expressed
in the new coordinate system as

Pf=(Pi-P)ei~(H-P), (i=1,,4).

The image B* of the point B € E* in the hyperplane p, which is described by barycentric
coordinates [by, by, b3, by], is modelled in the hyperplane p as

4
BA=Y"bPf .

=1

In the case of the orthogonal projection the plane of projection p passes through the
origin P, = O of the coordinate system in E* and through next three points P,, Ps, Py,
the coordinates of which are again randomized in the interval [—10,10]. The normal of the

hyperplane p determines the direction of projection s = Ps_}’l,

€ € €3 €4
n
P12 P22 P32 Pa2 : P =10 —

P13 P23 P33 P43 In|
P14 P24 P34 P44

Visibility is determined by the list of two-dimensional faces of the represented polyhe-
dron. This problem was implemented using Mathematica system.

We have shown that the usual definition of the convex hull can be explained with the
help of the parallel projection of the n-dimensional simplex. For Bézier curves and surfaces,
and for general splines as well, we require that their parallel or ”weak perspective” images
are included in the convex hull of images of their control polygons or nets. In problems
of this type the barycentric coordinates are sometimes used intuitively. The paper shows
that projections in Euclidean space, necessary for visualization purposes, can be modelled
in barycentric coordinates very easily.
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