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Abstract

The paper shows how two powerful techniques for supporting data exploration of multi-
dimensional data can be combined in a tool for this purpose. The techniques, cluster analysis
and graphic visualization, are briefly presented and discussed as modules of a prototype. Its
performance is illustrated by experiments resulting in cluster configurations where the value
distribution of “underlying” dimensions are visualized with colors or shades of grey.

1 Introduction

A system which integrates cluster analysis and visualization has been developed to meet an
often felt need for this special kind of tool for data exploration in scientific, industrial and
everyday applications. The prototype has preliminary been called the Cluster Analyzer &
Visualizer — or CAV for short and this paper discusses some experiences from its develop-
ment and present performance.

The epoch we are living in at present is getting less “industrial” and more “informational”. In
some areas this process has been going on to such an extent that we are presented with
difficulties in surveying all the information offered and we find it hard to navigate through
it to get what we want or to discover unexpected things. The tool presented here is an attempt
to combine two techniques of making especially multidimensional data more graspable —
cluster analysis and data visualization. The development of these techniques has essentially
been parallel with that of the computers and their usability depends heavily on the latter’s
performance.

2 The Structure of CAV

The development of CAV has included several aspects:

requirements presented by a number of “real-world” applications

choice of clustering methodology, algorithms, and implementation environment
experiments with various types of visualization

steps toward an integration with human-computer interactive facilities,
aiming at a powerful tool for information exploration and visualization.

In [Hagman 94a] these aspects are presented more in detail along with the terminology that
will be used here.

2.1 Data import format

CAV accepts pattern matrices and proximity matrices in plain ASCII format either as tables
with rows and columns or as lists (in case the table would be too big to handle with available
editors). Empty cells are allowed for and the proximity matrices are supposed to be marked as
to whether the values denote similarity or dissimilarity.

2.2 Data processing

The data are equalized before they are normalized. Since equalization works with relative
values such as the proportion of the standard (or maximal) deviation to the mean value for
each featurel, the values do not have to be within the same range when comparing their rela-
tive spread. CAV checks both the mean deviation and the maximal deviation in order to
detect single, extreme cases. Then, when the internal variation has been “compressed” or
“blowed up” to be within a user-specified relative range, the values are normalized.

1 or ‘attribute’, ‘parameter’, or ‘column’.
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Missing data do not affect the equalization. Mean and maximum values can be calculated
anyway out of the data actually supplied. Whether this is correct is discussed in the litera-
ture. One suggestion is that missing data should be filled in by the mean value. Another, more
elaborate proposal is that a pattern which is lacking a value for a certain feature could have
this value calculated by comparing (seemingly ignoring other possibly absent data) with the
n patterns most similar to that pattern.

2.2.1 Pattern matrix
The operations on the original matrix result in a normalized and equalized pattern matrix.

2.2.2 Proximity matrix

The pattern matrix underlies the calculation of the proximity matrix. For each pair of pat-
terns the sum or product? of the differences of their corresponding feature values is calculated.
Sums are then divided by the number of comparable features (i.e. where neither pattern had
an empty cell), giving the proximity index for that pattern pair. Eventually this process
yields a proximity matrix that could be used directly as input for future runs. It is also possi-
ble to analyze the pattern matrix vertically instead of horizontally. Then the features are
compared as to their covariance through the patterns. Whatever is analyzed, patterns or
features, the term ‘item’ will be used henceforth.

2.2.3 Dendrogram

The proximity matrix is passed on to a procedure which builds the corresponding binary den-
drogram. At present, an agglomerative, hierarchical clustering is carried out which itera-
tively merges the rows and columns of the most similar pair of items while simultaneously
joining the corresponding subtrees in a new node. The output of all three steps described in 2.2.1
through 2.2.3 may be downloaded to separate files for special examination.

2.2.4 lteralive procedure

The next phase is an “animated” clustering, currently on a 2D scatter plot. The algorithm is a
variant of the iterative one presented in [Sammon 69]. In CAV the items are represented by
small, mobile labels on a 2D surface where they move around, driven by their interrelational
forces of attraction and repulsion, like the balls in billiards. They continue to move until a
satisfactory low-stress configuration has been reached. The criterion for satisfaction is given
by the user; a typical one is to let the configuration adjust its shape until no new minimal
stress value has been encountered during the latest n movements, having n set to some suitable
value. Different initial configurations have been tried for the same proximity matrix and
with very rare exceptions they yield the same final result. The crucial thing is to avoid cases
where items are too astray to make it on time to reach their “home cluster” before other
clusters are formed in its way blocking it. To minimize this risk the dendrogram is used; the
order of its leaves from left to right is a kind of 1D representation of their internal order and
that is followed when the items are lined up diagonally over the screen3. This speeds up the
2D clustering process considerably and straightens the item trajectories.

A comparison of [Sammon 69]’s Euclidean-based projection [Jain & Dubes 88, p. 39] of the so-
called ‘80X data’ has also been made with a CAV Minkowski-based projection (FIGURES 1a
and 1b). The [Sammon 69] method gives good results and today’s computers, as compared with
those of the ‘60s, offer possibilities of another magnitude concerning execution time and
memory. Other methods that also involve an iterative reshaping of the configuration have
been proposed; one of them is simulated annealing [Kirkpatrick 83], [Bell 90], [Chalmers &
Chitson 92] and below neural networks represent yet another.

When the best configuration has been found, a validation of the clustering can be done. In a
series of tests the program was fed with proximity matrices describing 2D distances between
corners of various known geometrical shapes which later during the clustering process have
gradually re-emerged on the display. Another example of this is given in section 3.1.

2 Depending on whether Manhattan distance or Euclidean distance is preferred.
An alternative is to start by forming a circle.
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Ficure 1a Euclidean projection of the ‘80X’ FiGure 1b Manhattan projection of the ‘80X’

data by [Sammon 69] from [Jain& Dubes 88]. data by CAV.

2.3 Visualization

We proceed to the next module, which is a more advanced visualization where shades of grey
or colour are added to the 2D cluster configuration. Both the grey shades and the colours
constitute interval scales with a finite number of degrees which, however, depending on the
hardware, may be millions. Grey shades increase with the values from black to white. The
colour scale also runs from black to white but passes through blue, purple, red, orange, and
yellow. Note that colour intervals may be differently defined; frequently (mostly) the
interval is an inverted variant of the visible spectrum with the increasing sequence purple,
blue, green, yellow, orange, and red. This could be claimed to be a “natural” interval but even
the choice of the aforementioned interval could be supported by nature, i.e. e.g. an analogy of
metal at different temperatures (assuming a bluish metal) which explains the absence of
green. Anyway, [Brodlie & al. 92] state that:

" As yet there are no widely accepted standard colour scales or range scales (such as

logarithmic) for data exploration in visualization. A need is perceived for empirical studies
leading to the derivation of formal guidelines and reliable standards in this area. [p. 119]

For a further discussion of colours, see also [Tufte 83].

Shades or colours (henceforth: ‘intensity’4) could be used to enhance the groupings of the
clusters so that for each picture element (i.e. n*n pixel square, n21) of the picture the density
of items in that part of the configuration is represented by a value on the intensity interval.
To do this, the minimum and maximum densities have to be calculated in order to calibrate
the intensity scale and thereby use it optimally. When the impression of groups in this way
gets enhanced, each item contributes to its “background” shading/colouring by its mere
presence. All items contribute equally to the intensity distribution throughout the picture.
This is illustrated by the FIGURE 2.4a.

Now, it is also possible to associate different values to the items — values, for instance,
corresponding to one of the underlying features (if the items correspond to the rows of an
underlying pattern matrix). In such a visualization, the intensity would reflect the distribu-
tion of that feature throughout the picture. Examples of this are the FIGURES 3x and 3y. Items
with missing data for the chosen feature can have their background intensity decided by
interpolating the intensities of the surrounding items. This could also be a way of estimating a
missing value, probably better than the assignment of the mean value, mentioned above, and
fully comparable with the method using the nearest neighbours.

3 Experiments

One of the many pattern matrices processed by CAV was a table® of the consumption per
capita of three types of alcoholic beverage (spirits, wine, and beer) in 32 countries. The re-
sulting 3D=>2D reduction and cluster configurations are showed in FIGURES 3.1a through 3.3.

4 Note that this refers to the values of the underlying data features and not to the brightness on the screen.
Extracted from [SCB 91]
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Another pattern matrix, provided by [Hofstede 91], characterizes some fifty countries accord-
ing to the four dimensions ‘individuality’, ‘masculinity’, ‘power distance’, and ‘unceritainty
avoidance’. The cluster configuration of this 4D=2D reduction is shown as part of the
FIGURES 4.1 and 4.2.

CAV has also been fed directly with proximity matrices. “Semantic spaces” for part of the
content of a Swedish thesaurus have been generated where the words were clustered according
to their co-appearance in definitions. The arrival of computers has made possible many
interesting experiments with automatic (re)construction of thesauri [Morris & Hirst 91],
[Crouch & Yang 92]. In addition, we are currently experimenting with clustering newspaper
articles of different genres based on the presence of certain word stems.

A special type of proximity matrix is the asymmetric one, i.e. where the relation A—B is not
the same as the relation B—>A. An example of this is the speakers’ asymmetric sequencing in a
discourse and such a matrix was analyzed and visualized in e.g. [Allwood & Hagman 94].
Moreover, similar experiments have been done with the same data as are partly presented in
[Eikmeyer 92] (i.e. confusion and association matrixes) — in collaboration with this author.
One of those experiments is the following.

3.1 Regeneration of a Map from a Road Distance Table
In this experiment a table of road distances between 11 cities (in FIGURE 2.1) was fed into
CAV as a dissimilarity matrix.
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TABLE 2.2 shows this matrix and FIGURE 2.3a shows the resulting dendrogram after a single-
linkage hierarchical clustering based on Manhattan distances. After letting the forces of
attraction and repulsion move the city labels around on the 2D “animated” clustering display
for a couple of minutes, the low-stress configuration shown in the final picture of FIGURE 2.4a
is reached. Note however that, of course, this configuration has no dimensions or explicit
axes; its form is completely determined by the intercity relations. The fact that even the
orientation of this picture so closely coincides with FIGURE 2.1 is accidental; it could as well
have been rotated or mirror-inverted.

3.2 Cluster Analysis and Neural Networks — a Comparison

The dissimilarity matrix in FIGURE 2.1 was also used as input to a self-organizing Kohonen
mapb. Output of this approach is shown in TABLES 2.3b and 2.4b. TABLE 2.3b shows the
similarities between a city’s distance pattern to all other cities, where the mean similarity
distance is assumed to be 100 with a standard deviation of 27. A low similarity distance
indicates that the cities have a highly similar distance pattern. The cities have been put
together into five groups for which the group internal similarity is significantly high (i.e.
the similarity distance is below 100-27=73). Compare this table with the dendrogram in
FIGURE 2.3a.

He | Ha | Bo Go6 | Vb Jo Nid | Vx Ka Vv Li

He 47| 104] 109] 117 87 90| 119 126] 123 121
Ha [ 103 108 117 90 92| 123 1301 126] 124
Bo 50 62 79 87 126] 131] 128] 127
Go 57 85 92| 132] 136] 134} 132
Vb 77 83| 120 122]  120] 119
Jo 50 82 86 83 82
Ni 77 79 79 77
Vx 52|l 106] 109
Ka 98| 103
Vv I 50
Li [

FIGURE 2.3b City groupings (framed cells) as suggested by the neural network in this
modified version of TABLE 2.2 .The mean distance here is 100 (Courtesy of H.-J. Eikmeyer).

The data were represented in the neural network by a 2D 10x10-cell Kohonen map and one of
the best output results is shown in FIGURE 2.4b, where the city abbreviations in the cells
reflect the cities’ “area of dominance” and distance relations’. As well as in FIGURE 2.4a,
even in this configuration there are no “natural axes” as could be claimed for FIGURE 2.1 but,
nevertheless, the similarity among all these three figures becomes clearer when we turn
FIGURE 2.4b 90° clockwise and then rotate it along its vertical Vb—Ka/He axis.

3.3 Colouring and shading

The intensity shading or colouring of the 2D configurations has invited to many experiments.
The principle of assigning intensity to each point of the picture was described above. In one
type of visualizations8 the isosurfaces (areas of the same intensity) are indicated only by
their boundaries, the isolines. Often height is marked in this way on topographic maps.
When a geometric third dimension as height is visualized it often has to be shown in
perspective to render the effect of 3D. Such “3D” visualizations could also be combined with
intensity hues that either show the same feature as does the height dimension (i.e. the same
colours on the same levels) or that show yet another feature with intensity fields running over
hills and valleys independently of these.

All the FIGURES 3.1a through 3.3 are based on the same set of data, mentioned above, and
their cluster configuration is identical. In FIGURES 3.1a and 3.1c the value distribution of the

6 By H.-J. Eikmeyer and his colleagues at the Dept of Lin istics, University of Bielefeld. For related
reading, see e.g. [Ritter & Kohonen 89] and [Eikmeyer 92].

For an interesting analogy: cf. [Lin 92].
8  See [Brodlie & al. 92] for a classification of visualization types.
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Bo | Bo | Bo |BoGo| Go |GoHa| Ha | Ha | Ha | Ha
Bo | Bo |BoGo| Go | Go | Go |GoHa| Ha Ha |HaHe
Vb |BoVb|BoGo| Go | Go | Go |GoHa|HaHe| He He
Vb | Vb |Nivb| GoNi|GoNi| GoJo| Jo | Helo| He | He
Vb | Vb |NaVb| N4 |JoNid| Jo Jo Jo He | He
Vb |NiVb] Nid | N4 Ni Jo Jo Jo |JoKa| Ka
LiVb L\illf Ni | Na {JoNi| Jo | Jo [Joka| Ka | ka
L | L |LiNa|Navv|Navv]Jovv| Jo J‘;Iia KaVx| Ka

Li Li |LiVv] Vv | Vv | Vv |VvVx| Vx | Vx |KaVx

Li Li |LiVv] Vv | Vv | Vv |VvVx|] Vx | Vx | Vx

¢ FIiGURE 2.4b Kohonen map based on TasLe 2.2 (H. -]. Eikmeyer)

FIGURE 2.4a Stepwise reshapening in five consecutive cluster configurations generated by CAV.
Starting from a diagonal line-up of the leaves of the dendrogram (FIGURE2.3a), the ‘stress’ de-
creases as the city labels (centered at the actual city coordinates) move according to the internal
forces of attraction and repulsion among the cities. The ‘stress’ is the discrepancy between the
distances in the dissimilarity matrix (TABLE 2.2) and the current configuration.

features ‘wine consumption’ and ‘spirits consumption’, respectively, is visualized®. Note, by
the way, that the items in this case already have a natural configuration suggested by their
geographical extension and that this as well could have been chosen as the configuration.
Then, however, we would suffer the disadvantage of having large areas to which no values
are associated (e.g. the areas between the European countries and JAPan, South AFrica, or
PERu). To illustrate a situation of data exploration and the possibility to colour the
configuration according to other features which have not contributed to the clustering of the
data, FIGURES 3x and 3y are added. There, in the same configuration the reported rates of two
different causes of death are visualized.

The cluster configurations of the [Hofstede 91] data in FIGURES 4.1, and 4.2 have been briefly
commented upon. In Figure 4.1 the value distribution of the feature dimension ‘individuality’
is visualized with intensity less smoothed than it is in FIGURE 4.2 which shows the value
distribution of the feature ‘masculinity’. .

9 See [Hagman 94b] for colour versions of these figures.
v
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Since all colours can be generated by combining the three elementary colours red, green, and
blue, a special possibility is offered when one wants to visualize the value distribution of
exactly three features on a 2D or 3D scatter plot or cluster configuration; each feature is
simply associated with one of the three colours. This is described e.g. in [Ammermann &
Cavalli-Sforza 84] where each colour was associated with one of the three principal
components of a genetic analysis of the populations of Europe to try a hypothesis of
prehistoric migration waves from Asia. The 2D representation in that study was a map over
Europe and part of Asia and it was coloured in this way ...

... to take advantage of the power of the human eye to sum elementary colors and thus
synthesize the information contained in the first three components, which together account
for almost 60% of the information present in the original set of genetic data. It was heartening
to find that the patterns obtained were in basic agreement with those expected under the
demic hypothesis.” [p. 105]

FIGURES 3.2a and 3.2c are monochromatic variants of FIGURES 3.1a and 3.1c, respectively, but
with another “smoothness” of the colour shading. Each of these figures has been coloured
with shades of just one colour: red and blue, respectively. FIGURE 3.2b visualizes the
distribution of the beer consumption per capita in the configuration with shades of green. The
synthesis of these three pictures is shown in FIGURE 3.3 and there, the transitions across the
four consumption corners ‘wine’, ‘beer’, ‘liquor’, and ‘(officially) neither of the three’ are
clearly visualized (not without some aesthetic appeal) with millions of colour nuances of the
spectrum which show the continuous transitions from one consumer category to the other.

4 Conclusion and Further Work

At present, the modules may be likened to the “turnkeys” [Brodlie & al. 92] which can be run
either independently or as integrated parts of a so-called application building system. Steps
are taken to integrate all or part of the modules in a more powerful system for information
exploration and visualization. The intent is to fuse CAV’s possibilities with those offered
e.g. by dynamic queries [Ahlberg & al 92], as well as other query devices [Ahlberg & Truvé
94], and tight-coupled starfield displays [Ahlberg & Shneiderman 94]. In this integrated
system, the CAV parts will contribute with the possibilties of displaying data in cluster
configurations and colouring this configuration universe or “starfield” in the ways presented
here. FIGURES 4.1 and 4.2 are early sketches that illustrate what a simple version of this
emerging tool could look like. These figures represent computer screens where the displays’
current output is a cluster configuration of a data set from [Hofstede 91]. The only widgets
shown are the four sliders, automatically created when reading the input file and assigned to
one dimension, plus a regulator for the intensity representation of selected features.

Both the kind and the degree of the interaction of a system for data exploration is highly
depending on the application and the expected type of users. As for university or industrial
researchers, they are to a greater extent expected to know their data sufficiently to try
different techniques for data processing and visualization. The extreme opposite type of
application is the public service tools, e.g. automatic library guides or similar [Salton & al.
94). In such a system a subset of all possible facilities may be chosen by the system developer,
leaving to the user less (but sufficient) freedom — and maybe less problems. Since the
requirements of interaction are not yet presented for the integrated tool for this information
exploration and visualization, its interactive part is still to be completed. Thus, its final
design will depend on application, user types, and, of course, hardware environment.
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FiGure 3.1a Cluster config. of the (reported) consumption of FIGURE 3.1c Same cluster as in FIGURE 3.1a. Highlights spirits
beer, wine, and spirits 1983-87, highlighting wine consumption. consumption. (Values missing for GRE, ISR and PER)

il

FIGURE 3x Clustered as FIGURES 3.1a & 3.1c. Deaths by cirrhosis FiGURE 3y Clustered as FiG:s 3.1a & 3.1c. Shows suicide rates
1982-86. (No values reported for PER,SAF, TUR,USR,and YUG) 1982-86. (No values for GDR, PER, SAF, TUR, USR, and YUG)

FiGURE 3.3 Polychrome synthesis of FIG:s 3.2a, 3.2b, and FiGURE 3.2c Monochr. (blue) smoothed version of FIGURE 3.1.c

110




jvaLves Ind M PwD UAv
abs 18 g 60 85
| rel -213 .

FIGURE 4.1 Example of interface of a oration. cluster configuration is the result of
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