Optimizing Path Tracing using Noise Reduction
Filters

Henrik Wann Jensen
Niels Jgrgen Christensen
Dept. of Graphical Communication
Technical University of Denmark
fax: +45 45 93 83 17 phone: +45 45 93 41 66
e-mail: igkhwj@unidhp.uni-c.dk or igknjc@unidhp.uni-c.dk

November 13, 1994

Abstract

The problem of global illumination can be solved using path tracing. Unfortunately
path tracing gives very noisy images. This noise is mostly caused by the indirect
illumination reflected diffusely. The common way to reduce the noise is to use more
samples/rays pr. pixel. However, the convergence speed in path tracing makes this
strategy very costly. In this paper we propose a technique in which light reflected
diffusely two times is separated from the final solution. This light is filtered by different
noise reduction filters and then added to the remaining solution. In this way we
avoid blurring the image and at the same time we are able to reduce the noise level
significantly.
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1 Introduction

In 1986 Kajiya [Kaji86] introduced the rendering equation which is now well established as
the theoretical foundation of global illumination.

Lo(%,80,80) = Le(x oo,¢,,)+/ / 256, 05, 83) £+ (X, B, B3 B0, b0)| cOs ;] sin 6; d6; dip;
(1)

where
(0:, ¢:) is the incoming direction
(05, ¢,) is the outgoing direction
L,(x,0,,¢,) is the outgoing radiance
Le(x,0,,¢,) is the emitted radiance
L;(x,0,,¢,) is the incident radiance :
fo(x, 0;, ¢i; 0., ) is the bidirectional reflectance-transmittance distribution function
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At the same time Kajiya introduced path tracing which is a Monte Carlo based ray
tracing solution to the rendering equation. Path tracing is however a very costly method.
In order to sample the indirect light properly it is often necessary to use more than 100
samples/rays pr. pixel. If fewer samples are used the result is disturbing noise in the final
image. The noise can be avoided by checking the variance of the samples at each pixel. If
this variance is not below some threshold then more samples has to computed. This method
ensures that we do not use ”to many” samples but it does not reduce the substantial amount
of rays required to get an acceptable image.

To solve this problem Ward et al. [Ward88, Ward92a] introduced a caching scheme
in which the indirect illumination is stored within the model. In this way the indirect
illumination does not have to be sampled at every pixel. Instead it can be either interpolated
or extrapolated from previously calculated values. Using this strategy it is possible to reduce
the number of samples needed significantly. The interpolation strategy can however consume
quite a lot of memory and the exchange of global information makes the method difficult to
parallelize to a larger scale.

In [Lafo94] a constant ambient term is used in the Monte Carlo integral. This technique
does however only affect the result if it is used in the termination of the light rays e.g. as a
part of Russian roulette. Furthermore the constant ambient term must not differ to much
from the ambient light in the model since this raises the noise level rather than reducing
it. The method is therefore less useful in scenes with varying indirect light. [Veac94] uses
bidirectional path tracing in which a light path is constructed by connecting a ray from
the eye with a ray emitted from the light sources. This technique is especially useful in
scenes with a lot of indirect light. The usage of this method is however quite subtle. It is
difficult to decide how many reflections the rays traced from the light source and the eye
must undergo.

Within the field of image processing the removal of noise from images is often done using
noise reduction filters [Gonz92]. This technique has also been applied to images calculated
using Monte Carlo ray tracing. Unfortunately filtering usually results in blurring of the
image. Rushmeier et al. [Rush94] compensates for this problem by using more complex
energy preserving non-linear filters with varying kernel sizes. They detect noisy pixels as
pixels that have a variance above some threshold after an estimated necessary number of
trials. These noisy pixels are then subjected to filtering. This is, however, problematic in
scenes which contains a Perlin like noise-based texture [Perl85]. If the texture does have
some high frequent "noise” then it will be seen as a candidate for filtering and this filtering
operation will blur the texture unnecessarily.

In this paper we investigate how noise reduction filters can be used to reduce the
noise/error in path traced images without increasing the number of samples. In order
to avoid blurring we only filter the indirect diffuse illumination, which is often the noisy
part of an image and in general slowly varying. These properties makes it a good candidate
for noise reduction filters. )

We do not discuss caustics which cannot be calculated very well with the standard
path tracing technique. This problem has been investigated in several other papers e.g.
[Arvo86, Ward92b] and [Jens94].

2 Sampling the Radiance

A path tracing solution consists of an image in which a radiance value is calculated for
each pixel. The pixel radiance is computed by averaging a number of sample estimates.
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Each sample consists of tracing a ray from the eye through the pixel based on some filtering
function. The radiance for each ray is determined from the surface that the ray hits. It
equals the radiance, L,(x, 0,, ®,), leaving the intersection point, x, between the surface and
the ray, in the direction, (8,,¢,), of the ray. L,(x,8,,¢,) can be found as the sum of the
emitted, the transmitted and the reflected radiance:

Lo(x, 00, ¢o) = Le(x, 007 ¢o) + Lt(x, 007 ¢o) + L,-(X, 00, ¢o)

where L. is the emitted radiance, L; is the transmitted radiance and L, is the reflected
radiance. In the following discussion we omit transmission which is treated analogously to
reflection. Likewise we also omit the direction parameters following each radiance value.

The term L, is computed using the rendering equation (1). The bidirectional reflectance-
transmittance distribution function f, can be separated into two components: A specular-
like part and a diffuse-like part. The calculation of L, is thus separated into the calculation
of a specular part L, , and a diffuse part L, 4.

L, = Lr,s + Lr,d
The calculation of L, 4 can be separated further into three components.

Lr,d = Lr,d,l + Lr,d,s + Lr,d,d
N — N’ N e’

direct caustics diffuse

where L, 4, is the diffusely reflected radiance due to direct illumination, L, 4, is diffusely
reflected radiance due to light reflected specularly from the light source, this is the term
giving rise to caustics. Finally the term L,g4q4 is diffusely reflected light that has been
reflected diffusely at least one time since it left the light source.

L, 44 contains almost no directional information and it is very costly to calculated using
path tracing. It is necessary to use several hundred rays pr. pixel in order to get a decent
estimate of L, 44 that is not to noisy.

Most of the noise in path traced images is a result of an inadequate sampling of L, 4.
That is, the term L, 4 4, is responsible for most of the noise in the image and since we are only
interested in removing the noise from the image we only have to filter L, 4. Fortunately,
L, 44 is often varying slowly and this makes it a good candidate for noise reduction filters.
Most noise reduction filters do not only reduce the noise they also remove sharpness from
the image. This is not crucial for L, 44 since it has a low gradient in most parts of the
image.

3 Noise Reduction Filters

The noise introduced by path tracing has a high frequency. At every pixel the noise is
uncorrelated and it has zero average value. This allows us to perform an efficient reduction
of the noise by low pass filtering the image. We can do this by performing a convolution of
the image f(z,y) with a spatial filter A(z,y) resulting in an image g(z,y), that is

g(.’l?,y) = h(xay)*f(x’y) (2)

The spatial filter h(z,y) determines the properties of the filtering-operation and in order
to keep the low frequencies the filter must capture the slow variations in the image. A
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Figure 1: Typical low pass filters

number of filters with this property are shown in figure 1. The linear filtering performed
using equation (2) does unfortunately not only remove the noise from the image. It also
removes all the high frequencies which results in blurring. This is especially the case with
the filter in fig. 1(b). A large filter is better at removing noise but it also results in more
blurring. The filter in fig. 1(c) puts more emphasis to the center pixel which helps avoiding
blurring but also reduces the effect of the low pass filter.

The loss of sharp detail due to blurring is an unwanted effect of the linear low pass filters.
Our objective is to achieve noise reduction rather than blurring and for this purpose there
exists a nonlinear filtering method known as median filtering. Using this filter each pixel is
replaced by the median of the pixel values in the neighbourhood of the pixel. This filter is
particularly effective when the noise is spiky.

The noise reduction filters presented do not process the pixels on the edge of the image.
This problem can be solved by either replicating the edge or simply by just copying edge
pixels from the source image to the filtered version. Replicating the edges is probably
preferable since this ensures some noise reduction on the edges whereas copying does not
give any reduction at all.

The implementation of these noise reduction filters is very simple. They are standard
tools in most image processing programs and source code is easy to find. Furthermore a fast
implementation of the median filter can be found in [Paet90] and a fast implementation of
convolution in [Wolb94].

4 Results and Discussion

The path tracing algorithm has been implemented in a program called MIRO written in C++.
The program has been tested under MS-DOS and UNIX. The test-results has been produced
using a parallelized version of MIRO distributed on 31 Silicon Graphics Indigo workstations.
All the images produced have the resolution 256x256 and each pixel is represented using
Wards real pixels [Ward91].

Two test scenes has been constructed to test the filtering techniques presented. The first
scene contains a red sphere on a white plane both illuminated by a sun and a cloudy sky.
The illumination from the cloudy sky is considered diffuse and it gives the scene a lot of
indirect light.

We have calculated a reference image of the first test scene using 1000 rays pr. pixel. The
reference image is shown in figure 2(c). In figure 2(a) only the L, 44 part of the reference
image has been shown. In this case L, 44 is all indirect illumination in the model and we
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(a) (b) ()

Figure 2: The reference image (c), the L, 44 part of it (a)
and the remaining light (b). (a)+(b) = (c).

Figure 3: Test scene 1 sampled with 50 rays pr. pixel.
(a) unprocessed version. (b) filtering applied to Lyg4.
(c) filtering applied to the completed image.
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(a) (b)

Figure 4: Test scene 2 sampled with 512 rays pr. pixel.
(a) unprocessed version. (b) filtering applied to Ly 4.

can see that it is only varying slowly. Subtracting fig. 2(a) from fig. 2(c) leaves all the light
that is not indirect and the resulting image is shown in fig. 2(b). This image corresponds to
the solution produced by simple ray tracing and it can be sampled adequately using only a
few rays pr. pixel.

Figure 3(a) shows the resulting image when test scene 1 is sampled with 50 rays pr.
pixel. This image contains some very disturbing noise. If, however, we separate Ly44 from
the image and apply noise reduction filter B (discussed later) and then add it to the rest of
the solution then we get the image shown in figure 3(b). This image clearly contains less
noise than the original image and the edges are not blurred. If we filter the complete image
using the same filter then we get the result shown in figure 3(c) and in this image the clouds
and the edges are clearly blurred.

Our second test scene is a gallery containing three pictures. In the middle of the room
there is a marble pedestal on which a teapot is placed. The floor is textured using a carpet
texture which has been created via bump-mapping and modification of the colour (this
means that the floor is supposed to look a little noisy). The gallery is illuminated by 4
spotlights, using one spotlight on each image and a spotlight illuminating the teapot. The
corners of the gallery and the ceiling is only illuminated by indirect lighting and this makes
the calculation of the overall lighting very costly to calculate using pure path tracing. In
order to get appropriate estimates of the light in the scene we had to use 512 samples pr.
pixel and still we got a very noisy image. The result is shown in figure 4(a). By filtering
the image using noise reduction filter B we get the image shown in figure 4(b). This image
clearly has less high frequent noise but it still has a little noise of a lower frequency on the
ceiling. This noise makes the ceiling look a little dirty. In this test scene the corners in
the image and the spotlight in the ceiling are blurred. The reason is that they are only
illuminated by L,44 and therefore they are blurred by the filtering. However since the
pictures on the walls and the teapot in the middle are much more bright and not subjected
to any serious blurring the image looks a lot better than the unprocessed version. It is also
important to notice that the noise in the carpet texture is not filtered and thereby blurred.
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Figure 5: RMS-error of path traced image with and with-
out filtering of (a) the complete image or (b) Ly 44 only

Instead the carpet keeps the noise which makes it look like a carpet.

Visual comparison of two images is nice but it is not satisfactory when we want to know
which of the two images is the "most correct” one. The most correct image is the image that
differs the least from the reference image which have been calculated using a large number
of samples so that we can have confidence in the radiance values estimated at each pixel.
We measure this difference or error by using the following error metric:

RMS-error = Z (Lpref — L,)?
all pixels p

where L, .y is the pixel value in reference image and L, is the pixel value in the test image.
The measured value is the square sum of the pixel values in the difference image obtained
by subtracting the test image from the reference image. This value is directly related to the
variance of our estimate (the test image) and as such it is a good representation of the noise
in the image. The value is dependent on the intensity in the image, that is the error grows
if we make the image brighter. However, this can be ignored, since we are only interested
in examining the relative effect introduced via the noise reduction filters.
Our test is performed using test scene 1 and we have tested the following 3 filters:

A is a simple low pass filter of size 3x3 as shown in figure 1(a).
B is the low pass filter shown in figure 1(c).

C is a median filter of size 3x3.

In figure 5(a) we have shown the effect of filtering when the filters are applied to the
complete image. We can see that we only get an improvement at low sampling rates where
the noise is large. Beyond approx. 50 samples filtering makes the image less correct and
this is naturally due to blurring. The errors around the edges are rather large and they
constitute a lower bound on the error when filtering. It is interesting to notice that median
filtering is worse than one of the convolution filters even though this filter blurs the image.
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(a) (b)

Figure 6: Bright versions of the difference images using
test scene 1. Darker areas indicate larger differences. (a)
difference between reference image and image sampled
using 50 rays pr. pixel. (b) same as (a) but with filter B
applied to L, 44.

Filtering L, g4 separately results in the graph shown in figure 5(b). The results have
clearly improved compared to the previous graph. We have removed a lot of the blurring
error and we are able to reduce the error with more than 100 % even at 200 rays pr. pixel
and this is a significant improvement since the convergence speed with path tracing is slow
(in general one has to use 4 times as many samples in order to halve the RMS-error).

Having seen that the error is reduced using filtering it could be interesting to know what
kind of error is left in the image. We have tried to visualize that by brightening up the
difference images corresponding to 50 rays pr. pixel on test scene 1. These bright difference
images are shown in figure 6. The image in fig. 6(a) is the difference image between the
reference image and the unprocessed version of the test image. In this image the error is
spread throughout the image. In fig. 6(b) the L, 44 part of the test image has been filtered
using filter B and as we can see the error is now concentrated around the edges in the image.
The error in the rest of the image has been reduced and the number of dark spots (the large
differences) has been reduced a lot — the error is more constant and therefore less visible.
The errors around the clouds are due to the fact that we only sample these using 50 rays pr.
pixel — this difference is, however, not visible in the complete image. In the areas around
the edges L, 44 is mixed from more objects during filtering and this gives rise to the error
seen. One might solve the problem by adding information to the image saying which object
is visible a each pixel. In this way it is possible to avoid filtering along the edge of an object
by just filtering pixels which shows the same object as all their neighbours.

We have only investigated a few filters all of them were 3x3 pixels. Better filters could
probably be found. For very noisy images larger filters could be used. Larger filters are
better at reducing the noise but they also result in more blurring so it clearly depends on
the image. The use of more complex non linear energy preserving filters [Rush94] should
also be investigated. One of the arguments in [Rush94] for using more complex filters was
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to avoid the removal of important details like high lights and caustics. Since we only filter
the indirect diffuse illumination we do not risk losing these details. The filters are still
interesting since they preserve the energy in the image. The median filter that we use does
not have this property. Furthermore more complex filters might help reducing the visible
blurring effects that still remain in the areas that are only illuminated by indirect diffuse
light.

The noise can also be reduced further by supplementing the filtering method with other
variance reduction techniques like [Veac94] and [Lafo94]. Filtering is especially efficient at
low sampling rates and this could be very useful in a progressive path tracing algorithm in
which intermediate results are visualized. An example of such a method is Chen et al.’s
multi pass method [Chen91]. For the irradiance gradient method in [Ward92a] the filtering
technique cannot be used since this method does not produce high frequent noise when the
sampling is inadequate. Instead of noise the indirect illumination contains artifacts like
edges and a wrong lighting level and this kind of error cannot be corrected properly with a
noise reduction filter.

5 Conclusion

The use of noise reduction filters on images produced using path tracing can clearly reduce
the noise in these images. We have shown that by filtering only the part of the light that
is mostly subjected to noise, the light reflected diffusely two times (L, 4,4), it is possible to
avoid most of the blurring artifacts normally introduced by low pass filtering. As indicated
by one of our test scenes we can reduce the RMS-error of the image by filtering only L, 44
even when the number of samples is high. This is not the case when filtering is applied to
the complete image, in this case the RMS-error is increased unless the number of samples
is low.

Our experiments showed that a low pass filter, which gives higher weight to the center
pixel and the nearest pixel and in this way reduces blurring artifacts, gives the best results
at higher sampling rates. The median filter is almost as good whereas a simple low pass
filter, that gives equal weight to all pixels, results in to much blurring.

Filtering L, 44 does however introduce error in the image. This error is mainly due to
the slight blurring around the border between to different objects. Along this area the use
of low pass filters causes the ambient light to be mixed between two objects. The error is
not very visible but it affects the RMS-error of the image.

The filtering technique can easily be combined with other variance reduction techniques
in order to make Monte Carlo methods more tractable. It could also be useful in a progressive
path tracing scheme in which intermediate results are displayed. These results could be
filtered before being displayed in order to improve the image shown.
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