
Language Support for Distributed Virtual

Reality

Bed�ich Bene� �benes�sgi�felk�cvut�cz�
Ale� Hole�ek �zara�sgi�felk�cvut�cz�

Ji�� ��ra �zara�sgi�felk�cvut�cz�

CTU� Fac	 of Electrical Eng	
Dept	 of Computer Science
Karlovo n�m	
��

�
 �
 Praha �

Abstract

One of the main issues in the research on Multi�user Distributed Virtual Reality Systems is

the virtual environment description language� A number of di�erent languages with various

level of description formalism already exist� In this paper we provide a quick overview of

the existing systems� We look more into details of Virtual Reality Modeling Language based

on SGI�s Open Inventor format� The problems of multi�user reality systems are farther

examined from the point of view of keeping the world database consistent� We present

methods reducing the communication demands based on using more complex speci�cation of

the environment behavior and distribution of the world database� Finally� the paper provides

an explanation of our research� We attempt to design an algorithm for direct global visibility

preprocessing� which is an important issue related to the world database subdivision�

Keywords

Scene description� distributed virtual reality� global visibility� Open Inventor� VRML�

� Introduction

Over the past several years� the words Virtual Reality �VR� have become very popular among
the majority of the human population	 Although this phrase is one of the most cited phrases in
all media types� there is no exact de�nition of VR given	 Everyone has their own ideas of what
exactly virtual reality means	 For some people it is a science� which requires head�mounted
displays and electronic data�gloves� for others every video game is a virtual reality	

Our de�nition lies somewhere in between those two extremes	 We de�ne Virtual Reality as
a computer�generated simulation of a three�dimensional environment� which the user is able to
interact with and manipulate the contents of it �����	

Previous research shows that a complete simulation of all phenomena of the real world is not
necessary in VR application	 The human perception of the real world is mediated through the
�ve major senses� sight� hearing� touch� taste and smell	 Not all of them are equally important	
It is su�cient to create a simulated world� which is real enough that a human observer can
accept it and participate in it	

Virtual Reality is already being used in many di�erent application areas	 Good examples
could be entertainment industry� computer games� architecture design and walkthroughs� engi�
neering design� medicine� education� chemistry� biology and many others	

The �eld of Virtual Reality is moving gradually into a new phase	 Concept of Distributed
Virtual Reality �DVR� has been introduced and it has become one of the most popular research
topics	 The DVR can be described as a simulation of a complex environment running on several
computers connected over the network	 People visiting or working in the virtual world should
be able to share it� interact with it� and communicate in it in a real time	

There are still many problems to be solved� before Virtual Reality Systems will provide
immersive environment� where people could collaborate on projects� having all di�erent types
of communication available	 Every new technology goes through a period� when methods and
designs are being invented and changed	 VR is not an exception	 It is even more complicated
by the fact that the foundations of the �eld� virtual environment description language� is still
going through an evolution	 Such a language should contain of structures for objects geometry
annotation� as well as speci�cation of objects which can change over time and in response to
external stimuli �e	g	 user interaction�	 It should support description of a virtual environment
distributed over the network as well as an environment populated by more then one user	

In this paper� we would like to present a brief overview of the existing languages designed for
the description of the virtual environments	 We focus mainly on the standard � Virtual Reality
Modeling Language �VRML�	 We look closely at the object geometry description facilities of
VRML as well as the facilities provided for the object behavior description and user � scene
interaction	 We attempt to de�ne the obstacles which are tightly related with the multi�user
distributed reality systems	 At the end we present what methods are investigated as a part
of our research and how this research can in�uence the evolution of the virtual environment
description language	

� Frequently Used Jargon

In this paper we use certain jargon speci�c for the �eld of VR and DVR	 Although some of
the words are considered to be terms in the area of computer science� we will provide a quick
explanation	

Each of the computers participating in the simulation is called host 	 On each host there
are number of entities 	 Entity is any object in the virtual environment	 If needed entity may
communicate its state by sending update messages 	 The entity devoted to embodiment of a
human participant is called avatar 	 By embodiment we understand that the user is provide
with appropriate body images which represent the user to others in user � user interaction	
The avatar should address not only issue of presence� but also location� orientation� identity�
activity� availability� gestures� expressions� and others	

Next we de�ne focus 	 It represents a subspace within which a person focuses their attention	
The idea is that person is more aware of objects inside their focus and less aware of objects
outside of their focus	 Accordingly nimbus represents a subspace within which a person projects
their presence	 The idea is that an object within person�s nimbus is more aware of the person�
then an object outside of the nimbus	 Union of focus and nimbus is called awareness 	

World Database is a description of the virtual environment containing information about
the geometry� constrains� behavior� location and state of the entities	

� Existing systems

In this section we would like to give a quick overview of existing languages designed for describing
the virtual environments	 As it was already mentioned in Introduction� such a language should
support time�varying models� user interaction� and multi�user sessions	 It should be �exible
and open� allowing extensions in all aspects of functionality	 There is a number of research and
commercial systems which support some or all of these requirements	

� TBAG� developed at Sun Microsystems� is a functional �D system	 Function objects
in TBAG can be related to each other by multi�way constrains and then evaluated with
di�erent parameters to create time�varying or user controlled geometries	

� The UGA system� developed at Brown University� uses an interpreted language� Flash	
This is a prototype�delegation object oriented language which was speci�cally developed

for fast prototyping of complex interactive �D scenes	 It supports a variety of anima�
tion techniques� including keyframing� inverse kinematics� physically based modeling� and
evaluation of arbitrary functions	

� ANIM�D was developed by Digital corp	 to visualize algorithms and uses a costume
prototype delegation language Obliq � which provide for concurrent behaviors	

� Alice� from University of Virginia� is speci�cally designed to support rapid prototyping
of �D immersive environments� and uses interpreted language Python as an extension	

� The Behavior Engine system� developed by the BE Software Company� provides an sys�
tem of Inventor�based node types for describing behavior	 It de�nes a Pascal�based syntax
for embedding new behavior internal nodes� and demonstrate some nodes for physically
based modeling	

� VRML�� commercial product developed by the Worlds� Inc� allows multiple participants
to take part in a dynamic environment� with animations� specialized audio� and texture
mapping incorporated	 VRML� also includes behavior extension protocol which is lan�
guage independent	 It de�nes API for modifying the scene graphs	 There is also proposed
a networking protocol for connecting VRML servers and clients in VRML�	

� VRML� from SGI� is based on �D graphics system Open Inventor developed also by SGI
and written in C��	 VRML is the one most commonly used description language	 It is
de facto standard in the area of languages for Distributed Virtual Reality and that is why
we will devote the next section to it	

� Virtual Reality Modeling Language

The geometry and behavior description facilities of Virtual Reality Modeling Language �VRML�
are based on Silicon Graphics �SGI� �le format known as Open Inventor	 Although features of
Open Inventor and VRML are not identical� we brie�y introduce Open Inventor �le format�
because of its well de�ned and �exible syntax and functionality	

��� Open Inventor

Open Inventor is a complex de�nition of both data format for scene description and tools and
library for �D modelling and rendering	 Although the domain of Open Inventor is Silicon
Graphics hardware� more and more platforms with di�erent operating systems accept it	

From the historical point of view� two versions of Inventor were introduced	 Version
	� is
called IRIS Inventor and is not supported anymore	 Current� the second version ��	�� is called
Open Inventor and allows describing not only static scenes� but also highly structured ones
with a dynamics and a prede�ned behavior� included	

In the following text� we will speak about Open Inventor from the point of view of its �le
format	 Programmer�s tools as well as Open Inventor library will not be described	 The Open
Inventor �les can be stored both in ASCII and binary format� but only text format is available
for public purposes	

The scene data are arranged into �ve basic classes �see also �g	
��

	 Group Array� Group� Separator� Switch� � � �
�	 Shape Cone� Cube� Cylinder� Sphere� NurbsCurve� NurbsSurface� Indexed�

FaceSet� Text�� Text�� � � �
�	 Property Coordinate� Material� NormalCoordinate� Texture� Transform� � � �
�	 Light Directional� Point� Spot

	 Camera Orthographic� Perspective

Figure
� Symbols for basic Open Inventor entities

The basic idea of the hierarchical scene description is to arrange data into a tree structure�
similar to PHIGS �see �g	 ��	 The tree consists of internal nodes �Groups� and leaves with
Shapes� Properties� Lights and Camera�s�	

Two di�erent types of inheritance are applied during traversing the scene tree	 One type of
inheritance is used for Transformation nodes� which are concatenated together	 The path from
the root to each Shape node determines� which accumulated transformations will be used for
�nal positioning of an object	 Transformations de�ned in certain subtree are not used in other
subtree on the same tree level	 This is ensured by a stack� which stores as many transformations
as the current depth of the traversed tree is	

Figure �� Hierarchy of a scene described by Open Inventor tree

Other kind of Property nodes like colors and textures are not accumulated� but they replaces
the previous ones on the same level of tree	 Processing of subtrees is similar to the transformation
approach	 An example is shown on �g	 �	 The blue color node is placed on the �rst level of the
tree	 Next subtree de�nes a new color �yellow� and thus the sphere in this subtree is yellow	
When the subtree is left� blue color is popped up from the color stack and blue is valid again
for the rest of the tree	

Referencing already de�ned parts is possible using DEF and USE commands	 The subtree
de�ned after DEF statement can be later reused from an arbitrary place in a tree	 The example
is shown again on �g	 �� where the second object is scaled up sphere de�ned in previous subtree
as a special block named My block	 The second sphere is scaled up �rst and then translated	
Accumulated transformations are performed in reverse order� from the leaf to the root	

The following text presents Open Inventor �le� which de�nes the tree on �g	 �	

�Inventor V��� ascii

Separator f
BaseColor f rgb � � ��� g � blue as �global� color
Separator f

Info f string �Node A� g

BaseColor f rgb � � � g � yellow color
DEF My block � begin of de�nition of �My block�

Group f
Transform f scaleFactor � � � g � scale up �x
Sphere f g � unit sphere scaled up

g � end of de�nition of �My block�
g

Separator f
Info f string �Node B� g

Translation f translation � ��� � g
USE My block � reusing �My block�

g
g

� Example of Open Inventor �le format

Animation

Most of the �D scene description languages do not implicitly contain formalism for object dy�
namics description	 Open Inventor has implemented limited animation features based on simple
transformation generators	 Such nodes can be placed instead of �or together with� transforma�
tion nodes into any place in the scene tree�

Rotor rotation generator
Shuttle shuttle movement with constant speed
Pendulum movement with respect of physical law

The following example shows node Rotor in Open Inventor �le�

�Inventor V��� ascii

Separator f
Rotor f � rotation generator

rotation � � � ��� � Z is rotational axis� step is 	�
 rad
speed 	�� � � rotations per second

g

Cube f g � unit cube
g

� Rotation of cube

This approach is useful mostly for presentation purposes� because the animation is permanent
regardless of time scheduling or object collisions	 Anyway� this kind of animation can be used
also in virtual reality scenes� where some objects are static �walls� furniture�� some are simply
animated �clocks� spiders� ventilators� and only limited number of objects is driven be special
methods	 De�nition of such objects is possible in Open Inventor using user de�ned nodes	

User nodes

The common issue of making standards is extensibility with respect of consistency	 Initially
de�ned set of objects �nodes� can be found insu�cient during a few years	 Well de�ned format
should contain possibilities for later extensions and de�nition of special user objects	

Open Inventor solves the problem of user de�ned data quite �exibly	 Any unknown node
identi�er is taken as a special user node	 The parameters of such a node are de�ned using
statement �elds� which declares user names and types	 User de�ned node can contain either
already known nodes or more complex subtree� but no data are displayed	 The only exception is
allowed by node alternateRep	 Alternative Open Inventor tree can replace user de�ned node
in case that application program is not able to process the user de�ned node by its special way	

De�nition of user node called �Pencil� shows description of both user names and alternate
representation constructed from cylinder and cone�

�Inventor V��� ascii

Separator f

Pencil f
fields
 SFFloat my height� SFFloat my radius� SFNode alternateRep �

my height ����

my radius ��

alternateRep Separator f � alternative representation
Complexity f value ��� g � solids of revolution as polygons
Cylinder f height ���� radius ��
 g � body of Pencil
Transform f translation � ��� ��� g
Cone f bottomRadius ��
 g � top of Pencil

g
g

g
� User de�ned node �Pencil�

��� VRML

The Virtual Reality Modeling Language �VRML� is designed for distributed interactive
simulation	 The environment used for this simulation is a set of virtual worlds connected via
Internet and hyperlinked with the World Wide Web URL format	 VRML introduces all aspects
of virtual reality � interaction� three dimensional realistic graphics with texture mapping� and
lighting	 It is the intention of the designers of VRML that it would become the standard language
for description of interactive simulation	

The VRML was conceived at the annual World Wide Web conference in
��� in Geneva	
After one year duration of intensive discussion in � th of May
��
 the VRML Version �	

speci�cation was released	 Rather then some new speci�cation the subset of existing one was
used	 The VRML is deeply based on the Open Inventor� which supports complete description of
�D scenes� lighting and materials	 A subset of the Open Inventor was used and it was extended
toward network exploitation	

The VRML version
	� does not support any interaction� except the hyperlink feature	 The
reason for this is� that no standard language for interaction has been designed yet and the
authors of this project do not want to risk getting into �language war�	 It was promised� that
VRML version �	
 will support arbitrary interactive behaviors	

The VRML version
	� meets the following three requirements�

� Platform independence which is guaranteed because the description �le is in ASCII
format	 The seven bit text mode is fully hardware independent and is readable by any
platform and under any operating system	

� Extensibility is solved by supporting self describing nodes already discussed in the pre�
vious section �see User nodes�	

� Ability to work over low�bandwidth connection is ensured by high compression
factor of the rendered scene description	 The VRML is just a scene description format�

VRML browser can be thought as a parametric state machine and VRML de�nes its
commands	 Only the commands have to be sent over the network� what is reasonably
expensive	

	�	� Open Inventor extension and di�erences

VRML is a subset of Open Inventor	 The VRML supports � nodes consisting of the same groups
as Open Inventor does� Group nodes �Group� Separator� etc	�� Shapes �AsciiText� Cone�
Cube� etc	�� Properties �Coordinate�� FontStyle� etc	� Lights and Cameras� for complete
information see �
�	

The VRML does not support shape nodes as NurbsCurve and NurbsSurface� but introduces
three new nodes� WWWAnchor� WWWInline and LOD	

The WWWAnchor group can be syntactically written as�

WWWAnchor �

name �arbitrary URL�

�

When one of the children of the node is chosen� this node causes running the VRML browser
and the current scene is replaced by a new one	

The WWWInline node has following syntax�

WWWInline �

name �arbitrary URL�

bboxSize SFFloat SFFloat SFFloat

bboxCenter SFFloat SFFloat SFFloat

�

WWWInline node adds an object to the current scene	 The description of the object can be
located anywhere in the world of World Wide Web	 The address is resolved from the name	
When this object is being read it is not de�ned yet	 It may take a while before it actually
appears	 If parameters bboxSize and bboxCenter are set� a proper bounding box is displayed
before the object is loaded	

Suppose that we have the example from section �	
	 Instead of de�ning My block� we will
read its description from WWW site where is located	 The section starting with the keyword
DEF would be then replaced by the text�

WWWInline �

name �http���sgi�felk�cvut�cz�IncludedObjects�My�block�

bboxSize � � �

bboxCenter � � �

�

Another Group node which is di�erent from the Open Inventor speci�cation is the Level�
OfDetail node	 It is used to allow an application to switch between variously complex repre�
sentations of an object	 The rule de�ning which level of detail is going to be used is based on
the computation of a distance from the world�space eye point to the LOD center �parameter of
the LOD node�� transformed into the world space	 If the distance is less then the �rst value
speci�ed in the ranges array �other parameter of the LOD node�� then the �rst most detailed
representation of the child is going to be used	 For N values in the range array� there should
be N�
 children of the LOD node de�ned	 If too few children is speci�ed� last child with the
lowest level of detail is going to be used repeatedly	 Extra children are simply ignored	

FILE FORMAT�DEFAULTS

LOD �

range
 � �MFFloat

center � � � �SFVect�f

�

Other VRML extension is a �lename in Texture� node� which can be an arbitrary URL	
The node

Texture� �

filename �http���sgi�felk�cvut�cz�Textures�My�texture�

wrapS ��

wrapT ��

�

represents an example� when texture de�nition is located on the host sgi�felk�cvut�cz in the
�le �Textures�My texture	 The mapping of the texture is repeated �� times in S and
� times
in T direction of the mapping coordinates	

Every VRML �le starts with line �VRML V��� ASCII and the recommended �le extension is
�wrl	

� Multi�user distributed virtual reality systems

As we have stated in the previous section� VRML
	� has only limited support for describing
an interaction and a behavior of the entities in the virtual world	 This fact could be seen as
the main limitation of the �rst VRML version� for complex� interactive environments design	 In
this section� we discuss the obstacles which have to be dealt with� while developing a multi�user
distributed virtual reality system �MUDVRS�	 We also indicate how some of the problems can
be solved already on the level of the environment description language	

MUDVRS must allow concurrent multi�user access to the world database	 It should pro�
vide for keeping the overall consistency of the distributed data� and any changes made in the
database should be managed in a real�time	 The avatars representing the users �humans�� should
be treated as elements of the world database	 In other words� all the time there should be in�
formation about location and orientation of all the mobile entities in the virtual environment	
These parameters represents the minimum information needed to reconstruct the awareness in
the virtual world	

��� Naive Implementation

The simplest and naive approach to implement above described requirements is to have each
host to broadcast the location of each mobile entity that it maintains	 These broadcasts are
received by every host in the simulation� and are used to update their local copy of the world
database	 Although this approach works acceptably on small� dedicated networks� there are
number of problems known	

The biggest problem with broadcasting is that every machine on the subnet has to receive
and process large amount of data	 This includes also those machines which are not participating
in the simulation	 To demonstrate the amount of the broadcast data� think of tracking the
current location and orientation of every avatar in the virtual environment	 Most likely these
parameters change during every run of the simulation loop	

It is obvious that the amount of transferred data� network bandwidth and latency play very
important role in the speed and scalability of such VR system	 We don�t have to accent that
networks are used also for other purposes than distributed simulations	 The �rst networked
version of the computer game !Doom� worked in a broadcast mode� each participant constantly
broadcast the current state of their avatar	 This is one of the main reasons why many universities

and companies adopted the !NO DOOM� policy	 In the next section we will look at the possible
improvements of the implementation strategy	

��� Dead Reckoning

It appears that the most obvious problem in the keeping the consistency of the database using
the broadcasting model is the amount of transferred data	 This issue was already addressed
by developers of the Distributed Interactive System �DIS�� which has been developed for very
speci�c applications � military simulations	 The authors of DIS suggested solution � using
technique called dead reckoning �DR�	 The idea behind DR is simple� instead of sending entity�s
location� a host sends a message that consists of the entity�s location� time stamp and velocity
vector	 This can be done even for more complex behaviors then just a change of location	 For
example updating the description of a human body can be done by sending rotation and angles
of selected joints	

The user controlled entity runs its own full simulation� and also runs the DR model for itself	
It keeps track of the actual behavior and compares it with the one predicted by the last sent
update message	 When these two values di�er more then prede�ned �� it sends another update
to synchronize the behavior of all its copies on all hosts participating in the simulation	 This
way the distributed database is kept synchronized with lower communication cost	

In addition the entity sends out messages carrying the information that the entity is still
!alive�	 This is happening in prede�ned time intervals	 It also serves the purpose of delivering
the information about the state of the entity to a host� which joined the simulation after it has
already started	 If update message gets lost too many times or the entity �the host of the entity�
leaves the simulation� the entity is considered dead	 It is not a part of the distributed database
anymore	

Updating the state and behavior of the entities based on the dead reckoning signi�cantly
reduces the tra�c on the network	 Unfortunately� this method does not change anything on the
fact� that the data has to be broadcast	 It is important to keep in mind that the broadcasting
not only reduces the performance of the simulation� but also negatively in�uences the scalability
of the system	 Even with the dead reckoning employed� the limited bandwidth of the network
remains an issue	 There is only so many entities� which can broadcast their update messages
through the network	 Complex virtual environments can consist of hundreds or thousands of
such entities	

Another improvement to the communication scheme for multi�user VR system is based on
location sensitive �ltering of the update messages	 The principles of it are discussed in the next
paragraphs	

��� World spatial subdivision and Multicasting

The attempt to reduce the cost of keeping the distributed database consistent� leads into farther
more examination of the communication scheme �broadcasting�	 It is obvious that each entity
in the distributed environment needs to track only those changes in the world database which
take a place in a !near� surrounding area of the entity	 Dividing the world into areas � zones is
the idea behind the message �ltering	

Each entity participating in the simulation has its Area of Interest�AOI�� consisting of zones
!visible� from its location	 For each of the zones a multicasting group is created	 There is
a multicast server chosen for each group	 When any host sends a message to the multicast
server� it is distributed to all hosts that belong to the particular multicast group	 This way the
entity�s host is receiving only those messages which carry information about changes in the area
of interest of the particular entity	 In order to make the multicasting work properly� zone to
zone visibility has to be de�ned	

If an entity is mobile and capable of changing location� it is important to ensure that its
area of interest is also updated	 If a new zone is added into the AOI of entity� the host must

start to receive the messages corresponding to this zone	 There are still open questions mainly
related to the de�nition of the zones�

� How to divide the world into the zones"
� How to �nd the zones directly visible from the current zone"
� How to �nd the zone we are currently in"

Many di�erent ways to solve these problems exist	 Some might be better than the others	
The way� how the scene is partitioned much depends on the character of the virtual environment
and the type of the simulation	 For example in DIS �section
	��� the cells are hexagonal which
is well suited for military simulation	 For architectural walkthroughs though� hexagonal cells
don�t provide satisfactory results	 It is due to not respecting the topology of the scene	

Previous experience with the scene subdivision led us to an idea to partition the scene
accordingly to direct � global visibility 	 Since the investigation is not �nished� we can not
present any concrete results yet	 At least we want to give a brief description of the main ideas
employed in our method	

� Global Visibility Algorithm

In this section we will give a quick overview of the algorithm for global visibility computa�
tion	 The algorithm attempts to divide the scene into areas� where the direct visibility can be
precomputed	

We de�ne scene to be the bounding box of all objects �polygons� referenced in the world
database	 First a spatial subdivision of the scene is performed	 During this phase the scene
is divided into convex �D volumes called cells 	 The spatial subdivision algorithm is based on
Binary Space Partitioning �BSP�	 We subdivide the scene recursively by a plane which is de�ned
by the largest opaque polygon in the current cell	 Small details are not considered occluding
and are ignored during the subdivision phase	

The result of the subdivision is a graph structure� where nodes represent the cells	 Two nodes
are interconnected by an edge� if the corresponding cells share a boundary	 The boundaries �in
case of �D space� are �D convex polygons explicitly constructed in each subdivision step	 All
cells whose representation in the graph structure are connected by edges are said to be neighbors	

We de�ne portal as a non�opaque convex part of the boundary	 It is clear that one can see
from one cell to its neighbors only through the portals	 To see from cell to another one which
is not a direct neighbor is possible only through a sequences of portals	 We construct portals
as a convex decomposition of a di�erence of a boundary and union of polygons laying on the
boundary	 Result is an Adjacency multi�graph� where two nodes �cells� are connected by an edge
if they share a boundary with at least one portal	

Using spatial subdivision information� we can examine whether two cells are mutually visible	
The algorithm is based on proo�ng existence of a stubbing line through a sequence of portals
between these cells	 This is examined by an depth �rst search traversal through the adjacency
graph	 In each step of the traversal� the set of portals is tested for an existence of a stubbing line	
This is done by transformation of the portal edges into Pl#ucker coordinates system and solving
a d�dimensional linear programming problem �d � �	 This process is called static visibility
determination	

Result of this algorithm is a non�regular grid� where the cell to cell visibility is correctly
determined	 Each cell of the grid represents one of the multicast zones	 All the cells which are
said to be mutually visible create the AOI of an entity located in one of these cells	

So far we have implemented and tested spatial subdivision algorithm on Silicon Graphics
machines	 We are currently working on polygon set operations for portal enumeration and static
visibility algorithm	

� Conclusion

To conclude this paper we would like to recapitulate of what we consider to be essential for
scene description language for multi�user distributed virtual reality simulation	 We have showed
that it is not enough to provide language only for the geometry de�nition of the entities	 In VR
simulation� there are many more factors which make the environment !real� for human partic�
ipant	 Very important is a behavior and interaction with the entities	 The tools for describing
arbitrary complex behavior and interaction should be available in the scene description language
or its extension	 This give us a possibility to describe somewhat !live� virtual environment� in
which the human observer can participate	 This is closely related to an extensibility issue of the
language	 The language should allow extensions in all aspects of functionality	

The authors of the language ought also to take into consideration the fact� that the hosts
involved in the simulation are not connected into a local subnet� but can be placed all over the
world	 One could say it is more a problem related to a communication layer of the simulation	 As
we have shown the communication can be signi�cantly reduced by adding more autonomy into
the entities description �dead reckoning� and also by !smart� subdivision of the scene �multicast
zones�	 If the scene is subdivided accordingly to its topology� the communication demands can
be signi�cantly reduced	 In our research we promote the idea of supporting both formats�

� undivided world database
� world database divided into the multicasting zones

The scene subdivision reduces not only the amount of communication� but also can positively
in�uence the memory requirements for storing the scene on each host	 The time needed for the
rendering of the scene subset is clearly shorter then dealing with the whole scene	 Each host
has to store and render only those parts� which are in AOI of its user	

We don�t consider this paper to be a complete and exhaustive illustration of all the problems
related to MUDVRS	 We have chosen only those� which we believe are related to the language
for the virtual environment scene description	

References

�
� Bell� G	� Parisi� A	� Pesce� M	� The Virtual Reality Modeling Language� Version
	� Speci�
�cation	 Silicon Graphics Inc	�
��
	

��� Fuchs� H	� Kedem� Z	� H	� On visible surfaces generation by a priory tree structures� Com�
puter Graphics �Proc	 SIGGRAPH �$���
����� July
�$�� pp	
���
��	

��� Stamoe� D	� Roehl� B	� Eagan� J	� Virtual Reality Creations� Waite Group Press� CA�
���	

��� %Skr&a%sek� J	� Tich&y� Z	� Z
aklady aplikovan
e matematiky �� SNTL� Praha�
���	

�
� Teller� S	� J	� S'equin� C	� H	� Visibility preprocessing for interactive walkthroughs� Computer
Graphics �Proc	 SIGGRAPH ��
� �
����
��
� pp	
�$�
�$	

� � Teller� S	� J	� Computing the Antipenumbra Cast by and Area Light Source� Computer
Graphics �Proc	 Annual conference Series��
���� pp	 �� ��� 	

