Parallel Adaptive Ray-Tracing

Irena Notkin

Craig Gotsman

Department of Computer Science
- Technion - Israel Institute of Technology
Haifa 32000, Israel

{cyrus|gotsman}@cs.technion.ac.il

Abstract

We describe a dynamic task allocation algorithm
for ray-tracing by adaptive progressive refine-
ment on a parallel computer. Parallelization of
adaptive ray-tracing is difficult because of the in-
herent sequential nature of the sample location
generation process, which is optimized (and dif-
ferent) for any given scene. We report on exper-
imental results obtained from our implementa-
tion of this algorithm on a Meiko parallel com-
puter. The three performance measures of the
algorithm, namely, load-balance, speedup, and
image quality, are shown to be good.

1 Introduction

One of the main goals of contemporary computer
graphics is efficient rendering of photorealistic
images. Optical phenomena must be accurately
modeled by the rendering algorithm in order to
provide visual realism. Unfortunately, methods
rendering accurate images by simulating these
physics, such as ray-tracing or radiosity, are com-
putationally very intensive, sometimes requiring
minutes of CPU time to produce a medium res-
olution image of reasonable quality. For this
reason the terms “efficient” and “photorealistic”
remain conflicting and computer graphics users
have to choose between slow high-quality images
and fast low-quality images.

0218

1.1 Parallel Ray Tracing

The advent of cheap parallel processing power
motivates its use in the speedup of many time-
consuming computer graphics algorithms. Whit-
ted [14] first observed that ray-tracing lends it-
self easily to parallelization, as each ray can be
traced independently from others by any proces-
sor of a parallel computer. Since then many sys-
tems have been proposed to exploit this inherent
source of parallelism in a variety of ways (see
surveys in [4, 7]). The two main factors influ-
encing the design and performance of a parallel
ray-tracing system are the model of computation
and the load-balancing mechanism.

The two main models of parallel computation,
described in the literature, are demand-driven
computation and data-driven computation. In
demand-driven systems, each processor is allo-
cated certain tasks to perform and is responsible
for all computations related to those tasks. In
demand-driven ray-tracing, the task assigned to
a processor can be a region of the image space,
and that processor is responsible for all compu-
tations related to the ray tracing of pixels con-
tained in that region.

In data-driven systems, processors are allo-
cated different sections of the data, and each
computation is assigned to the processor which
has access to the appropriate data. Thus, one
computational task is performed by a number
of processors sharing the required data. In data-
driven ray-tracing, processors are allocated parts

of the scene database and each processor is re-
sponsible for all computations accessing the ob-
jects contained in its part of the database, in-
dependent of the origin of the ray being traced.
Rays spawned at one processor, but requiring the
data of another processor, are transferred to that
processor for further handling.

Load balancing mechanisms attempt to guar-
antee that each processor performs an equal part
of the computation. The general need for a
good load balancing technique is amplified by
the unpredictable nature of the ray-tracing pro-
cess, i.e. a large variance in tracing time for
different rays. It is almost impossible to de-
termine apriori which rays will be "harder” to
compute or spawn more rays, and which scene
objects will be referenced more often than oth-
ers, and, as a result, one heavily loaded proces-
sor may reduce drastically the performance of
the whole system. Fig. 5(a-b) shows an image
and a map of its computational complexity (ray-
tracing cpu time). The complexity of a pixel is
represented by a proportional gray level inten-
sity. For the image in Fig. 5(a), the ratio in
complexity between different pixels reaches three
orders of magnitude.

There are two main strategies for load balanc-
ing, static and dynamic. The former maps tasks
to processors apriori based on preliminary esti-
mates of load distribution, so usually cannot en-
sure optimal balance. However, since no commu-
nication overhead is required while processing,
this can sometimes provide an efficient compu-
tation. The latter maps tasks to processors on
the fly and thus can regulate load distribution at
run time, providing better load balancing, at the
expense of some monitoring overhead.

1.2 Adaptive Ray Tracing

Ray tracing over a regular pixel grid leads to
redundant computations on the one hand, and
is prone to aliasing artifacts on the other. It
has been shown on many occasions {2, 10, 11]
that nonuniform sampling yields artifacts that
are much less noticeable, trading off the aliasing
for some noise.

Computer-generated images do not exhibit
uniform local image intensity variance. Edges
and silhouettes are areas of high contrast, con-
taining high frequencies which require dense
sampling, while large, uniform objects and back-
grounds are regions with small local variance and
do not require high density sampling. However,
too sparse sampling of large regions can miss
small objects and isolated features.

Adaptive sampling adjusts the sample rate on
the fly to concentrate samples where they are
needed most. In the early days of ray-tracing,
pizels were supersampled by a varying number
of primary rays. Cook [1] used two levels of sam-
pling density, a regular coarse pattern for most
pixels and a higher-density pattern for pixels of
high contrast. Lee et. al [9] varied the sampling
density at each pixel continuously as a function
of local image variance. In both cases, at least
one sample was performed per pixel, and the
target image pixel values were computed as the
average of the sample values obtained for that
pixel. Painter and Sloan [12] first proposed to
treat the image as a continuous region of the
plane (without pixel boundaries), using adaptive
progressive refinement by recursive subdivision
of this region. The advantage of their method
is that every prefix of an ordered sample set is
"optimally” distributed over the image plane, al-
lowing the quick creation of a low resolution im-
age. Even though only a rough approximation
of the final product can be achieved with a small
number of samples, it is sometimes very useful
to see this rough estimate, which can be fur-
ther refined if needed. Their sample generator
maintains a binary 2-D tree splitting the two-
dimensional image space along z and y axes in
turn. The decision on which region to refine by
the next sample is based on a variance estimate
of the region, its area and the number of samples
already in it. In this way the refinement process
is driven by two criteria: coverage and feature lo-
cation. After regions reach the size of pixels the
only criteria used is mean variance. The refine-
ment process stops when a particular confidence
level of the image intensity is reached.

Various other sample generators have been

219

proposed for producing an “optimal” sampling
pattern. The sample location generator of El-
dar et. al [3] maintains a growing Delaunay tri-
angulation of sample locations. These triangles
are continuously refined. A new sample location
is a vertex of the dual Voronoi diagram, which
is equally distant from some other sample loca-
tions. This next sample location is determined
by the triangle maximizing some weighted prod-
uct of its geometric properties and local image in-
tensity variance. In this way it is guaranteed that
large regions are refined before smaller ones in or-
der to locate isolated features, and regions con-
taining high frequencies are refined before uni-
form areas in order to provide anti-aliasing. Fig
5(c) shows an adaptive sampling pattern for the
image of Fig. 5(a).

To produce a regular array of image pixels, the
irregular color function samples are interpolated
to the entire plane and resampled at the fixed
pixel positions. A possible interpolation method
is triangulation of the sample set, and piece-
wise linear interpolation on this triangulation.
Fig. 5(d-e) shows the Delaunay triangulation of
the sample sets in Fig. 5(c), and piecewise-linear
reconstruction of the image based on this trian-
gulation. ‘

2 Parallel Adaptive Ray Trac-
ing
2.1 Goals

Adaptive sampling over the continuous image
plane speeds up ray-tracing by optimally dis-
tributing ray traced samples in the image areas
where they are most needed, thereby reducing
the number of rays traced. However, the algo-
rithm still remains too time-consuming for many
applications, as a large number of rays are still
required to produce an image of acceptable qual-
ity and some overhead is imposed by the sample
generation algorithm and image reconstruction.
Suprisingly, the issue of parallelization of adap-

dard strategies for parallelization of regular ray-
tracing are not suitable for parallel adaptive ray-
tracing. The difficulty arising in parallelization
of adaptive ray-tracing is the inherent sequential
nature of the sample location generation algo-
rithm. The location of the ray to be cast next
relies heavily on the locations and the values re-
turned from the tracing of all previous rays, im-
plying that processors can not make independent
decisions about where to sample next without
seeing the results of other processors. If care
is not exercised, this will result in a suboptimal
sampling pattern and hence, suboptimal picture
quality.

In this paper we describe an algorithm for par-
allel adaptive ray-tracing. Our aim is to design
an algorithm suitable for a general-purpose mul-
tiprocessing system, based on progressive refine-
ment of the image using a fixed number of sam-
ples. Besides the standard performance mea-
sures to be optimized by any parallel system,
speedup and load balancing, our objective is to
generate an image of quality approaching that
produced by the serial version of the adaptive
ray-tracing algorithm with the same number of
samples.

2.2 Computation Model

In this work we assume that the entire scene
database can be held in the local memory of
each processor. In the absence of memory lim-
itations, the demand-driven computation model
is the most natural to use, since it supports more
flexible and efficient load-balancing mechanisms.
In our system we have two types of processors:
master and slave. The master monitors the per-
formance, adjusts the work distribution and pro-
vides system-user interface, including image dis-
play. Slaves run the main adaptive ray-tracing

tive ray-tracing has not been dealt with in the tasks. The system configuration is shown in
literature despite its obvious advantage. Stan- Fig. 1.
220

Figure 1: Parallel system configuration.

Algorithm Serial(s,r)

// Adaptive ray-tracer for s samples on
// image region r.

sample_set := build_initial(r);
for i:= 1 to s do
begin
(x,y) := sample_loc_gen(sample_set);
c := ray_trace(x,y);
iample_set 1= sample_set + {(x,y,c)};
en.
return <sample_set,cpu_time,variance>;

Figure 2: The serial adaptive ray-tracing algo-
rithm: sample_set is a growing set of sample lo-
cations and values. build_initial generates an
initial sample set containing 5 samples inside the
region r. sample_loc_gen supplies a new sample
location based on all previous sample locations
and values, and ray_trace is the ray-trace pro-
cedure.

2.3 Adaptive Ray-Tracing Implemen-

tation

Our adaptive sampling algorithm uses the pro-
gressive refinement principle proposed by Painter
and Sloan [12]. We use a sample location gener-
ator based on that of Eldar et. al [3] (see Sec-
tion 1.2). The termination criteria is the number
of samples allotted to render the image. Run on
one processor, the pseudo-code of this algorithm
is described in Fig. 2.

Samples are evaluated (ray-traced) by means
of the public-domain MTV ray-tracing package
[13]. The code supports ray-object intersections
with geometric primitives such as spheres, cylin-
ders, cones and polygons. The bounding volumes

acceleration technique is used with an algorithm
for ray-volume intersections due to Kay and Ka-
jiya [8]. Shadow caching optimization speeds up
the search for objects located between the inter-
section point and the light source.

3 The Parallel Algorithm

Our parallel algorithm is based on dynamic task
allocation. The type and granularity of tasks
were designed in order to distribute the work
as evenly as possible between processors, and
in order to achieve an optimal sample pattern,
i.e. close to that produced by the serial algo-
rithm. Dynamic task allocation provides the
best chance of achieving good load-balancing,
since the distribution of work can be done on
the fly, based on up-to-date information. The
basic task, assigned by the master processor to a
slave processor, is serial adaptive ray-tracing of
a given number of samples in a given region of
the image plane. Such a region is the union of a
number of rectangular areas in the image, called
tiles. These tiles need not be adjacent in the
image plane. The slave processor receiving this
task distributes the allotted samples between the
tiles, a few at a time. We call these smaller tasks
mini-tasks. The total number of image tiles used
by our algorithm is a parameter, n. Obviously
n > p. Once assigned (at the beginning of the
process) an image region consisting of a number
of tiles, the slave processor maintains a separate
sample location data structure for each tile. The
slave processor works ezclusively on these tiles
from now on.

In order to determine the mapping of image
tiles to processors, a short preprocessing step is
performed in parallel, where each slave processor
is temporarily assigned an (almost) equal num-
ber of tiles, and performs a small number pr of
adaptive samples in it. No attempt at balanc-
ing the load of these minute tasks is made. The
cpu time required for the samples in each tile
(cpu-time(t)) is measured, as is their variance

221

(var(t)). The weight of a tile ¢ is then defined as:

Algorithm Dynamic(p,s,n,k,d,q,pr)

cpu-time(t)

w(t) = Jogvar(d))

(1) // Adaptive ray-trace s samples by p processors.
// Use n image tiles. Initial task size is k samples,

// which decreases with decay rate d.

The master processor then maps tiles to slave
processors such that the tile weight is more or
less uniformly distributed between the proces-
sors. The main parallel adaptive-ray-tracing
procedure then consists of the master assigning
tasks to slaves on demand. The slave performs
mini-tasks on its tiles, which are ordered in a
priority queue.

The priority of a given tile ¢ is calculated as
follows:

pr(t) = max { rad(T) - log(1 + var(T)) } (2)

where the maximum is taken over all triangles
in the Delaunay triangulation of the sample lo-
cations of the tile ¢, rad(7") is the radius of the
circle circumscribing the triangle T, and var(T)
is the variance of the three intensities obtained at
the vertices of . The reason we use rad(T) (as
opposed to, e.g. area(T')) is that the new sample
location, associated with the triangle prescribed
by the method, is a vertex of the dual Voronoi
diagram, which is precisely the center of the cir-
cumscribing circle. This way, large unsampled
areas with large variance are sampled first. The
master processor allocates tasks to slave proces-
sors on demand, until the total required number
of samples for the image, s, is reached. The ini-
tial task size is a parameter k < s/p, but is de-
creased with time, in order to prevent the case
where the slave processor assigned the last task
works alone on a large number of samples, after
the others have already finished. The parameter
0 < d < 1 determines the rate of decay of the
task size.

The size of the mini-task performed by the
slave processors is a parameter g. These mini-
tasks are performed until the number of sam-

// Mini-task size is q. pr samples per tile are
// performed during preprocessing.

MASTER:

// preprocess by receiving results from slaves.
for t:= 1 to n do
<cpult]l,var[t]> := receive(t¥p);

map tiles to slaves according to weights based
on <cpu,var>; // see Eq. (1)

// initialize slave task sizes.
for proc := 0 to p-1 do k[procl := k;

// main ART loop.
while s8>0 do

for proc := 0 to p-1 do
if idle(proc) and s>0 then
begin

assign_task(proc,k[procl); // tell slave proc

s -= k[procl; / to perform task
k[proc] *= d; // of size k[proc] samples.
end;

terminate all slave processors; // terminate ART.
// collect results from slaves.
samples = {};
for proc := 0 to p-1 do
samples = samples U receive(proc);

// reconstruct image from samples.
reconstruct(samples) ;

SLAVE:

// preprocess pr samples per tile.
for t := 1 ton do
if (t%p==slave_id) then
begin
<samp,c,v> := serial(pr,tile[t]);
send(<c,v>) to master;
end;

// main ART procedure.

samples = {};
while (not terminated) do
begin

k := request_task(); // receive task from master.
while k>0 do
t := pop(priority_queue); // get tile.
<samp,c,v> := serial(q,tile[t]);
samples = samples U samp;
prior := update(tile[t].priority); // see Eq. (2)
push(priority_queue,t,prior);
k -= q;
end;
end;

send(samples) to master; // send results.

ples specified by the master processor in the task
is exhausted. Pseudo-code of our algorithm ap-
pears in Fig. 3 and a schematic diagram in Fig.
4. Reconstruction of the image is done by the
master process after the completion of sampling

222

Figure 3: The parallel adaptive ray-tracing algo-

rithm.

by all slave processes. This is done by piecewise
linear interpolation of the intensity values at the
vertices over the triangles of the Delaunay trian-
gulation of the entire sample set.

4 Experimental Results

4.1 The Parallel Architecture

Our algorithm was implemented on a Meiko
general-purpose parallel computer with dis-
tributed memory. It consists of a SparcSta-
tionl host processor with 28 MB RAM and 28
i860 processors with at least 8 MB RAM each.
The logical connection between processors can
be reconfigured such - that each processor can
be connected logically with 8 other processors
(through a transputer accompanying the i860).
The message-passing system is based on Ether-
net communications. The Peak Performance of
the 1860 processor is 120 MIPS.

4.2 Performance Measures

The performance of a parallel adaptive ray-
tracing algorithm is evaluated using the following
measures :

1. Speedup

T(1,s)
Tmaa:(pv 8)

T(1,s) is the CPU time required for one
processor to perform the serial adaptive
ray-tracing algorithm with s samples and
Tmaz(p, 8) is the CPU time consumed by the
“slowest” processor of the p-processor par-
allel system, running the parallel adaptive
ray-tracing algorithm with s samples. Ide-

ally, S(p, s) = p.
2. Load disbalance

Tmaa:(p’ 8) - Tmin(p, 3)
Tmin(p, 3)

Trmaz(p, 8) and T,;(p, s) are the CPU times
consumed by the “slowest” and the “fastest”

S(p,s) =

L(p,s) =

223

of p processors, while tracing s rays in total,
respectively. Ideally L = 0.

3. Image infidelity (unique for ART)

N(p,s) = |lI(p,s) - I(1,3)l}s

I(p, s) is the image produced by the parallel
algorithm tracing s rays on p processors.
[| - 1|1 is the {; norm. Ideally N = 0.

4.8 Test Scenes

We tested our algorithm on scenes obtained [6]
from the Standard Procedural Database (SPD)
of Haines [5]. The SPD was designed to be
a standard benchmark for evaluating the per-
formance of rendering algorithms. We present
here the results for the SPD model “gears” (see
Fig. 5(a)). “gears” is a polygonal scene, contain-
ing a variety of complex silhouettes and multiple
edges, which challenge adaptive sampling algo-
rithms. Apart from this, the “gears” model con-
tains objects with various material properties,
giving rise to intensive reflection and refraction
processes. As a result, the computational time
required to trace different primary rays varies
within three orders of magnitude (see Fig. 5(b)),
a fact which significantly affects task distribu-
tion.

Figs. 6 and 7 show the qualitative and quan-
titative results of our parallel algorithm with up
to 26 processors sampling 10,000 primary rays
in total. For the “gears” scene, speedup is close
to optimal. The sample patterns generated by
our algorithm are quite reasonable, compared to
the one generated by the serial algorithm. For
26 processors, we achieve speedup of 23.8. The
load disbalance is 15%, indicating that the pa-
rameters of the algorithm (n, k, d, ¢ and pr)
are fine tuned almost to their optimum. Any
other loss in speedup is due to the communica-
tion overhead of the parallelization. The image
reconstruction is extremely good, resulting in an
image infidelity of 11 (on a scale of 0-255).

4.4 Algorithm Parameter Values

We obtained the optimal values for the algorithm
parameters n, k, d, ¢ and pr, which depend on
the scene, and on p and s, by trial and error.
The optimal number of image tiles, n, is deter-
mined by the following tradeoff: A large number
of tiles enable the processors to work on a variety
of tiles located in different regions of the image,
so balances the load better. However, too many
tiles damages the sample pattern significantly,
as “edge effects”, related to samples on the tile
borders, dominate them. The values we used for
n were square integers, for programming conve-
nience. The (simple) rule of thumb is that more
tiles are required for larger numbers of proces-
sors. The performance does not seem to be too
sensitive to this number, as long as it is not too
small.

The performance of the algorithm is quite sen-
sitive to the task granularity determined by the
initial task size k, and its decay rate d. Increas-
ing task granularity will increase communication
overhead. In terms of load balancing, fine gran-
ularity is important towards the end of the sam-
pling process, so k and d must be chosen so that
the resulting geometric series of task sizes starts
off with a relatively large fraction of the samples
per processor, and reaches a size of about 2% of
the samples per processor at the end. The rule of
thumb is that k ~ s/2p, so that approximately
half the samples to be performed by a processor
are assigned already at its first task. The decay
rate for the task size, d, should be approximately
30%.

Our algorithm did not seem to be very sensi-
tive to the value of q - the size of the mini-tasks
performed by a processor on any one of its tiles.
In practice, we took ¢ = 1.

We used values between 5 and 10 for pr - the
number of samples per tile during the prepro-
cessing stage. More samples would provide more
reliable estimates of tile weights, but would slow
down the algorithm, as no load-balancing is per-
formed during this stage.

The optimal values of the parameters for s =
10, 000 and select values of p are indicated in Fig.

5 Conclusion

Performing adaptive ray-tracing in parallel may
be viewed in a wider context as a special case
of parallel adaptive sampling of a real function
over a continuous domain. This is an important
open problem in parallel processing. We have
reported first results in that direction.

Our parallel adaptive ray-tracing algorithm
based on dynamic task allocation has been
shown to achieve good speedup and load-
balancing. The price paid for this is a somewhat
suboptimal sampling pattern (relative to that
produced by a serial algorithm), which, however,
still results in an image almost identical to that
obtained by the serial algorithm.

Acknowledgements

The first author thanks Johann Makowsky for
his help during early stages of this work.

References

[1] R.L. Cook. Stochastic sampling in computer
graphics. ACM Transactions on Graphics,
5(1):51-72, January 1986.

[2] M. Dippe and E. Wold.
through stochastic sampling.

Graphics, 19(3):69-78, July 85.

Y. Eldar, M. Lindenbaum, M. Porat, and
Y. Zeevi. The farthest-point strategy for
progressive image sampling. In Proceed-
ings of the 12th International Conference on
Pattern Recognition, Jerusalem, 1994.

Antialiasing
Computer

[3]

(4]

S. Green. Parallel Processing for Computer
Graphics. Pitman, London, 1991.

[5] E. Haines. A proposal for standard graph-
ics environments. IEEE Computer Graph-
ics and Applications, 7(11):3-5, November

1987.

224

[6] E. Haines. Standard procedural databases,
May 1988. Available through Netlib from
netlib@anl-mcs.arpa.

[7) F.W. Jansen and A. Chalmers. Realism in
real time ? In Proceedings of the Fourth Eu-
rographics Workshop on Rendering, pages
27-46. Eurographics, 1993.

[8] T. Kay and J. Kajiya. Ray tracing complex
scenes. Computer Graphics, 20(4):269-278,
August 1986.

[9] M.E. Lee, R.A. Redner, and S.P. Usel-
ton. Statistically optimized sampling for
distributed ray tracing. Computer Graph-
ics, 19(3):61-65, July 1985.

[10] D.P. Mitchell. Generating antialiased im-
ages at low sampling densities. Computer
Graphics, 21(4):65-69, July 1987.

[11] D.P. Mitchell. Spectrally optimal sam-
pling for distribution ray tracing. Computer
Graphics, 25(4):157-164, July 1991.

[12] J. Painter and K. Sloan. Antialiased ray
tracing by adaptive progressive refinement.
Computer Graphics, 23(3):281-287, July
1989.

[13] M.T.
Van deWettering. MTV’s ray tracer, 1989.
Available from markv@cs.uoregon.edu.

[14] T. Whitted. An improved illumination
model for shaded display. Communications
of the ACM, 23(6):343-349, June 1980.

225

MASTER

MAX
8

9

15

MIN
variance] 2

Priority queue

(d)

Figure 5: (a) Synthetic image “gears”. (b) Complexity map. Darker regions require more cpu
time. (c) Adaptive sampling patterns of 1000 primary rays, mostly concentrated in areas of high
image intensity variance. Note that there is no correlation between ray complexity and image
intensity variance. (d) Delaunay triangulation of the sampling patterns of (c). (e) Piecewise linear
reconstruction based on the triangulation (d).

(d) (e) ()

Figure 6: Qualitative performance of the parallel adaptive ray-tracing algorithm on the “gears”
scene: Sample patterns and reconstructed images produced by the parallel algorithm with s =
10,000 primary rays for: (a),(d) p = 1 processor. (b),(e) p = 14 processors, n = 36, k = 350,
d=.30,q=1, pr=10. (c),(f) p= 26 processors, n = 81, k = 120, d = .25, ¢ =1, pr = 5.

uf u T r T g 2, . . . ' . 2, —

H 1 5 % 5 s 10 15 r. -3 5 10 5 2 s
plocessors processors processors

(a) (b) (c)

Figure 7: Quantitative performance of the parallel adaptive ray-tracing algorithm on the “gears”
scene. (a) Speedup. (b) Load disbalance. (c) Image infidelity.

227

