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Abstract

A theoretical framework for analyzing average-case time and storage complexity
of ray tracing acceleration techniques is introduced by means of homogeneous spatial
Poisson point processes. Then, as a demonstrative example of its application, the
expected query time of the widely known technique based on a regular spatial grid
is analyzed. Finally, an interpretation of the results is presented within the context
of probability theory.

1 Introduction

Ray tracing [Whi80] is a very time-consuming image synthesis method but it can not
be neglected due to its unique ability to model optical phenomena such as reflection or
refraction of light. Since the overwhelming majority of running time is spent on ray-object
intersection tests, extensive research work has been devoted to accelerate these operations.
Two main directions of research seem to exist:

1. Worst-case optimization. The problem is known as the ray shooting problem within
the framework of computational geometry: given a set objects in the 3-space, pre-
process them into a data structure so that the first object intersected by any query
ray can be retrieved in optimal time. This optimal time is probably O(log n), where
n is the number of objects. Mark de Berg [dB92] has recently developed efficient
ray shooting algorithms. His most general algorithm can shoot arbitrary rays into
a set of arbitrary polyhedra with n edges altogether, with a query time of O(logn)
and preprocessing time and storage of O(n*t®), where ¢ is a positive constant that
can be made as small as desired. The overview of Schmitt et al. [SML88] refers to
other algorithms with similar time and storage characteristics. Unfortunately, the
complexity of the preprocessing and storage of these algorithms makes them not too
attractive for practical use.

2. Average-case optimization. There are a number of techniques, on the other hand,
which are more suitable for practical use. Arvo and Kirk presented a comprehen-
sive overview of the basic techniques [AK89]. We can consider these algorithms as
heuristic methods for two reasons. The first is that their approach is not based on
complexity considerations, that is, the goal is not a worst-case optimization, but
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rather to achieve a speed-up for the majority of situations. The second reason is
that these algorithms really do not reduce the query time for the worst case, that
is, the query time is O(n). The achievement is that average-case analyzes show that
they are better than that.

The rest of this article deals with the problem how a quantitative evaluation and com-
parison of the heuristic techniques can be carried out.

2 Theoretical Framework

The average-case analysis of an algorithm means that a probability distribution of the
input objects is assumed and then usually the expected value of the relevant complexity
measure (time or storage) is calculated.

2.1 Configuration Space and Expected Complexity

Let us assume that the algorithm processes the objects oy,...,0,,... of the same type,
that is 01,...,0,,... € O, where O is referred to as the object space. Even if the input
objects are heterogeneous, this “uniform” object space can be constructed to be the space
of all the possible object parameters (such as in the case of a ray tracer accepting a fixed
domain of objects). Any given configuration of n input objects can then be described by

an n-tuple: (01,...,0,) € O x...x O = O", where O" is referred to as the configuration
space.
Let tn(01,...,0,) denote any complexity measure (time or storage) of the algorithm

with respect to the objects oy, ...,0,. Its expected value, denoted by E[t(n)], taken over
all the possible configurations is then calculated by the following integral:

E[t(n)] = / / t2(01, -+ 10n) Fa(01, - - -, 0n) doy - - - don, (1)

O]EO Oneo

where fn.(01,...,0,) is the assumed joint probability density function. There are two
crucial points: the first is the problem of what probability density should be assumed,
the second is the calculation of the integral.

2.2 Attacking Ray Tracing

Let us have a given ray tracing acceleration technique (this will be the regular spatial grid
in the next section), the problem is to perform an average-case analysis of its query time
(other complexity measures such as preprocessing time and storage can be analyzed in a
similar way). What assumptions should be made? In a demonstrative article such like
this one, the majority of assumptions should aim at the goal that the calculations can be
carried out at all. Let us see these simplifying assumptions in the following paragraphs.

2.2.1 Image Sphere and Average Rays

The query time, t,,, depends not only on the configuration of the input objects but also on
the spatial location of the ray origin and the direction of the ray: t, = t.(p, 6, 01,...,04),
where p € E? is the ray origin and § € A? is the ray direction (A? denotes the direction
space that is the surface of the origin centered unit sphere).
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Considering only the pizel rays first, that is those rays which originate from the eye
position, the corresponding average query time can be calculated as:

E[t(n)] = R2 Z / / (0, 6k,01,.-.,05) fn(01,...,00)doy - - - doy,

01 Eo Oneo

where the eye position is assumed to be in the origin and 65 denotes the direction of the
kth ray, and R? is the resolution of the image.

For the sake of mathematical treatability, assume that the image is created on the
surface of an eye centered sphere instead of a planar image rectangle. Increasing the
resolution of the image beyond all limits (R? — oo) with keeping the area of the pixels
equal yields

'E‘[t(n)]=£7;/ [ o [ 08,01, 00) falors- - y00) dor - don db (2)

5€A2 0,€0 on€0

A crucial question is how the above argument can be extended to handle child rays
(reflected and refracted rays), but the answer to this question is definitely beyond the
scope of this paper. Thus we will restrict the analysis to pixel rays.

2.2.2 Poisson Spheres

Without having any preliminary knowledge about the distribution of the objects, the most
straightforward is to assume uniform distribution (which also implies that the objects are
independently distributed). Extending the analysis to other distributions is possible but
would probably cause more difficulties.

The object scene is assumed to consist of spheres. Extending the analysis to other
object types is possible again at the expense of more mathematical difficulties. First the
simplest case, when the spheres have equal radii, will be examined in the next section,
and then the analysis will be extended to spheres of various radii.

Assuming that the sphere centers are distributed in the interior of a finite volume would
cause extra difficulties when evaluating the integral (2) of the expected query time because
the integration would have to be “stopped” at the boundary surface of the volume. That is,
since geometric probabilities are usually calculated from associated volume extents, these
associated volumes whould have to be “clipped” against the boundary of the containing
volume during the integration.

In order to avoid this problem, the sphere centers are assumed to be produced by
a homogeneous spatial Poisson point process. Such a process can be obtained from uni-
form distribution in the following way. Assume that n points, pi,...,p, are uniformly
distributed in the interior of a set X C E2, that is, the probability of the event that a
given point py is contained by a set A C X is Pr{pr € A} = |A]/|X| (1 £ k < n), where
| - | denotes volume. Allowing then both n,|X| — oo in such a way that n/|X| — p,
the limiting stochastic point process is called the homogeneous Poisson point process of
intensity p [San76], [Mil70]. The probability of the event that a given set A C E? contains
exactly k particles is:

(e = 210 )" =pldl (x> 0) 3)

Let a sphere be centered around each partlcle of the point process. These spheres are called
Poisson spheres. The radii of the spheres are characterized by further probability density

189




functions. The problem is now to give the expected query time of a given acceleration
technique if the object scene is a set of Poisson spheres. The calculated expected time,
E[t], will reflect the limiting behavior of the query time with respect to a “very large
number” of spheres: E [t] = lim,_o E [t(n)].

3 Analysis of the Regular Grid

This acceleration method falls into the category of object space subdivision methods
[AK89]. The object space is partitioned into congruent cubes called cells, and a list
containing object references is associated with each cell. The list associated with a given
cell contains a reference to a given object if they have non-empty intersection. These lists
are built in a preprocessing phase. If a ray is to be tested against the objects later in
the tracing phase, first its origin is located in the cell structure and then the cells pierced
by the ray are visited one after each other until an intersection with any of the objects
on the associated lists is found. The location of the ray origin in the regular structure
is straightforward, and visiting the cells can also be efficiently implemented by using a
3-dimensional DDA line generator [FTKS86].

The query time ¢ consists of two main components: the number of objects tested, Ny,
and the number of steps to a new cell, Ns. Then the query time is t = Ny Tt + NsTs,
where Tt and Ts are the times required by a ray-object test and a cell step, respectively
(the cost of locating the ray origin is omitted). Only the number of ray-object intersection
tests will be examined here, a more extensive analysis of this and other techniques can be
found in one of the authors’ dissertation [Mar95].

al a

Figure 1: Embedding of the ray

A ray-object test has to be performed obviously only on those Poisson spheres which
are “close enough” to the ray; more precisely: which intersect one of the cells visited by
the ray. These cells are shaded in figure 1. The set of these cells will be referred to as
the embedding of the ray further on. Let us first see the case of spheres having the same
radius r.

3.1 Distribution of the Intersection Parameter

Let t* denote the distance of the first intersection point along the ray from its origin.
The probability density function of ¢t*, denoted by fi«(7), will be necessary later. Let us
first determine the probability distribution function of t*: Fi«(7) = Pr {t* < 7}; and then
the required density function can be obtained by differentiation. The event that the first
intersection point is further than a given distance 7 is equivalent with the event that no
sphere intersects the first segment of length 7 of the ray. The territory where no sphere
center must fall in this case is painted by light gray in figure 2. That is, this volume must
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Figure 2: Approximation of event probabilities

be empty. Note that “first intersected” object here means the first one not containing
the origin of the ray. This simplification does not significantly influence the results but
significantly simplifies the expressions obtained. The volume of the painted territory is
r?r7, hence the probability of the event ¢* > 7 is:

2
Pr{t*>1}=¢e P" 77, (4)
2
according to equation 3. The distribution function of ¢* is then Fi+(7) =1 — 7 PT 77
from which the probability density function of ¢* is obtained by differentiation:
2
feo(T) = prim e PT 7T, (5)

The spheres intersecting the embedding of the ray are tested one after each other until
an intersection is found. The center of the spheres intersecting the embedding of the ray
are contained by a volume containing the embedding, too. Let this volume be called the
range of the ray.

3.2 Approximation of the Embedding by a Cylinder

Assume temporarily that the embedding of the ray is a ray centered cylinder of radius s.
That is, the chain of embedding cells is approximated by a cylinder. Accept furthermore
that the range of the ray is then a cylinder of radius s 4+ r with the same axis, as shown
by figure 2. The error caused by these simplifications will be estimated later. The volume
content of the range of a ray segment of length 7 is now:

Va(1) = (s + r)*7r. (6)

Figure 2 also shows that under the condition t* = 7 the number of tested spheres is
one minus the number of sphere centers falling into the territory painted by dark gray,
since the center of the last (successfully) tested sphere does not fall there. The volume of
this territory is:

V(r)= ((s +r)? — r2) T
Under the condition t* = 7, the conditional probability of the event that exactly £ number
of sphere centers fall into this territory, that is Ny =k + 1 is:

Pr{NMi=k+1 |t*=7‘}=£e—vk(z-—))ke~pv(7_). (7)

The probability of the event Ny = k + 1 can be calculated from this by

Pr{NI=k+1}=/Pr{NI=k+1 |t = 7} foe(r)dr. (8)
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Substituting the expression (5) of the probability density function fi+(7) and performing
the integration yields

petvi=ie1 = (1= (22)) ()"

This is no else but the well known formula of the geometric distribution [KK75] with the
event probability p = (r/(s + r))?, hence the expected value is:

s+ r\?2
BV = (220) ©)
at least under the assumption that the embedding of the ray is well approximated by a
cylinder of radius s. The question is now how the value of s should be chosen.

3.3 The Approximation Error

Note that the following errors were made when approximating the range of the ray by a
cylinder of radius s + r and using its volume (6) in the previous argument:

1. the actual shape of the embedding is not a cylinder but rather a chain of cells joined
by their faces to each other,

2. even if its actual shape were a cylinder, the shape of the range of the ray would
be badly determined, since the “terminating hemispheres” are omitted, that is, a
smaller volume is used,

3. it was implicitly assumed during the argument that the spheres are taken exactly in
the order of their distance along the ray during the intersection calculation; this is
not completely true, however, since the object references on the list associated with
a given cell can be in any order.

Let us now overview the effect of these errors.

Mistakes 1 and 2 will be handled together: first an upper and then a lower estimation
will be given for the value of s in expression 9.

Note that any point of a given embedding cell is not further from the ray than the
length of the cell diagonal. This implies that the embedding cells are contained by a ray
centered cylinder of radius av/3, where a is the width of the cells, that is: s < aV3.

V(0

2Avl-mu‘.nf :_ - -
2Avl‘lmint )

O(l,r)I

T T t t 1
11 12 13 ‘l‘ T
SA":max sA""max

Figure 3: Lower estimation of the ray range

In order to get a lower estimation, not the radius of the embedding but the volume of
the range itself will be considered. Even if the spheres are tested in their order along the
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ray (error 3), the volume of the embedding is a non-linear (although monoton increasing)
function of 7, as shown by figure 3 (curved line). The starting value of the function is
not zero, since all the spheres intersecting the first cell (containing the ray origin) must
be tested, independently from how long the ray segment contained by this cell is. This
starting value is equal to the volume of the r-offset of a cube of width @, denoted by
o(a,r). Its volume is: |o(a,r)| = a® + 6a’r + 3ar’r + 4r37/3. In the worst case, the
function increases according to the stair line in the figure. (Note that this is actually the
case since stepping from one cell into the next one increases the volume in this way. Note
also that both the 7 and the Vi values are not equally spaced.) On the one hand, the
difference of the 7 values between two stair steps, A7, can not exceed av/3 (the ray is
now incident with the diagonal of the cell). On the other hand, the difference of the Vg
values between two steps, AR, is at least a® (counting only those sphere centers which
fall into the cell itself). Hence a lower estimation of the function Vr(7) is the following:

min AV a?
> RT > —T.

Wz oA T2
Taking the assumed expression (6) of V() into consideration yields s > a/\/v/3 7 —r.

Finally, due to error 3, it was not considered that even if an intersection is found during
ray-object tests, the rest of spheres on the list associated with the actual cell should also
be tested, since the spheres on the list do not appear in their order along the ray. The
effect of this error can be compensated by adding a constant to the expected value (9).
This constant is at least zero and at most the expected number of spheres intersecting a
cell (its value is plo(a,r)|). Our results are summarized in the following statement:

result 3.1 Assume that the object scene consists of Poisson spheres of intensity p and
radius . Using a reqular grid of cubes of width a, the expected number of ray-object tests
with respect to an arbitrary ray is characterized by the following expression:

2
E[N1]=(sj:r) +c, where a\/1/V3r—r<s<av3 and 0<c<plo(a,r)

Note that, according to the statement (and accepting that E[Ng] is also a constant),
the ezpected query time turns out to be superoptimal: E[t(n)] = O(1) although the best
achievable worst-case complexity is t(n) = O(logn).

3.4 Extending to Spheres of Various Radii

The most general extension of the theory to spheres of non-equal radii would be based on
the assumption of different distribution of each individual sphere radius. Since it seems
too complicated mathematically, a simplified extension will be discussed here.

Assume that each sphere of the scene falls into one of n classes. The spheres falling into
the same class, say class ¢ (1 < ¢ < n), have the same radius, R;, the probability density
function of which is denoted by fg,(r). Let the ratio of the number of spheres in class ¢
and the total number of spheres be ¢, satisfying the obvious constraint a; +...+an, = 1.

Based on this setup, first the conditional expectation E[N1 | Ry =rq,..., R, = ;] can
be calculated and then the final result can be obtained by

E[M] =/"'/E[NI | Ry =r1,..., R =13] fri(r1) - fR(rn) dri- - dry

o0
0 0
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The calculation of the conditional expectation goes very similarly to that of the expecta-
tion with equal radii. It is only sketched here, putting the emphasis onto the differences.

Note first that the centres of the spheres falling into class ¢ form a Poisson point
process of intensity a;p, and the distribution of the spheres falling into different classes is
statistically independent. Thus, equation 4 becomes

- 2 _ 2
Pr{t*> 71} = e @PT17TT ... ¢~ WP TTT
and hence the probability density function of the intersection parameter ¢* is now
2 2
fo(r) = plarr? + ... + anr?)re~Ploars + ...+ anry )T,

The event that exactly £ number of spheres are tested before the first intersection found,
that is the event N1 = k + 1, is the sum of all the possible events where k; spheres of class
1, k2 spheres of class 2, ..., k, spheres of class n are refused before the first successful
test, the summation being taken over all the n-tuples ky,..., &k, with &y +... + k, = k.
Equation 7 hence becomes

H%M=k+1Hn=ﬂ=(M%WU%PA+aﬂﬂﬂ»:;Mm%h%h”+aJMﬂk

where
V;(T) = ((8,’ + ri)z _ r?) a7 (1<:< n)

Performing finally the integration (8) yields

8 + 7'1)2 +...+ an(sn + rn)2

ari+ ..+ apr?

B[N | Ry=ri,..., By =ra] = 2

The approximation radii si,...,8, can be estimated in the same way as earlier. The
result is formulated as follows:

result 3.2 Assume that the object scene consists of Poisson spheres of intensity p and
with various radii. Each sphere falls into one of n equivalence classes, the proportion of
the number of spheres falling into the different classes being characterized by the positive
constants ay,...,0, (01+ ...+ a, =1). The spheres in class ¢ have the same radius, R;,
the probability density function of which is fr,(r;) (1 £t < n). Then, using a regular grid
of cubes of width a, the expected number of ray-object tests with respect to an arbitrary
ray ts characterized by the following expression:

_ T 7 ar(sy+7r1)%+ ...+ an(se +15)?
E [MV] —0/ O/{ ..+ ol +cp fr(r1) - fr.(rn)dry---dry,

where

a\/l/\/gw —ri<si<av3 and 0<c< plailo(a,m)| + ...+ anlo(a,rm)]).

Note that this analysis also shows that the expected query time of the method is super-
optimal.
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4 Interpretation of the Results

Considering the results of the previous section, one might ask how well the average-case
complexity characterizes the algorithm. Thinking about practical applications, a possible
question is: given n number of objects, what can we state about the probability p(n, c) of
the event that the actual query time is within a constant factor ¢ to the value calculated
in the previous section? Although this question can not be answered without information
about the variance of the query time, an interesting statement, similar to the weak law
of large numbers, will be proven here:

proposition 4.1 An algorithm is given which processes the objects o1,...,0n,... of the
same type. Let t,(o1,...,0,) be a complezity measure (time or storage) of the algorithm,
the expectation of which, E[t(n)], has been calculated according to expression 1. If the
complezity classification of E [t(n)] gives

E[i(n)] = O(G(n)),
then it implies that for any function H(n) # G(n) and positive constant ¢ > 0:

lim Pr {tn(01,...,0,) = cH(n)} =0,

provided that the objects are selected according to the same density function fn(o1,...,04).

Note that, according to the statement, the measured complexity of the algorithm with
respect to any random sequence of input objects tends to fall into the class of the expected
complexity even if the worst-case complexity falls into a higher class (as in the case of the
examined acceleration technique).

The above statement will now be proven indirectly. Assuming that the statement is
false, we expect that it leads to a contradiction, namely to E [t(n)] # O(G(n)). According
to the definition of the limit, the statement itself can be written in the following form:

Ve> 0, H(n) £ O(G(n)), e >03N >0Vn> N [Pr{ta(or,...,0n) 2 cH(n)} <e].
If the statement is false, then it is equivalent with the following statement:

¢> 0, H(n) # 0(G(n)), e >0V N >03n > N [Pr{tu(os,...,0n) 2 cH(n)} > ¢].
(10)
Let O'(¢) € O x --- x O = O" be that part of the configuration space for which
ta(01,...,0n) 2> c H(n) holds:

0.(e) = {(o1,---,0n) € O" | tp(01,...,0,) > cH(n)}. (11)

Consider now the equation (1) of the expected measure. A lower estimation of its value
is naturally

E[t(n)] > / tn(01,---,0n) fu(01,...,0,) doy - - - dop.
On(e)

Combining it with the definition of O/ () (11) yields

E[t(n)] > / CH(n) fa(01, .-, 00) doy -+ do = ¢ H(n) Pt {tn(01,- -, 0n) > cH(n)}.
OL(s)
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Then, according to the assumption (10):
de¢>0, H(n) # O(G(n)),e >0YN>03n> N [Eft(r)] 2eccH(n)]. (12)
Now let ¢, H(n),e be any such triple, and let ny < np < ... be any sequence for which
Eft(ny)] 2ecH(ng) (k=1,2,..))

holds. The above statement (12) implies the existence of at least one such infinite se-
quence. Let us, finally, define the function A(n) in the following way:

h(n) = {5CH(nk), if n = ny for some k > 0;

0, otherwise

Then, on the one hand h(n) # O(G(n)) since H(n) # O(G(n)), and on the other hand
E[t(n)] > h(n). These inequalities imply E[t(n)] # O(G(n)), which is a contradiction
(g-e.d.).

The question whether the statement of the proposition can be extended (or in what
circumstances it can be extended) to Pr {t,(01,...,0n) = O(G(n))} = 1, similarly to the
strong law of large numbers, remains an open question.
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