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Abstract

This paper gives a complete analysis of the structure of segments (spans) of points with a constant
y-coordinate, which are observed in the Bresenham Slice algorithm. In particular, we show that this
structure is related to the greatest common divisor of the end-point coordinates.

1 Introduction

It is an old problem to find an appropriate picture of an Euclidean line in raster space. A widely
used algorithm was proposed by Bresenham [1] in 1965. Further improvements have since been
published (See [2] and references there). The number of operations for algorithms mentioned
above is linear with respect to the number of points approximating a line. The recent trends
in improvement of line interpolation methods consist in new algorithms with smaller number of
iterations [4, 3]. They produce more than one point during an iteration, resulting in smaller total
number of operations compared with original Bresenham algorithms. There is also another class
of algorithms which relies on certain tables containing structural information about the parts of
line approximation [11, 12].

The line segment and its raster space approximation is shown in Figure 1. It is intuitively clear
that for a line in the first octant (derivative is from the interval < 0,1 >) a good approximation
is obtained when exactly one point of the line segment approximation lies on every vertical line
of the grid. Its y-coordinate is the y-coordinate of the nearest grid point from the intersection
of the vertical line of the grid and the ideal line.

It is a well known observation that the above approximation of line leads to the structure like
in Figure 1, consisting of segments of points with constant y-coordinate. A closer look shows
that the segments posses rather regular structure. Roughly described, there is a starting short
segment, then a sequence of segments with length [ or [ + 1, and finally a short segment at the
end. In this article, the structure of these segments is investigated in detail. In particular, it is
shown that this structure is related to the greatest common divisor of the end-point coordinates.

We would like to stress, that there is also a different point of view [14, 13] which gives a similar
structural information. In particular, so called Freeman sequences can be used to analyse the
structure of those segments. The main difference between our approach and Freeman sequences
is that they are defined for infinite lines and as far as we know the greatest common divisor
structure has not been observed in this setting. Freeman sequences are mainly used for line
recognition which is an inverse problem of the one we are investigating here.

The article is organized as follows: in the next section some preliminary definitions and
assumptions are given, in the section 3 we derive an algorithm similar to the original Bresenham
Slice algorithm [2]. We do not focus on the optimization of this algorithms but rather we prepare
a method and terminology for efficient derivation of the main contribution consisting in the
analysis of the structure of segments arising in the Slice algorithm. The main section called
Generalized Slice Algorithm starts with some intuitive observation without which the following
derivation could look rather ”mysterious”. Finally, we comment some possible directions of
further research.
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Figure 1:

The transition points are labelled with a bullet. Point E is also a transition point because of a constraint in
the inequality (1).

2 Preliminaries

A set Z? (all integer pairs) is interpreted as embedded in the Euclid plane R? and is called
raster space. The first octant will be a set of ordered pairs (z,y) of integers defined as: FO =
{(z,y) € 22 C R?* | 0 < y < z}. The basic assumptions of our paper are that line segments under
consideration have integral start-points and end-points. Only line segments in the first octant
are analysed because a general line segment can be transformed to the first octant with a simple
transformation.

An accurate formulation of the line segment approximation is done using a definition of a
digitalization scheme which is a mapping from Euclidean plane R? to the set Z? of all integral pairs.
The most common digitalization scheme is a scheme called mid-point. In the analysis which follows,
we do not need to deal with the formalism of digitalization schemes. What is sufficient, is to
know that for the mid-point digitalization scheme the following holds: on each vertical line z = ¢
of raster space lies exactly one raster point, and the y-coordinate of this raster point equals y
when for the exact intersection of a given line with the vertical line holds y—1/2 < yezacr < y+1/2.
The comparison of various digitalization schemes together with the corresponding formalism can
be found for example in [5], the basic algorithms in mid-point scheme are also described in [10].

From the above basic property of the mid-point digitalization scheme the approximation of a
line with starting point S = (0,0) and ending point E = (H,V) in the form of an inequality is:

|4 1

1
—_—— < —2 < -
y-5<ge<yts (1)

The inequality is solved for all integer solutions (z,y) satisfying the condition z € {0,1,2,...., H—
1,H}. The linearity implies that also y € {0,1,2,....,V — 1,V}. From this inequality two different
systems of inequalities can be derived. The problem can be reformulated to the form of a system
of H +1 inequalities enumerated by integral values of z running through the set {0,1,2,....,H-1,H}
with integral unknown y or to the form of a system of V + 1 inequalities enumerated by integral
values of y running through the set {0,1,2,...,V — 1,V} with integral unknown z. The former
variation leads to the Bresenham class of algorithms whereas the latter leads to the Bresenham
Slice class of algorithims.

3 Bresenham Slice Algorithm
Let us modify the basic inequality (1) to the form of V + 1 inequalities:

y-1<e< 0u+D @

where the inequalities are solved with respect to the integral unknown r and y =34, 0 <5 < V.
A system of inequalities is obtained:
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With the following new notation, 7’{7 = co + 3%, %g =c1 + 5, ro = Hmod 2V, r; = 2H mod 2V,
the system above can be written in the form of V + 1 inequalities:

™y—"To my+ro
—_ —_— < —_—
ciy —co + 2V <zLcay+tc+ 2V
where y is running through the set {0,1,2,....,V —1,V} and at the same time y enumerates the

inequalities. This system of inequalities is solved sequentially with respect to the integral unknown
z. It holds that each inequality has at least one integral solution z, some of them can have more.
First of all, the algorithm searches for the greatest integral element z for each inequality. At the
same time the algorithm uses the property that the smallest solution for the (j+1)—th inequality
is exactly the largest solution of the j — th inequality plus one.

Algorithm B

variable Y — y-coordinate of a transition point, variable STARTX, ENDX - starting
and ending x-coordinate,of the horizontal segment related to the transition point,
variable MOD — contains r1y + 7o mod 2V, it is supposed that values ro, co,r1,c1 are known
1. initialization,Y = 0;STARTX = 0; ENDX = ¢o; MOD = rq;
2. if(horizontal_segment(STARTX,ENDX,Y) == FALSE)

finish;
3. STARTX = ENDX +1; ENDX = ENDX + c¢1;
MOD = MOD +ry;
4. if(MOD > 2V) {ENDX = ENDX + ;MOD = MOD -2V}
5. Y=Y +1;
6. goto2;

procedure horizontal_segment(STARTX,ENDX,Y)
{ X = STARTX,
while(X < ENDX) {

output(X,Y);

if(X == H)
return(FALSE);
X=X+1; }

return(TRUE); }

We call a transition point the mesh point (z;,y;) where z; is the greatest solution for the j —th
inequality mentioned above. Transition points are coloured black in figure 1. We stress that the
(V +1) —th transition point has x-coordinate H because of a constraint in the basic inequality (1).
This analysis directly leads to the algorithm B in the following picture. In fact the algorithm
computes x-coordinates of transition points which are equal to [c;y + ¢o + '—‘%’-] where y = j,
0<j<V.

The algorithm B is equivalent to the Bresenham’s Slice algorithm [2]. We do not focus here
on the character of this equivalence. It can be derived from the theory in [8].

The run-length Slice class of linear interpolation algorithms has been developed and improved
in various ways [4]. The improvements lowered the number of iterations as well as the overall
number of additions and comparisons.
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4 Generalized Slice Algorithm

We would like the reader to adopt the following point of view. When H divides V, it is a perfect
situation where each segment has the same length with the augmentation that the first segment is
split to two parts. This splitting of the first segment is not due to the mid-point scheme constant
term but due to the constraints coming from the finite length of the line considered. Now, let
us suppose that we have a situation that H = 17 and V = 5. We can interpret this situation as
getting a certain defect with a value H mod V = 2 and the defect must be spread along the line
in a linear way. So each segment has a basic length 5 and the defect is spread in a way that
some of the segments have length 6. One way how to do this, is to imagine the set of segments
as points on x-coordinate axis and the defect to be spread is put on the y-coordinate axis. To
know the distribution a line is drawn from (0,0) to (V, H mod V) and its raster approximation is
considered. As is shown later, the digitalization scheme for the defect distribution is not exactly
the mid-point scheme but is very similar. It has the following form:

y—a< %z<y+(l—a),0<a<l
However, the Slice algorithm can be easily modified to this scheme, so that the structure
of segments in the original problem can be thought as to came in a self-replicating structure of
segments of segments. Then, the process can be recursively continued to get segments of segments
of segments ... etc. The iteration finishes when the sequence (H,V, H mod V,V mod (H mod V),...)
stops. But this is the Euclidean algorithm for the greatest common divisor of numbers H, V.
Now, let us turn to the accurate derivation of the above intuitive observation. From this
point to the end of the article we adopt a slightly different notation. Instead of H,V the notation
Ho, Hy,..., Hy,...is used, where Ho > Hy > Hy > H3 > ... > H; > .... The binary function z—y mod z
is denoted by y dom z. The derivation starts with an inequality:

Hy Hp Hy Hy
—y———<z< 7Y+ 3
TR R AT 3)
where the inequality is solved with respect to the integral unknowns z,y and 0 < z < Hy,
0 < y < H;. It is advantageous for the moment to formulate the problem once again in the form
of one inequality. Then inequality 3 can be written as:

Hy _ Hy (HomodH1 _Hom0d2H1) _L_’Ig Hy (HomodH1 HomOdZHl)
g lv— gl + 7Y A <z <Slglv+lggrl+ 7Vt —m, .

1

Previous section implies that it is sufficient to focus only on the right hand side inequality. It
is easy to see the integral solutions of the above inequality as far as the error term e; < 1. Just
the value of y is taken and there is a segment of solutions ((z,,), (z; + 1,¥),...,(zs + k,y)) with
length I_%E-J As far as the error term is also considered, the situation becomes more complicated,
but the integrality conditions on the error term e; can be expressed in the form of the inequality:

z2<e < z+41, 0 < z < Hymod Hy
after suitable renaming of variables, reformulation and substitution H; = Ho mod H;:

H1 Hol’IlOd?H] Hl Ho dom 2H1
—y-———<z< =Yyt —
H, 2H, H, 2H,
where the inequality is solved with respect to the integral unknowns z,y and 0 < z < Hj,
0 < y < Hy. When Homod 2H; is denoted by H{ and Hyo dom 2H, by H{ the following inequality
is obtained:
H, Hj Hy HY
Dy Slcpe Xy 1 4
oY T2, ST <YYo, *)
Clearly this inequality has the same form as the inequality 3, but on the other hand it does
not represent mid-point digitalization scheme any more. However, the difference is only in the
constant term so the Slice algorithm can be easily adapted, just changing the initial condition.
There is also another irregularity, which seems to be unavoidable, being the change of inequality
sharpness from the right hand side to the left hand side occurring between the first and the
second inequality. The remaining inequalities have the same structure from this point of view.
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The construction can be inductively generalized to k steps obtaining:

Hy Hy (Hz Hy mod 2H1) Hy Hy (H2 Hy mod 2H1)
oy, | 20 dz oMo o <|=2 =0 g2 o, Homoce1
I'H1Jy |'2H1'| Hly 2H, <x_|‘H1Jy+l'2H1J+ H1y+ 2H, e1

H, H] H; H{ mod 2H, H, HY H; H{ mod 2H,

ot S PR s B ds, _Aamoce2) « gL it B a3 4 21 ImoC 472

Ll -l (7Y 2 H, szl G\ gt —=m ), )
Hk—l Hl’c-l Hk+l Hlle—l mod 2Hk Hk—l H],g’._l Hk+1 H)"I_l mod ZHk
L Hy Jy_l‘2HkJ+ Hy vy 2H; <z<| Hy Jy+|‘2HkJ+ Hy y+ 2Hj e

The result is a system of inequalities with the property that the k-th inequality describes the
behaviour of the error term of the (k-1)-th inequality and admissible intervals for z, y subsequently
shrink according to the sequence < 0,H; >,< 0,H; >,< 0,Hz >,...,< 0,Hr > .... Because the
sequence Ho, Hy,..., Hy is convergent to the greatest common divisor of the numbers Hy, H,, the
process stops in this stage. The last inequality has the following form because H; divides Hi_;

and the term H—}'}’Fy vanishes from the error term:
Hy Hi_, Hj_, mod 2H, Hi_y H{_, H}_, mod 2H;
l‘Hk Jy—l‘2HkJ+ 2H; Sz<l‘Hk Jy+|‘2HkJ+ 2H .

This inequality has a simple structure, it contains exactly Hy = gcd(Ho, H;) segments with
length Hi_1/Hy. In fact, it contains H; + 1 segments beca}Ilse the first segment is split to the
starting and ending part according to the constant term L};;I‘;‘J

So the complete description of the structure of segments in the Slice algorithm has been
obtained. An immediate result of this analysis is, for example, the answer to the question what
are the coordinates which deliver a most complicated structure. They are exactly the worst case
of Euclidean algorithm, so the answer is (Ho, H1) = (Fy, Fn41) where F,, denotes Fibonacci numbers
(FO':O)Fl:lyFn: n—l+Fn—2)- ‘

There are many possibilities how to use the above analysis to construct an algorithm. For
example, a recursive algorithm can be constructed in a straightforward way. Another possibility
is to use a fixed number of levels, say I, from the inequality system (5) in the form of embedded
cycles and instead of going in the sequence as far as the greatest common divisor is obtained,
Slice algorithm can be used to solve the [+ 1 — th inequality.

5 Conclusions

Even if the analysis provided in this article do not deliver a faster algorithm from known ones in
this stage, we suggest that it can be used to augment Slice-like algorithms. The deeper inside into
the structure of mid-point digitalization scheme could be also worthwhile for various algorithms
which use tables to speed up their function.

There are some immediate directions of possible research leading from this article. We sum-
marize them in the following notes.

e the table can be constructed containing at the place (i,j),i > j values (j,7 mod j, [#/j]). This
table contains all information necessary to avoid the division operations in generalized Slice
algorithm. Tabular approach can be also combined with approximate division using only
leading bits. There are also other methods how to avoid expensive division operation in
Slice-like class of algorithms [4].

e because the "gcd” version of algorithm which would use all structural information until the
greatest common divisor of Ho, H; would contain too many expensive divisions, we suggest
to take three resp. four levels and to combine them with tables and approximate division
to obtain a very fast algorithm.

e there is also a question how to speed up the computation of quantities Hi, H; by relating
them to the values of Hy.
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