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Abstract

Superquadrics are well known and often used 3D surface objects in computer graphics. They
are used for modelling parts of scenes that are then rendered using photorealistic image syn-
thesis algorithms (e.g., ray tracing). For some techniques, like texturing, which are part of
these rendering methods, the type of the parameterization of such a surface has to be chosen
carefully and is not intuitively obvious at first sight. There are cases, where the straight for-
ward extension of quadric parameterizations to superquadrics do not produce satisfying
results. We therefore investigate a number of different parameterizations in combination with
the corresponding formulas, and point out some significant differences between them.
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1 Introduction

Superquadrics are an extension of the basic quadric surfaces, which were introduced to the
computer graphics community by Alan H. Barr in 1981 [Bar81a][Bar81b]. Such a super-
quadric surface is often defined as a spherical product of two parametric 2D curves, resulting
in a parametric shape in 3D space.

Figure 1-1: Some superellipsoids, which form a special class of superquadrics.

Such spherical products of superconic curves, which are an extension of conics, define well
known and often used surfaces like superellipsoids or one or two sheeted superhyperboloids.
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Figure 1-1 illustrates the wide variety of possible shapes showing five superellipsoids with
different shape parameters.

The main use of superquadrics is to represent solids for modelling in computer graphics.
Algorithms to make these objects available for ray tracing were developed by Barr and
Edwards [Barr86][Edwa82]. Intersecting a superquadric surface with a ray does not depend
on the parameterization of the shape, but mapping 2D data, e.g. a texture, onto the surface
brings up the need of an appropriate parameterization.

Another example of an application, where the choice of the parameterization is very
important, is using such an object as projection surface for an extended camera specification
[GrLo94].

The choice of an appropriate parameterization depends heavily on the needs of the appli-
cation. It is therefore impossible to propose one of the huge number of possible parameteriza-
tions as the best solution for all the different purposes.

Because of the tight relationship (spherical product) between superquadrics and super-
conics, the problem of choosing a satisfying parameterization can be discussed for conics and
superconics instead. A comparison between some of these parameterizations will be useful to
determine, which one is the right choice for a given application. We therefore compiled a
number of parameterization formulas and pointed out some significant differences between
them.

2 The Spherical Product

Let us have a look at the spherical product first. If we have two parameterized curves g(u)
and h(v), the spherical product s(u,v)=gu)® h(v) defines a surface parameterized by
u and v [Hanr89]. It is given by

) (@) g ron) _[E
s, (u,v) |= ew)®nm) g,(u)-h,() |
s, (u,v) h,(v)

For example, if g(u) is the unit circle and A(v) the unit semicircle with h_(v) 20, we get the
unit sphere as the spherical product s(u,v) = g(¥)® h(v). Thus, u is often called the longitude
and v the latitude of s(u,v).

For many algorithms a normal vector is required at a surface point. As we are using two
2D curves g(u) and A(v) to form the spherical product, we can take, in case they exist, their
tangent vectors g (u)=(g, (u) g,y(u))T and h(v)=(h, (v) h,y(v))T to calculate a normal
vector at the point s(u,V).

Calculating ds(u,v)/du we recognize, that 5, (V) =(g, (1) g, (u) 0)" is a vector in
the tangent plane of s(u,v). Similarly, the calculation of ds(u,v)/dv leads us to another vector
in the tangent plane , which is given by s, (u,v) = (g, () - h, (v) g, (u)-h, (v) h,y(v))T.
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Thus the crossproduct s, (u,v) =s,,(u,v) X s, (4,v) is a normal vector of the surface at the
point s(u,v) and may be defined in the following way:

S, v)) (8, (W)Y (8. () -h, (V) 8y (u)-h (v)

Sy (U, V) |=| &y (1) [X]| g, (W) b, (V) |= =8 (u)-h,(v) |.

S (U, V) 0 h,(v) ) \(gw)" - g, w)")-h (v)
gt ... (—8,() 8.W)". a*is a rotated by /2 [Hill94].

With this method we can easily define quadrics and superquadrics as spherical products of
Some examples are listed in table 2-1 [MaTh87]:

conics and superconics.

g(u) h(v) s(u,v) = g(u) @ h(v)

circle with radius r circle with radius r, h, (v) 20 |sphere with radius r

circle linex=x_,>0 cylinder

circle line cone

circle ellipse with A, (v) 20 rotational (around z) ellipsoid

ellipse, parabola or linex=x_,,>0 elliptic, parabolic or
hyperbola hyperbolic cylinder

ellipse line elliptic cone

ellipse ellipse with h_ (v) 20 ellipsoid

ellipse ellipse with center, > a, toroid

ellipse one sheeted hyperbola one sheeted hyperboloid

hyperbola one sheeted hyperbola two sheeted hyperboloid

ellipse or hyperbola parabola? with k_(v) 20 elliptic or hyperbolic paraboloid

superellipse superellipse with A_(v) >0 superellipsoid

superellipse superellipse with center, > a, |supertoroid

superellipse one sheeted superhyperbola one sheeted superhyperboloid

superhyperbola one sheeted superhyperbola two sheeted superhyperboloid

Table 2-1: Some quadrics and superquadrics defined as spherical product.

3 Conics and Superconics

When parameterizing superquadrics by using their spherical product definition, the usefulness
heavily depends on the chosen parameterizations of the underlying curves. It is sufficient to
discuss the parameterizations of conic and superconic curves, because they are composed to
form superquadric surfaces by the spherical product, and advantages of superconic
parameterizations yield similar advantages in the superquadric case.

2 Note, that this parabola is rotated by Tt/2.
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3.1 Conics, Definition and Parameterizations

Superconics are strongly related to conics and similar formulas are applied. We therefore dis-
cuss the conic shapes first. Although there are generalized conics apart from ellipse, parabola
and hyperbola, we will concentrate on these best known types. They can be defined by their
implicit forms as follows [Netz92]:

Ellipse Parabola Hyperbola
2 2 2 2
- Xy Xy _
Implicit Form a—2+b—2—1 2px-y2=0 a—z—b—z_
Shape Parameters a and b D a and b
a-b=e, e=%<1 e=1 d+br=e, e=551

Additional ’ a ’ a
Shape Parameters b’ b?

p= '; pP= —a—

Table 3-1: Conics, implicit form and shape parameters.

Although the above listed implicit forms together with the shape parameters3 describe the
curves completely, three additional shape parameters are listed in table 3-1, which are often
used with conics. These are the linear eccentricity e, the numerical eccentricity € and the
semifocal chord p. For further details see [Netz92].

Now we can choose from a set of different parameterizations. Each one has different
properties and none of them can be considered to be best in all circumstances:
“Standard” Parameterization
Hoffmann and Beach present these formulas as the standard parameterization of conics
[Hoff89][Beac91]. Since this parameterization can be derived from the general implicit

form d@x® +2bxy +&y* +2dx +2éy+ f = 0 of a conic, it exists for all of them.
“Trigonometric” and “Hyperbolic” Parameterizations
A well known way to parameterize ellipse and hyperbola is using trigonometric or
hyperbolic functions [Netz92][Hanr89].
“Angle, Center” and ‘“‘Angle, Focal Point” Parameterizations
These two parameterizations use the angle o of a ray through the point Curve(a) as its
parameter on the curve. They both are of the type r(a)-(coso. sina)" with appro-
priate radius r(a). The difference between both parameterizations is the point, where

the ray starts. This is the center of the conic for the first and one focal point for the
second parameterization [Netz92].

Table 3-2 lists the formulas for these parameterizations. No “Trigonometric” parameterization
for the parabola was found in literature, but as it could be useful, it has been derived by the

3 It is pointed out that these shape parameters a, b, e, € and p should not be mixed up with the parameter
t or o of the parameterizations. We therefore use the term shape parameter, whenever we want to
depict these special parameters.
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authors and listed in table 3-2 as well. Note, that since € =1 for the parabola, the “Angle,
Focal Point” formulas are equal for all the conics.

Ellipse Parabola Hyperbola
([ 1-7 % (142
“Standard” e o™ A7
2t tP b2t
\ 1+£ \ 1=
. . (acosal tan’ & (aseco.
“Trigonometric” ) 5
\ bsina p \btanol
tano
“Hyperbolic” — — (a cosh 0‘)
bsinha
119 i b b
Angle, Center’ r(o) = —— _ r(o) = —
v1-¢€" cos” o ve“cos -1
‘“Angle, Focal Point” r(o) = % r(o) = HL r(a) = %
g€cosa cos QL £Cosal

Table 3-2: Conics, some parameterizations.

Since we need tangent vectors for the calculation of the normal vector at a point of a spherical
product surface, the formulas in table 3-3 were derived by differentiating the parameterizations

in table 3-2 and simplifying these formulas by factoring out common terms.

Note, that the

formula for the “Angle, Focal Point” tangent vector of the parabola degenerates to the null
vector for any o = (1+2k)x. Since this parameterization yields parabolas open to the negative
x-axis these parameter values make no sense anyhow (for these values no finite points on the

parabola are specified).

Ellipse Parabola Hyperbola
“Standard” ( —2at ) ( t ) ( 2at )
b(1-1*) p b(1+1%)
“Trigonometric” (—a sin 0‘) (tan (1) (a tan oc)
beosa p bseco
“Hyperbolic” — _ ( asinha )
bcosha
“Angle, Center” [—a2 sin oc) — (a sino )
b’ cos cos o
“Angle, Focal Point” ( —sino; ) (—sina ) ( _sino, )
€+ coso 1+cosa €+cosa

Table 3-3: Parameterized tangent vectors of conics.
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3.2 Superconics, Definition and Parameterizations

Again these curves can be defined by their implicit forms, which are extensions of related conic
forms. Although the superparabola was not found in literature, it seems to be useful and is
therefore defined here. The formula was derived from extensions of the parabola in [Lori02].

Superellipse Superparabola Superhyperbola
. £2 3 2\7 2 . £ £ 2\¥
Implicit Form (?) + Z’_z =1 @p) lx—(yz)’ =0 = - .I))iz_ =
Shape parameters a,bandvy p and 7y a,b andy

Table 3-4: Superconics, implicit form and shape parameters.

One additional shape parameter y appears in the formulas listed in table 3-4. If this superconic
shape parameter is less than 1, the curve becomes square shaped with rounded corners. With
vy =1 the superconic looks like its related conic. Having y =2, the superconic becomes flat
with pointed corners. 7y values greater than 2 result in pinched superconics with concave
surfaces.

We listed up to five parameterizations for each conic. When we want to have these
parameterizations for superconics as well, we recognize that they become a little bit more
complicated. In fact, the “Standard” and “Angle, Focal Point” parameterizations seem not to
be available explicitly for superconics. Table 3-5 lists the formulas for the other parameteriza-
tions. Because they were not found in literature, the “Trigonometric” formula for the super-
parabola and the “Angle, Center” parameterization have been derived by the authors.

Superellipse Superparabola Superhyperbola
“Trigonometric” acos’ o (2 p)l_% tan® o asec’ o
bsinYOL tanYa btanYa
Y
“Hyperbolic” s . acosh’ o
bsinh” o

1\ L -1
“Angle, costa) (sin?o)’ costa) (sin*a )
Center” ()= e + B — r= ) | T

Table 3-5: Superconics, parameterizations.
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Again we are interested in the corresponding tangent vectors. Table 3-6 lists these formulas:

Superellipse Superparabola Superhyperbola
—asin®™ -3 2 2y
“Trigonometric” asm- "o 2p) "tan* " a atan’" o
bcos’™" a, PY bsec* " o
s 2=
“Hyperbolic” — _ asinh™" o
bcosh®*™ o
_( sin®> )% (sinH o )%
2 2
“Angle, Center” b - b

s 1 2 1
cos“ o Y cos’Tal
a’ a®

Table 3-6: Parameterized tangent vectors of superconics.

4 A Comparison of the Parameterizations

We have presented a set of parameterizations of conics and superconics. We now want to
compare these formulas and discuss some of their properties:

4.1 Symmetry

The “Trigonometric”, “Hyperbolic” and “Angle, Center” parameterizations for ellipse, hyper-
bola and their related superconics are symmetric to both the x- and y-axis, and therefore also to
the origin. For each combination the following holds:

(Curvex(oc)) _ ( Curve, (—a)) _ [—Curvex (n— oc)) _ (—Curvex(-n + a))

Curve (o) —Curve (—a) Curve (n—o) —Curve (- + )

The “Standard” and “Angle, Focal Point” parameterizations for conics and the
“Trigonometric” formulas for parabola and superparabola are symmetric only to the x-axis.

4.2 Distortions

In many cases a regular distribution of the parameter lines over the surface is required. Unfor-
tunately the density of these parameter lines extremely varies with some of the parameteriza-
tions. In general, distortions of this kind are less a problem with conics than with superconic
formulas.

For instance, the “Angle, Center” parameterization is quite similar to the “Trigonometric”
one for ellipse and hyperbola, but comparing these two for superellipse and superhyperbola
shows significant differences, that have to be taken into account. Unfortunately both parame-
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terizations show bad behavior near the asymptotes of the superhyperbola. If these ranges of
the curve are very important, the “Hyperbolic” formulas yield better results.

Figures 4-1 and 4-2 show that using the “Angle, Center” parameterization instead of the
“Trigonometric” version yields better results for the superellipse with respect to the density of
the parameter lines.

Figure 4-2: “Trigonometric” and “Angle, Center” parameterization of the superellipse.

Figures 4-3 through 4-5 show the same fact for the superhyperbola. By having only little dif-
ferences with the hyperbola, severe distortions occur with the superhyperbola. Depending on
which part of the superhyperbola is most important for the application, the “Angle, Center” or
“Hyperbolic” parameterization can be better.

Figure 4-3: “Trigonometric”, “Hyperbolic” and “Angle, Center” parameterization of the hyperbola.
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9 &&

Figure 4-4: “Trigonometric”, “Hyperbolic” and “Angle, Center” parameterization of the superhyperbola.

Figure 4-5: The parameterizations of figure 4-4 at the asymptotes of the superhyperbola.

4.3 Parameter Range

The “Standard” parameterization of conics and the “Hyperbolic” parameterization of hyperbola
and superhyperbola map R once onto the curve. This might be a useful property. But on the
other hand, there will always be a range of the curve, which is not addressable in practice, since
only a small range out of R can be represented with floating point numbers on a computer.
See figure 4-6 for an illustration.

All the other parameterizations map a finite interval of R onto the whole curve, which is

periodically replicated on the rest of . Most of these periods are of the length 27, only the
“Trigonometric” formula for the parabola and superparabola has a period of length .

Figure 4-6: “Standard” parameterization of ellipse and hyperbola.
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Another problem with the “Angle, Center” parameterization is, that there are parameter
ranges, where no point and tangent vector of the curve is specified. These parameter ranges
are [(2k+1)-1t/2— @,(2k+1)-7t/2 + @] with sinp = 1/.

5 Conclusion

The impressing variety of possible shapes and the simplicity of the formulas cause super-
quadrics to be well known and often used objects in computer graphics. For several rendering
purposes, €.g., texturing, the implicit form of such a surface is not sufficient and a parameteri-
zation must be used. We demonstrated that this choice has to be taken carefully.

We addressed the problem of choosing an appropriate parameterization and discussed it
for conics and superconics. The results of the comparison can be directly used with a super-
quadric surface, if its definition as a spherical product is used.

We listed a number of parameterization formulas for conic and superconic curves and the
corresponding tangent vectors. Most of them were taken from literature and compiled to a
brief summary of these methods, but some of them had to be derived by the authors them-
selves, since they could not be found elsewhere. The parameterizations were compared due to
their advantages and disadvantages with respect to given needs.

We kept to the simple and explicit formulas for parameterizing conics and superconics and
therefore did not discuss more complex methods. Actually this does not mean, that these
parameterizations, which were left out of this discussion, are not realizable or do not yield
satisfying results. Thus further work has to be done to find solutions in these cases.
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